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This study examined automatic number processing in adults with mathematical learning
disabilities (MLDs).The performance of adults with MLD during an automatic symbolic and
non-symbolic priming task was compared to gender-, age-, and IQ-matched controls. No
difference in the priming distance effect was found between the adults with and without
MLD, suggesting that adults with MLD have an intact magnitude representation. Moreover,
the adults with MLD did not have problems in processing the numerical symbols 1–9,
suggesting that this basic deficit which is experienced by children with MLD is resolved by
adulthood.
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INTRODUCTION
Sufficient basic mathematical competence has shown to be fun-
damental for success in daily life (Duncan et al., 2007; Reyna
et al., 2009). There are, however, many individuals struggling
with mathematics. Therefore, a thorough understanding of the
nature of mathematical learning disabilities (MLDs) is crucial in
order to develop appropriate intervention strategies. MLD is gen-
erally defined as a specific learning disorder in the domain of
mathematics, which must not be caused by sensory difficulties,
general intellectual impairment or lack of educational opportu-
nity (American Psychiatric Association, 2000; see Von Aster and
Shalev, 2007 for a review). Studies have demonstrated that vari-
ous cognitive deficits might underpin MLD (Wilson and Dehaene,
2007; Ansari, 2008; Rubinsten and Henik, 2009). On the one
hand, domain-general deficits are proposed, such as an impair-
ment of working memory (McLean and Hitch, 1999; Passolunghi
and Siegel, 2001; Geary, 2004, 2005), long-term memory (Geary
et al., 2000), visuospatial abilities (Rourke and Conway, 1997),
executive functioning (Bull and Scerif,2001) and attention (Ashke-
nazi et al., 2009). On the other hand, a domain-specific deficit
in how numerical magnitudes are represented and processed has
been suggested to cause MLD (Butterworth, 2005; Rousselle and
Noël, 2007; Wilson and Dehaene, 2007). Concerning this latter
account, two main hypotheses have been put forward. Firstly, the
representation deficit hypothesis suggests that MLD is caused
by a deficit in the innate ability to mentally represent and process
numerical magnitudes, resulting in difficulties in learning about
numbers and arithmetic (Dehaene, 1997; Butterworth, 2005). Evi-
dence for this representation deficit hypothesis has mainly been
accumulated in children using magnitude comparison tasks (e.g.,
Landerl et al., 2009; Mussolin et al., 2010b; see De Smedt et al.,
2013 for a review). For instance, Mussolin et al. (2010b) found that

10- to 11-year-old children with mathematical difficulties showed
a larger distance effect (i.e., longer response times and higher error
rates when comparing magnitudes that are numerically close to
each other) than controls in both symbolic and non-symbolic
magnitude comparisons. This distance effect is usually explained
by overlapping representations of nearby magnitudes. A particular
magnitude does not only activate its corresponding representa-
tion, but also to a lesser extent the representations of numerically
close magnitudes, according to a Gaussian distribution (Moyer
and Landauer, 1967; Restle, 1970). Accordingly, it is more difficult
to discriminate between magnitudes that are numerically close as
there is more representational overlap between them. The larger
numerical distance effect found in children with mathematical
difficulties might suggest that they have a more imprecise repre-
sentation of number magnitude (Mussolin et al., 2010b). To the
best of our knowledge, only few studies addressed this hypothe-
sis in adults (Furman and Rubinsten, 2012; Mejias et al., 2012).
Mejias et al. (2012) showed that adults with MLD produced less
accurate and more variable estimates than control participants
during both symbolic and non-symbolic numerical estimation
tasks, suggesting they have a less precise magnitude representa-
tion. Additional support for the representation deficit hypothesis
comes from cognitive neuroscience. Several neuroimaging studies
have demonstrated the pivotal role of the intraparietal sulcus (IPS)
in magnitude processing of symbolic and non-symbolic stimuli in
children and adults (e.g., Piazza et al., 2007; Notebaert et al., 2011).
Atypical activation of the IPS has been found during the compari-
son of non-symbolic (Price et al., 2007) and symbolic magnitudes
(Mussolin et al., 2010a) in children with MLD (but see Kucian
et al., 2006; Davis et al., 2009; Kovas et al., 2009). Also structural
abnormalities (i.e., reduced gray matter) have been found in this
brain area for children with MLD (Rotzer et al., 2008).
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Secondly, the access deficit hypothesis states that MLD does
not result from an inability to correctly represent magnitudes,
but rather from a deficit in linking a symbol (e.g., Arabic digits)
with its intact magnitude representation (e.g., Rousselle and Noël,
2007; Landerl and Kölle, 2009; De Smedt and Gilmore, 2011).
For instance, it has been found that children with MLD perform
worse compared to controls in symbolic comparison tasks, but not
when they have to compare non-symbolic magnitudes (Rousselle
and Noël, 2007; De Smedt and Gilmore, 2011). It is not yet clear
which brain regions support the linkage between symbols and
their number meaning. Recent studies within the field of numer-
ical cognition suggest that intact functioning of the left angular
gyrus subserves the connection between symbols and their num-
ber meaning (Grabner et al., 2007; Holloway et al., 2010; Price and
Ansari, 2011). Up till now, no studies have investigated directly the
access deficit hypothesis at the neuronal level in individuals with
MLD.

To date, especially comparison and estimation tasks have been
used to investigate these hypotheses. Moreover, few studies have
tested the hypotheses in adults with MLD (Furman and Rubin-
sten, 2012; Mejias et al., 2012). In this study, we used an automatic
priming paradigm to contrast both hypotheses with the same
paradigm. To the best of our knowledge, this paradigm has not
yet been previously used to study magnitude processing in par-
ticipants with MLD. In the priming paradigm, two magnitudes
are presented consecutively, the prime and the target. Responses
are characterized by the priming distance effect (PDE), indicat-
ing faster reaction times (RTs) on trials with numerically close
prime-target pairs (e.g., “1” preceded by “2”) than on trials with
numerically more distant prime-target pairs (e.g., “1” preceded
by “4”). Similar to the comparison distance effect, this PDE is
explained by overlapping representations of numerical magni-
tude. The prime not only activates its own representation but
also the representation of magnitudes nearby. Therefore, in close
prime-target pairs, the prime already partially activated the rep-
resentation of the target, which makes it easier to respond to
the target than when the distance between prime and target is
larger. Hence, the PDE is considered as a useful measure to exam-
ine the characteristics of the magnitude representation (Reynvoet

and Brysbaert, 1999; Van Opstal et al., 2008; Notebaert et al.,
2010). In the present study we conducted a symbolic and non-
symbolic priming task. We used a short interval between the onset
of the prime and that of the target (i.e., stimulus onset asyn-
chrony; SOA) because it has been suggested that when a short
SOA is used, the effects of priming on participant’s responses
reflect more automatic processes compared to larger SOAs: strate-
gic expectancy effects (i.e., participants generate expectations
about the target based on the prime) require SOAs of more
than 250 ms to influence the results (Neely, 1991; Stolz et al.,
2005). Our hypotheses were clear-cut. If MLD is related to an
inability to represent and process magnitudes (i.e., representa-
tion deficit hypothesis), we would expect to observe a smaller
PDE in participants with MLD compared to controls in both
symbolic and non-symbolic conditions. For instance, less pre-
cise magnitude representations lead to a smaller PDE because
the representational overlap that is responsible for the PDE will
not differ a lot between the different prime-target distances,
leading to less increase in RTs with increasing numerical dis-
tance. In contrast, if MLD results from a deficit in accessing
magnitude information from symbols (i.e., access deficit hypoth-
esis), we would expect that participants with MLD are slower
and/or make more errors than controls in the symbolic task
only. Because this hypothesis does not make explicit assumptions
regarding a deficient representation, no differences in the PDE are
expected.

MATERIALS AND METHOD
PARTICIPANTS
Sixteen university students with MLD and sixteen gender, age and
IQ matched controls participated in the experiment (see Table 1
for descriptive statistics). Twenty students (10 with MLD and 10
matched controls) were recruited from the University of York
and 12 participants (six with MLD and six matched controls)
were recruited from the University of Leuven. A sample of par-
ticipants was recruited in both the University of York and the
University of Leuven since it was not possible to recruit enough
students with MLD who showed a clear history of MLDs within
one university.

Table 1 | Descriptive statistics of the sample.

Group N Gender Age (years) Math achievementa IQb

University ofYork

MLD 10 8 females 22.98 (3.61) 13.10 (7.29) 68.20 (25.21)

Control 10 8 females 20.37 (2.70) 74.00 (19.14) 70.90 (24.72)

University of Leuven

MLD 6 8 females 21.21 (1.36) 21 (12.34) 58.33 (25.82)

Control 6 8 females 20.87 (1.77) 91 (8.18) 66.67 (12.91)

Note. Standard deviations are presented in parentheses.
aMean percentile score on the WRAT-3 arithmetic subtest (for the students from the University of York) and mean percentile score on the Arithmetic Tempo Test (for
the students from the University of Leuven).
bMean percentile score on the WASI (for the students from the University ofYork) and mean percentile score on the Advanced Progressive Matrices (for the students
from the University of Leuven).
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Sample of the University of York
One of the students from the MLD group recruited at the Uni-
versity of York had a formal diagnosis of MLD, whereas the other
nine were recruited on the basis of significant self-reported dif-
ficulties with mathematics (using the screening survey of Chinn,
2007). In addition, because most students did not have a formal
diagnosis, a significant discrepancy between their performance
on a standardized math achievement test [i.e., Wide Range
Achievement Test (WRAT-3) arithmetic, Wilkinson, 1993] and
their cognitive abilities needed to be present. The MLD group
from the University of York had a WRAT 3-Arithmetic sub-
test (Wilkinson, 1993) score below the 25th percentile based on
the population sample mean (individual scores ranging from 3
to 23), whereas the control group scored above the 25th per-
centile (individual scores ranging from 47 to 95). T-tests revealed
that the MLD group had a significant lower mathematical abil-
ity than the control group [t(18) = -9.403, p < 0.0001]. No
significant difference in age [t(18) = 1.881, p = 0.076] and
IQ [t(18) = -0.217, p = 0.871] was observed between both
groups.

Sample of the University of Leuven
All students from the MLD group recruited at the University
of Leuven were previously formally diagnosed with MLD as a
child (received after multidisciplinary assessment). Their diag-
nosis was recently (i.e., in the past 12 months) confirmed at
the university’s assessment service. Due to time constraints and
given that their formal diagnosis of MLD was recently confirmed,
we did not administer a broad mathematics achievement and
IQ test as we did in sample of participants from the university
of York.1 Nevertheless, to be able to compare the performance
of these students with the performance of a control group, we
administered a short timed arithmetic test (de Vos, 1992) and
the Advanced Progressive Matrices (APM, Raven, 1962). The
timed arithmetic test is designed to assess arithmetic retrieval
in elementary school and has norms available till sixth grade.
Compared to the norms of 6th grade in elementary school, the
students with MLD scored below the 25th percentile on the timed
arithmetic test (mean percentile score = 21). It could thus be
expected that they perform worse than the 25th percentile on a
age-adequate test. The control participants had a mean percentile
score of 91. T-tests revealed that the MLD group performed sig-
nificantly worse as opposed to the control group on the timed
arithmetic test [t(10) = −11.663, p < .0001]. The groups did
not differ in age (t < 1) and non-verbal IQ (t < 1) (see
Table 1).

1We verified whether differences in results could be found between the sample of
participants with MLD from the University of York and the sample of participants
with MLD from the University of Leuven. To this end, we submitted the RTs and error
rates to a repeated measures ANOVA with notation (symbolic and non-symbolic)
and distance (d1, d2, and d3) as within-subject factors and group (sample from the
University of York and sample from the University of Leuven) as a between-subject
factor. The RT analysis revealed no main effect of group (F < 1), nor were there any
other significant interactions involving group (all ps > 0.332). Similarly, in the error
rate analysis, no effect of group (p = 0.157) nor significant interactions involving
group were observed (all ps > 0.140). Therefore, we did not consider them as two
separate groups in the analyses.

MATERIALS
Experimental tasks
Symbolic and non-symbolic priming task. Stimuli were presented
at the center of the screen in white on a black background using
E-Prime 2.0 (Psychology Software Tools). The symbolic stimuli
consisted of digits ranging from 1 to 9 (Arial font size 20) and
the non-symbolic stimuli consisted of arrays of 1 to 9 dots. The
stimuli were generated using the program developed by Gebuis
and Reynvoet (2011), which manipulates five visual properties:
(1) the convex hull (i.e., smallest contour around the array of
dots), (2) the aggregate surface of the dots, (3) density (i.e., the
aggregate surface divided by the convex hull), (4) the average
diameter, and (5) contour length. The different visual cues of the
stimuli co-varied positively with numerosity in half of the trials
and negatively with numerosity in the other half. Subjects sat at
approximately 50 cm from the screen.

Prime-target pairs were created by combining primes ranging
from 1 to 9 (except 5) and targets 1, 4, 6, and 9, resulting in 32
(eight primes × four targets) possible prime-target combinations.
Subjects were instructed not to respond to the prime and to classify
the targets as smaller or larger than 5. On half of these trials
prime and target elicited the same response (e.g., 2-1; congruent
trials), whereas on the other half prime and target elicited different
responses (i.e., 7-1; incongruent trials). Congruent trials were
presented twice in each block, resulting in 48 trials per block (32
congruent trials and 16 incongruent trials). This was done because
the PDE is computed on the basis of the congruent trials only
(see also Reynvoet et al., 2009; Defever et al., 2011). The response
incongruent trials lead to a response interference effect that masks
the numerical distance effect and are therefore excluded from the
analyses (e.g., Reynvoet et al., 2002). In total, subjects completed
four blocks (i.e., 192 trials).

The symbolic and non-symbolic conditions were counterbal-
anced and each subject was randomly assigned to a condition
order. Before each experiment started, five random practice trials
from the list were presented. During the practice, feedback was
provided. The sequence of a trial was as follows: a fixation-cross
(500 ms), the prime (150 ms), a blank screen (50 ms), the target
stimulus (until a response) and a blank screen (1200 ms). In total,
the experiment took approximately 60 min. Breaks between the
different conditions were provided to prevent fatigue.

Standardized tests
Arithmetical ability. All participants from the University of York
were tested on the arithmetic subtest of the WRAT – third edition
(Wilkinson, 1993). This tests assesses the ability to count, read
symbols, solve oral problems, and perform computations within
a time-limit of 15 min.. The participants from the University of
Leuven were tested with the Tempo-Test-Rekenen (i.e., Tempo test
Arithmetic; de Vos, 1992). This test consists of five subtests: one for
each type of operation (addition, subtraction, multiplication, and
division) and one with mixed operations. Forty items of increasing
difficulty are presented in each subtest and participants have 1 min
to solve as many problems as possible.

Intelligence test. The cognitive abilities of the participants
recruited at the University of York were estimated using the
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Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler,
1999). The participants with MLD were tested on all four subtests
(Vocabulary, Block Design, Similarities, Matrix Reasoning)2; for
the controls we estimated their cognitive ability based on their per-
formance on two subtests (Vocabulary, Matrix Reasoning). This
took approximately 40 to 60 min. The participants from the Uni-
versity of Leuven completed the APM (Raven, 1962) as a measure
of intellectual ability.

Participants were tested in two sessions. In one session the
priming experiments were carried out, whereas in the other session
the arithmetical ability and intelligence tests were administered.
Each session took place on a separate day and both were com-
pleted within 2 weeks. Participants gave informed written consent
and were reimbursed for time and travel. The study had ethi-
cal approval from the Ethics Committee of the Department of
Psychology, University of York.

DATA ANALYSES
The PDE was examined by analyzing the performance on the
targets for congruent trials only, as a function of the numerical
distance between prime and target (see also Reynvoet et al., 2009;
Defever et al., 2011). As previously mentioned, the response incon-
gruent trials (i.e., 33%) lead to a response interference effect that
masks the numerical distance effect (e.g., Reynvoet et al., 2002).
All trials on which the prime and target were identical (i.e., 17%)
were also excluded to prevent a visual repetition priming effect in
the symbolic task. To compare the performance between groups,
median RTs3 for correct responses on the targets and the error
rates were analyzed and were entered separately in a repeated
measures analysis of variance (ANOVA) with stimulus notation
(symbolic or non-symbolic) and prime-target distance (1, 2, or 3)
as within-participant factors and group (MLD or control group)
as a between-participant factor. We computed the 95% confidence
intervals (CIs) for all effects according to the formulas reported in

2We computed a two subtest-IQ for the participants with MLD, to verify whether
this would differ from their four subtest-IQ: no significant difference was found
(t < 1).
3For each participant, we calculated the median RT per prime-target condition. We
did not use a particular cut-off criterion (removal of trials on which the RT is below
or above a certain threshold), since it is difficult to determine a priori which cutoff
should be used. Therefore, we opted to use median RTs because it has the important
advantage that they are insensitive to extreme values.

Jarmasz and Hollands (2009, p. 130) using the program More-
Power 6.0 (Campbell and Thompson, 2012). The CIs provide
information about the lowest and highest mean values that might
exist at the population level. The difference between two means
will be significant if it is greater than the CI’s margin of error (i.e.,
half of the width of the CI) multiplied by

√
2 (Jarmasz and Hol-

lands, 2009; Loftus and Masson, 1994; Campbell and Thompson,
2012). For example, a CI of ± 10 ms would suggest that our exper-
iment had enough power to detect a difference between means of
14 ms or larger (CI *

√
2).

RESULTS
REACTION TIMES
Mauchly’s test of sphericity indicated that the assumption of
sphericity had not been violated, χ2(2) = 0.968, p = 0.616 for
distance, nor for the interaction between notation and distance,
χ2(2) = 2.829, p = 0.243. The repeated measures ANOVA revealed
no effect of group, F < 1, η2

p = 0.023, 95% CI ± 42 ms. A signifi-
cant effect of prime-target distance was present, F(2,29) = 7.926,
p < 0.010, η2

p = 0.353. The RTs increased with increasing
prime-target distance as shown by a significant linear trend for
prime-target distance, F(1,30) = 16.087, p < 0.0001, η2

p = 0.349,

95% CI ± 6 ms (see Table 2). There was also a significant effect
of stimulus notation, F(1,30) = 16.018, p < 0.0001, η2

p = 0.348,
95% CI ± 18 ms, indicating that responses were faster in the sym-
bolic task (i.e., 501 ms) compared to the non-symbolic task (i.e.,
551 ms). The two-way interactions between stimulus notation
and group, F < 1, η2

p = 0.012, 95% CI ± 45 ms, between prime-

target distance and group, F(2,29) = 1.711, p = 0.198, η2
p = 0.106

and between stimulus notation and prime-target distance, F < 1,
η2

p = 0.064, 95% CI ± 10 ms, were not significant nor was the three-
way interaction between stimulus notation, prime-target distance
and group, F < 1, η2

p = 0.041, 95% CI ± 43 ms.

ERROR RATES
Mauchly’s test of sphericity indicated that the assumption of
sphericity had not been violated, χ2(2) = 0.088, p = 0.957 for
distance, nor for the interaction between notation and distance,
χ2(2) = 1.928, p = 0.381. The repeated measures ANOVA revealed
no effect of group, F < 1, η2

p = .0010, 95% CI ± 1.7%. There
was also no effect of prime-target distance, F(2,29) = 1.564,

Table 2 | Mean percentage error rates and reaction times (standard deviations) on the targets as a function of prime-target distance.

Prime-target distance

Symbolic condition Non-symbolic condition

1 2 3 1 2 3

Error rates (%)

MLD 1.31 (2.68) 3.56 (3.83) 2.81 (2.79) 6.31 (7.84) 5.69 (5.17) 6.88 (5.84)

Control 2.44 (3.32) 2.25 (2.79) 1.31 (2.18) 4.31 (3.95) 4.88 (6.56) 7.56 (7.06)

RTs (ms)

MLD 510 (101.39) 519 (109.89) 522 (131.06) 543 (102.67) 559 (96.07) 578 (104.72)

Control 479 (55.62) 483 (57.13) 493 (40.15) 541 (85.56) 534 (83.42) 553 (92.13)
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p = 0.226, η2
p = 0.097, 95% CI ± 0.8%. The significant effect

of stimulus notation, F(1,30) = 17.512, p < 0.001, η2
p = 0.369,

95% CI ± 1.3%. indicated that more mistakes were made in the
non-symbolic task (i.e., 5.9%) as opposed to the symbolic task
(i.e., 2.3%). The two-way interaction between stimulus notation
and group, F < 1, η2

p = 0.001, 95% CI ± 0.6%, prime-target dis-

tance and group, F < 1, η2
p = 0.014, 95%, CI ± 0.3%, and stimulus

notation and prime-target distance, F(2,29) = 2.830, p = 0.075,
η2

p = 0.163, CI ± 1.1%, were not significant. Finally, a significant
three-way interaction between stimulus notation, prime-target
distance and group was observed, F(1,30) = 3.572, p < 0.050,
η2

p = 0.198, CI ± 9.4%, Pairwise comparisons showed that only
for distances 1 and 3, the MLD group made significantly more
mistakes on the non-symbolic compared to the symbolic task,
both ps < 0.024. The control group only made significantly more
mistakes in the non-symbolic compared to the symbolic task for
distance 3, p = 0.001. No significant differences between the MLD
and control group for each distance condition in the symbolic, all
ps > 0.100, and non-symbolic task, all ps > 0.369, were present.

DISCUSSION
This study aimed at contrasting two hypotheses specifying the
domain-specific deficit of magnitude representation underlying
MLD. More specifically, we examined whether adults with MLD
have (a) a deficit in the basic ability to represent numerosities, lead-
ing to difficulties in processing both symbolic and non-symbolic
numerical magnitudes (i.e., representation deficit hypothesis;
Dehaene, 1997; Butterworth, 2005) or (b) problems in accessing
the number magnitude from symbols (i.e., access deficit hypoth-
esis; Rousselle and Noël, 2007). To this purpose, the performance
of adults with MLD and controls matched on age, gender and IQ
was compared during a symbolic and non-symbolic priming task.

Our results showed that the size of the symbolic and non-
symbolic PDE was comparable for adults with and without
MLD. This finding is not in line with the representation deficit
hypothesis, as it indicates the presence of a similar magnitude rep-
resentation in both groups. According to the representation deficit
hypothesis, a different PDE is expected for the MLD group com-
pared to the control group because this would indicate differences
in the precision of the magnitude representation. The conclusion
of a similar magnitude representation in both groups is not in line
with a previous study which provided evidence for the represen-
tation deficit hypothesis in adults with MLD (e.g., Mejias et al.,
2012). These authors contrasted the performance of adults with
and without MLD in both symbolic and non-symbolic estima-
tion tasks. It was found that in all tasks, the estimates of adults
with MLD were more variable and were less precise than those of
the control participants, suggesting that adults with MLD demon-
strate a less precise magnitude representation (i.e., representation
deficit). The contrasting findings between the present study and
the study of Mejias et al. (2012) might be due to differences in the
number range. We only used numerosities ranging between 1 and
9, whereas Mejias et al. (2012) mainly used larger numerosities
(i.e., 8–64). Undoubtedly, adults have a lot of experience with
the numerical magnitudes 1 to 9. It has been suggested that
individual’s experience shape their representation: the greater the
experience, the more precise their processing (e.g., Lipton and

Spelke, 2005; Verguts et al., 2005; Siegler and Opfer, 2003). Hence,
the larger familiarity might have caused a similar performance
between adults with MLD and control participants. A different
pattern of performance between MLD and control participants
might be found when a larger number range would be included in
the priming task. It could also be wondered whether the difference
in automaticity between our priming task and the estimation can
explain the contrasting findings between our study and the one of
Mejias et al. (2012). Indeed, researchers have shown that automatic
and intentional number processing tasks can lead to different infer-
ences about the magnitude representation (Cohen Kadosh and
Walsh, 2009; Bugden and Ansari, 2011). Nevertheless, it should be
noted that contrasting findings regarding the representation deficit
hypothesis obtained with intentional number processing tasks are
also observed in children with MLD (see De Smedt et al., 2013
for a review). Whereas some authors find worse performance on
intentional non-symbolic comparison tasks in children with MLD
compared to controls (e.g., Piazza et al., 2010; Mazzocco et al.,
2011), others failed to find differences (e.g., Rousselle and Noël,
2007; Iuculano et al., 2008; Landerl and Kölle, 2009; De Smedt
and Gilmore, 2011). Though, in the latter studies, children with
MLD showed significant problems in the symbolic comparison
task. Recently, authors suggested that a poorer inhibitory capacity
in children with MLD might cause differences between MLD and
controls on non-symbolic comparison tasks, rather than a repre-
sentation deficit (Szücs et al., 2013). This is explained by the fact
that the incongruent trials in a comparison task, in which visual
cues are manipulated incongruently with numerosity, require par-
ticipants to inhibit irrelevant visual cues (Gilmore et al., 2013).
Future studies examining the representation deficit hypothesis in
children and adults should thus include the assessment of gen-
eral cognitive abilities. Clearly, to date, there is no robust evidence
for a deficient magnitude representation causing MLD which is in
contrast to the robust and ever-occurring evidence for the access
deficit hypothesis (e.g., Landerl and Kölle, 2009; De Smedt and
Gilmore, 2011). In line with this, it might be questioned whether
the difficulties of participants with MLD in an estimation task
with large numerical magnitudes are due to difficulties with the
symbolic component of the task. Indeed, a symbolic estimation
task involves a mapping between a symbol and its non-symbolic
representation and it cannot be excluded that this is the case for
the non-symbolic task as well. In the non-symbolic estimation
task, participants might first translate the target numerosity into
a symbol before reproducing an amount of dots. It is thus possi-
ble that adults with MLD performed worse than controls on the
estimation tasks due to problems in processing large numerical
symbols. To enhance our understanding of the specific difficulties
in adults with MLD, it would be interesting for future studies to
examine both the processing of large symbolic and non-symbolic
numerical magnitudes using tasks which are purely symbolic and
non-symbolic.

Our results also did not provide support for the access deficit
hypothesis in adults. No evidence for difficulties with the process-
ing of the symbols 1–9 was observed: the participants with MLD
were not significantly slower than controls in the symbolic task.
Similar to the controls, adults with MLD showed faster RTs on
the symbolic compared to the non-symbolic priming task. This
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suggests that adults with MLD do not have difficulties in linking
the symbols 1 to 9 with their corresponding magnitude repre-
sentation, which is in contrast with findings reported in children
with MLD. Consistent and ever-occurring difficulties in process-
ing numerical symbols 1–9 have been found in children with MLD
(see for a review, De Smedt et al., 2013). Our data suggests that
this deficit in the basic processing of the symbols 1–9 which is
experienced by children with MLD is resolved by or compensated
for in adulthood. Nevertheless, severe difficulties in higher-level
number processing are still present in the adults with MLD, as indi-
cated by their persistent struggle with mathematics (e.g., extremely
low scores on the more complex mathematics achievement tests).
Although difficulties with the basic processing of relatively small
numerical symbols might be remediated by adulthood, such dif-
ficulties during childhood might be a stumble block for acquiring
more complex mathematical abilities. It should be acknowledged
that the small sample size in our study requires careful interpre-
tation of our findings. Although not significant, the difference in
RT between the MLD and control group for the symbolic task was
larger (i.e., 32 ms) compared to the difference in the non-symbolic
task (i.e., 18 ms). The standard deviations around the means were
substantially larger in the MLD group than in the control group,
especially for the symbolic priming task. This might indicate large
inter-individual differences in the MLD group in the ability to
process numerical symbols 1–9. A replication of our study using a
larger sample size is required to verify whether significant differ-
ences might be revealed. Moreover, longitudinal studies are needed
to reveal whether training on numerical symbols in children with
MLD have a positive impact on the acquisition of higher-level
mathematics skills.
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