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Theories of expertise based on the acquisition of chunk and templates suggest a
differential geometric organization of perception between experts and novices. It is implied
that expert representation is less anchored by spatial (Euclidean) proximity and may
instead be dictated by the intrinsic relation in the structure and grammar of the specific
domain of expertise. Here we set out to examine this hypothesis. We used the domain of
chess which has been widely used as a tool to study human expertise. We reasoned that
the movement of an opponent piece to a specific square constitutes an external cue and
the reaction of the player to this “perturbation” should reveal his internal representation
of proximity. We hypothesized that novice players will tend to respond by moving a piece
in closer squares than experts. Similarly, but now in terms of object representations,
we hypothesized weak players will more likely focus on a specific piece and hence
produce sequence of actions repeating movements of the same piece. We capitalized
on a large corpus of data obtained from internet chess servers. Results showed that,
relative to experts, weaker players tend to (1) produce consecutive moves in proximal
board locations, (2) move more often the same piece and (3) reduce the number of
remaining pieces more rapidly, most likely to decrease cognitive load and mental effort.
These three principles might reflect the effect of expertise on human actions in complex
setups.
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INTRODUCTION
The focus of attention can be directed by exogenous (bottom-
up) and endogenous (top-down) cues (Pylyshyn, 2007; Richard
et al., 2008). The region of visual space to which attention is
directed changes according to specific goals and tasks (Gilbert and
Sigman, 2007; Vinckier et al., 2007). A classic example is Yarbus
gaze experiment (where subjects had to view a complex image
several times, each with a different instruction), he demonstrated
that the sequence of eye fixations changed drastically according
to the question the observer was trying to respond about the
image (Yarbus, 1967; Tatler et al., 2010). Top-down control of
attention can act over a wide range of categories, including loca-
tion but also objects, goals, features, context, time . . . (Duncan,
1984; Chun and Jiang, 1998; Maunsell and Treue, 2006; New
et al., 2007). The ability to direct attention to specific objects and
categories changes with experience (Gilbert and Sigman, 2007)
and, similarly, the ability to ignore salient cues requires inhibition
mechanisms which are trainable (Cepeda et al., 1998).

Chess has been one of the most widely studied models
of expertise (de Groot, 1978; Schultetus and Charness, 1999;
Reingold et al., 2001a,b; Campitelli and Gobet, 2008; Connors
et al., 2011; Bilalic et al., 2012). Chess experts recognize and
recall chess positions accurately [chunk and templates theories
(Chase and Simon, 1973; Gobet and Simon, 1996)], and develop
heuristics that allow them to focus and explore only a few “good

enough” moves (de Groot, 1978), substantially alleviating the
search process.

As in other domains of perceptual expertise, chunk and tem-
plates acquisition theories reflect geometrical differences in the
organization of perception between chess experts and novices:
strong players recognize groups of pieces connected by functional
relations as units (Gobet and Simon, 1996) and they also explore
chess positions differently than novices [eye fixations are more
centered in relationships between pieces (Reingold et al., 2001a)].
An implication of this theory is that expert representation is not
anchored to the proximity between two pieces (Euclidean dis-
tance) and may instead be dictated by the intrinsic relation in the
structure and grammar of the board. For instance, a bishop in one
corner of the board which works in concert with a knight on the
other side of the board to jointly attack an opponent square may
be “functionally proximal” pieces in the mind of an expert, but
“functionally distal” in the mind of a novice who does not recog-
nize this relation. The same argument is true for other domains
of expertise, for instance an expert soccer goalkeeper may bind
together (spatially) distant properties of the field (where is the
ball, where are the defenders and the attackers) which jointly may
build an important cluster of features. Here we set out to examine
explicitly this conjecture. We focus on chess which has three prin-
cipal advantages to solve our goal: (1) The degree of proficiency
can be quantified precisely with international systems of ratings
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(Elo, 1978), (2) The spatial layout in chess is well delimited by a
square discrete grid of 64 locations, and (3) Capitalizing on chess
internet servers we can base our conclusions on massive sets of
data.

We reasoned that the movement of an opponent piece to a
specific square constitutes an external attentional cue. The reac-
tion of the player to this “perturbation” should reveal his internal
representation of proximity. Specifically, we hypothesized that a
naive player will tend to respond in proximal squares. Instead,
we hypothesized that expert player responses are less likely to
be governed by the spatial position of the opponent last move.
Additionally, when this argument is expressed in terms of object
oriented attention, we hypothesized that a novice player will more
likely direct attention (concentrate) to a specific piece and hence
produce repeated sequence of moves with the same piece. Instead,
expert representation is directed to a more sophisticated pattern
of pieces (chains of pawns, coordinated set of pieces working in
concert. . . ) and hence the sequence of moves should show fewer
repetitions. If weak players focus more on individual pieces, we
hypothesized they should tend to reduce the number of objects to
be attended to avoid cognitive load. Finally, we examined some
core aspects of chess strategy hypothesizing the experts would
play more in-line with them than novices.

MATERIALS AND METHODS
DATA ACQUISITION
All games were downloaded from FICS (Free Internet Chess Server,
http://www.freechess.org/), a free ICS-compatible server for play-
ing chess games through Internet, with more than 300,000 reg-
istered users. This constitutes a quite unique experimental setup
providing virtually infinite data (thousands of millions of moves).

Each registered user may be human or a computer player,
and has associated a rating (Glicko rating, http://www.glicko.net/
glicko.html) that indicates the chess skills strength of the player,
represented by a number typically between 1000 and 3000 points.
We defined two expertise levels: (a) strong players with rating
higher than 1900 points and (b) weak players with rating between
1000 and 1400 points.

A regular game of chess contains about 40 moves from each
player. A ply (plural plies) refers to one turn taken by a player.
Hence, a chess game of 40 moves corresponds to 80 plies. We use
the term “next move” to refer to two consecutive actions by the
same player (white move 1: e4, white move 2: Nf3) and the term
“next ply” to refer to consecutive actions by each player (ply 1:
e4—white movement; ply 2: e5—black movement).

For each expertise group, we selected games from the FICS
database (played from 2005 to 2013) with at least 80 plies, played
between human players (of the same expertise group), with a total
time budget of 180 s for each player and no increment. In order to
make further comparisons, we generated 35 sets for each expertise
group (each with 5000 games). These sets were built by date (i.e.,
set 1 contained mostly games from 2005 and set 35, from 2013).
For each analysis we compared 35 values (one for each set) from
the high rated expertise group with the 35 values from the low
rated group.

In order to extend the results to longer time budgets, we repli-
cated the analysis with games of 300 and 900 s per player. Because

of the lower number of available games for these time budgets,
we generated 35 datasets of 1500 games each (for each expertise
group) for each of them. All other conditions were maintained.

MOVEMENT DISTANCE MEASURE
Piece location coordinates were organized in an 8∗8 matrix (rep-
resenting the 64 squares of the chess board). For each movement,
we calculated two different measures (D1 and D2) to examine the
proximity between successive actions in a game of chess. To do
this, we define the initial square of a movement as the location of
the moving piece before the movement and the final square of a
movement as the location of the moving piece after this action.

D1 corresponds to the difference between the initial square of
a piece movement and the final square of the previous move-
ment by the opponent. In other words, this corresponds to the
difference in location between two consecutive plies of the game.
This is the observable which can be more easily mapped to classic
attentional cues experiments. We make the analogy that the loca-
tion where the opponent drops a piece is an attentional cue and
observe the player’s onset of his response relative to this cue.

D2 corresponds to the difference between the final squares of
two successive moves from the same player. This is measured as
the difference between the end-locations of ply(n + 2) and ply(n).

For each measure we calculated the signed difference in
squares in the x and y axis. Positive values of the y-axis indicate
that the difference is shifted toward the upper side of the board.
To do so we assumed the normal row conventions of chess (1
indicating white’s first row and 8 black’s first row). A positive dif-
ference in x-axis indicates a shift toward the left side and negative
values a movement toward the right side of the board. Note that
the differences in both axis take a range in the [−7, −6, . . . , 0,
1, . . . , 7] values. A value of zero indicates that there was not shift
in that axis. For each measure (D1 and D2), we obtained a dis-
tance matrix for white moves and other for black moves, and we
added them.

For each independent set (35 per expertise group) we cal-
culated the 15∗15 matrices D1mat(i,R) and D2mat(i,R), where i
ranges from 1 to 35 and R can be high or low rated group.
Probabilities for each entry of the matrices were calculated as
follow: (a)- for each movement (at least 40∗5000 –number of
moves∗number of games-, white or black) we calculated the dis-
tance measure, (b) we counted the amount of movements which
matched with each matrix entry, (c) we divided the number of
movements on each entry by the total number of movements
on the distance matrix. For each matrix, the entries indicate the
probability to find successive plies (for D1) or moves (for D2) at
the corresponding distance (see Figure 1) where indices 1 . . . 15,
respectively, code distances [−7 . . . 7].

Our main experimental question is to investigate whether
certain transitions (spatial differences between successive move-
ments) differ between high and low rated players. To examine
this we performed two-sample t-tests comparing high vs. low
groups. We performed an independent t-test for each entry of the
matrix (a total of 225 tests), each comparing the 35 values mea-
sured for the high and low expertise groups. From this analysis
we generated a matrix oft-values which encodes the difference in
probabilities for each entry between high and low rated players.
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FIGURE 1 | Expertise level defines spatial effects on successive

movements. (A) Distance measurements. Distances between two
squares over an 8∗8 checkerboard can be measured subtracting the
coordinates of one location (white circle) to the coordinates of other
location (represented by the end of each arrow) on both x and y
axis. The square where the white circle is located corresponds to
x = 6 and y = 6, and four alternative locations are illustrated with
color arrows. All possible distances between two squares of this
8 × 8 board are constrained to a 15∗15 square, where now the
coordinates of the white circle are (0, 0) and distance measures
range from −7 to 7. The x axis shows the direction movement on
number of columns (x < 0, left direction; x > 0, right direction) and
the y axis represents movements on number of the rows (y < 0,
down direction; y > 0, up direction). For example, the distance
between the end of the yellow arrow (which is at x = 5 and y = 7
on the 8∗8 board) and the white circle is calculated as the
difference between the corresponding squares coordinates (�x = −1
and �y = 1). (B) Probability distributions of movement distances. We
use two observables to assess locality effects on chess playing: D1

and D2 (see Methods). Probabilities to make a movement close to

the previous one is higher at short distances, for both High and
Low expertise levels. (C) Weak players made their movements closer
to the previous one. We contrasted probability distributions for both
High and Low rated players on each entry of the 15∗15 distance
square independently. t-value of each independent two-sample t-test
(with p-value < 0.001, Bonferroni corrected for multiple comparisons)
is color-coded. Positive (red) t-values indicate significantly higher
probabilities for high rated players and negative (blue) values, for
weaker players. (D) Radial or Euclidean distances. Distances were
one-dimension collapsed and the difference between probabilities of
making movements corresponding to a distance square [P(High) –
P(Low)] was plotted vs. each radial distance. High and low rated
groups distributions were independently compared in each radial
distance [two-sample t-test on each variable (D1 and D2)]. Red
asterisks (t > 5.3 for D1 and t > 5.6 for D2) indicates distances were
P(High) is significantly higher than P(Low); blue asterisks (t < −12.3 for
D1 and t < −11 for D2), distances were P(Low) > P(High); in both
p < 0.001, Bonferroni corrected for multiple comparisons. Dotted lines
indicate distance values where the significances changes from weak
to strong players.
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Positive t-values indicate that this transition is more likely for
high than for low rated players. p-values were corrected with a
strict Bonferroni criterion for multiple comparisons, considering
a difference as significant only if p < 0.001/225. For visualization
purposes, t-values in comparisons that did not reach significance
were set to t = 0.

We then collapsed the matrices D1mat(i,R) to their radial dis-
tance by the conventional formula r = (�x2 + �y2)1/2. This
resulted on independent vectors of 34 dimensions for each i and
R. Note that the possible differences in distance over the board
is less than 15∗15 since there is a lot of redundancy (for instance
moving the king one square to the left, to the right, up or down,
all correspond to a radial distance of 1). As before, we converted
these distributions in a vector of t-values which encode the differ-
ence in probabilities for each index between high and low rated
players. Positive t-values indicate that this transition is more likely
for high than for low rated players. p-values were corrected with a
strict Bonferroni criterion for multiple comparisons, considering
a difference as significant only if p < 0.001/34.

PIECE REPETITION
This analysis is shown only for white moves (analyzing black
moves yielded identical results). We encoded for each white move
whether the piece moved was the same (1) or different (0) than
the piece moved in the previous turn. The probability of moving
the same piece twice depends on the number of pieces remaining
of the board. Thus, we calculated the repetition probability as a
function of the pieces remaining in the board independently for
the 35 sets of each expertise level. This yielded vectors PR(i,R,np)
where i indicates the group (1–35), R the expertise level (high or
low) and np the number of pieces remaining on the board from 3
to 16 (there were not sufficient positions with one or two pieces
remaining on the board when considering the first 40 moves). To
quantify the main effects of expertise level and number of pieces
on the repetition probability we made a Two-Way ANOVA test
with number of pieces and expertise level as independent factors
and their interactions. Then, we compared the distributions of
high and low rating independently for each number of pieces with
independent two-sample t-tests comparing high and low rated
players. p-values were corrected with a strict Bonferroni criterion
for multiple comparisons, considering a difference as significant
only if p < 0.001/16.

NUMBER OF PIECES REMAINING ON THE BOARD
This analysis is shown only for white moves (analyzing black
moves yielded identical results). We calculated for each white
move number (1–40) the number of white pieces remaining on
the board (1–16). We then averaged this value for each move
number (1–40) across all the games in each set. This yielded
vectors NP(i,R,n) where i indicates the set (1–35), R the exper-
tise level (high or low), and n the move number from 1 to 40.
Note that this distribution as function of move number has to be
monotonous decreasing. This would not be true in bughouse or
crazy house variants of the games where a player can introduce a
captured piece back to the board. We assessed the main effects
of move number and expertise level with a Two-Way ANOVA
test with move number and expertise level as independent factors

and their interactions. Then, we compared the distributions of
high and low rating independently for each move number with
independent two-sample t-tests. p-values were corrected with a
strict Bonferroni criterion for multiple comparisons, considering
a difference as significant only if p < 0.001/40.

BOARD DISTRIBUTION
This analysis is shown only for white moves (analyzing black
moves yielded identical results). We calculated for white moves
5, 10, 20, 30, and 40 and for each piece the frequency of dis-
tribution along all squares of the board. Since the remaining
amount of pieces between varies with expertise levels and the
number of types of pieces is not the same (8 pawns, 2 bishops, one
king,. . . ) we normalized the occurrences by the average number
of the piece type at each move number on each set. For exam-
ple, the probability to have a knight on b1 in the move number
1 (in a set of an expertise level) is 0.98 and for g1 is 0.93, but
at that moment there were 2 knights over the board (on average
in that set), then the values for b1 and g1 were 0.49 and 0.465,
respectively.

This results (for each piece type, move number, set and exper-
tise level) in an 8∗8 matrix which encodes the normalized average
occupation of the corresponding piece along the board. Then,
for each piece and move number, we compared the distribu-
tions along the board for high and low rating, with indepen-
dent two-sample t-tests for each entry of the matrix. Positive
t-values indicate that the occupation probability in a given entry
is more likely for high than for low rated players. p-values were
corrected with a strict Bonferroni criterion for multiple compar-
isons, considering a difference as significant only if p < 0.001/64.
We reported results from knights, rooks and queen in the full
matrix.

Data is represented as mean ± SD (n = 35) for Figures 1C,
2A,B. Asterisks indicate significant differences at p < 0.001
(Bonferroni corrected). The same color code is maintained along
the whole work: red indicates higher probabilities for strong
players and blue for weaker players.

RESULTS
HYPOTHESIS 1
Low rated players make moves which are more proximal to their
own last move and to the opponent precedent move.

D1 considers the difference between the initial location of a
piece movement and the final location of the previous movement
by the opponent. D2 corresponds to the difference between the
final locations of two successive moves from the same player (see
Materials and Methods and Figure 1A for a full description of
how D1 and D2 are calculated).

For both expertise groups, we found a similar distribution of
distances probabilities: all players tended to make their move-
ments in squares close to the final location of their opponent
last movement (D1) and to their own last movement (D2)
(Figure 1B). However, and in accordance with our first hypothe-
sis, lower rated players tend to make more movements in board
locations which are proximal to the opponent’s last movement
(D1) and their own antecedent movement (D2). Instead, strong
players showed higher densities of successive movements which
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FIGURE 2 | Object-based mechanisms depend on expertise level. (A)

Weak players repeat the same piece on consecutive movements more
frequently than strong players. Probabilities to repeat the same piece on
two consecutive moves depends on the remaining number of pieces on
the board. We plotted this probability vs. the number of pieces for both
expertise levels. Independent two-sample t-tests (high vs. low expertise
probabilities) for each number of pieces left (ranging from 1 to 16) evidence
a higher probability to move the same piece on consecutive movements for
low rated players, almost independently of the number of remaining pieces
(∗p < 0.001 Bonferroni corrected for multiple comparisons). Dashed black
line shows the random threshold. (B) Low-rated players reduce the number
of pieces more rapidly than high-rated players. The number of remaining
pieces over the board, which change throughout the game (starting in 16
pieces for each player), is significantly higher for high rated players along
the whole game (moves 3–40, independent two-sample t-tests on each
move number, ∗p < 0.001 Bonferroni corrected for multiple comparisons),
evidencing than low rated players exchange (or loss) their pieces more
rapidly than stronger players.

were more scattered in space (Figure 1C) 1. To quantify this
observation we aggregated the distribution of spatial differences
to a single scalar estimating the radial distance between the two
successive movements (Figure 1D).

1Note that D2 has a non-zero probability in the origin which corresponds to
two consecutive moves by one player which have the same end-location. This
can only happen when a player captures twice in the same location. Instead D1

has a strict zero probability in the origin since a player cannot make a move
starting in the square where the opponent has moved a piece.

Results of D1 indicated that movements starting within a
radius of 3.5 squares from the position where the opponent
moved his piece were more likely in low rated players (p < 0.001
Bonferroni corrected) while movements outside of this radius
where more likely for high rated players (p < 0.001 Bonferroni
corrected). Similarly, results of D2 indicated that low rated play-
ers were more likely (p < 0.001 Bonferroni corrected) to make
two consecutive moves with end-locations within a radius of
2.5 squares, while higher rated players made more likely moves
beyond this radius.

Both of these results are extremely reliable through distances
(Figure 1D). This indicates that while the specific geometry of
the board may be subtle and specific to chess (the patterns of
Figure 1C are complex) they organize on a synthetic rule by
which low rated players tend to overplay more proximal and high
rated players more distal moves.

Previous results were obtained using games with a short time
budget (180 s). To avoid any confound related with the use of very
short games, we repeated the exact analysis for games with longer
time budgets (300 and 900 s per player) and we found the same
results (Figures S1, S2).

HYPOTHESIS 2
Low rated players are more likely to move the same piece in
consecutive turns.

The previous results suggest that low rated players have a nar-
rower (or more focal) spatial window of attention. Attention can
also be directed to objects (Richard et al., 2008). We examine the
hypothesis that throughout a game, low rated players are more
focused in a specific piece than high rated players, who may drive
attention to schemas assembling sets of pieces (pawn chains, sev-
eral pieces converging in a square or a plan . . . ). To this aim,
we simply measured the probability of repeating a piece in two
consecutive moves. A repetition is counted only when the exact
same piece (not the same type of piece) is moved twice. If a player
moves a pawn and in the next turn moves another pawn, this is
considered as a different piece movement.

The probability of moving the same piece twice depends on the
number of pieces remaining of the board. Thus, we calculated the
repetition probability as a function of the pieces remaining in the
board (Figure 2A). The repetition probability decreased with the
number of pieces for both groups but remained above chance lev-
els. This is expected since: (1) some pieces actually cannot move
and (2) players rarely consider all pieces in the board as candidates
to move. As we had hypothesized, lower rated players produced
more repetitions reflecting that attention (or their strategies or
conception of plans) is more likely to be constrained to a single
piece. To quantify this observation we first submitted the data to
a Two-Way ANOVA test with number of pieces and expertise level
as independent factors and their interactions. Results showed
a main effect of both factors (Expertise, p < 0.0001, F = 91.8,
df = 1; Number of Pieces: p < 0.0001, F = 181.6, df = 15 and
Interaction, p < 0.0001, F = 7.5, df = 15). We followed this test
with independent two sample t-tests (corrected with a strict
Bonferroni criterion for multiple comparisons) for each num-
ber of pieces left, comparing the distributions for high and low
rated players. Each value of the distribution is obtained from one
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of the 35 different sets of each expertise level. All comparisons
consistently showed greater repetition probability for lower than
higher rated player. This effect was significant when 6, 8–14, and
16 pieces remaining on the board [t(34) < −5.2, p < 0.001].

As for the first hypothesis, we repeated the piece repetition
analysis using games with longer time budgets (Figures S3A,B)
and we replicated the results found for 180 s games.

HYPOTHESIS 3
Since weak players focus more on individual pieces it is expected
that it is effortful for them to work on boards with many pieces.
We expect that weaker players will tend to simplify the position to
avoid mental effort (Koechlin and Summerfield, 2007).

We compared the amount of pieces as a function of move
number for both expertise levels. As expected the number
of pieces started in 16 (initial configuration) and smoothly
decreased to an average of about 7 pieces by move 40. Beyond this
main trend we observed that after the first five moves, the distri-
butions of remaining pieces for high and low rated players bifur-
cate. This analysis shows that, as we had hypothesized, weaker
players exchange pieces more rapidly than stronger players. To
quantify this observation we first made a Two-Way ANOVA test
with number of pieces and expertise level as independent factors
and their interactions. Results showed a main effect of both fac-
tors (Expertise, p < 0.0001, F = 4.5∗104, df = 1; Move number:
p < 0.0001, F = 2.2∗105, df = 39 and Interaction, p < 0.0001,
F = 296, df = 39). We followed this test with independent two-
sample t-tests (corrected with a strict Bonferroni criterion for
multiple comparisons) for each move number, comparing the
distributions for high and low rated players. All comparisons con-
sistently showed significant greater number of pieces along the
whole game (move numbers 3–40) for high rated players [t(34) >

15 for move numbers 4–6, t(34) > 27 for move numbers 3 and
7–40, p < 0.001]. Once again, we repeated the previous analysis
for 300 and 900 s games (Figures S3C,D) replicating the results
found for 180 s time budget.

The results described above show that weaker players tend to
produce consecutive moves in proximal board locations, more
often moving the same piece and exchanging pieces more rapidly
to reduce the number of remaining pieces. These three principles
reflect consistent general findings which might reflect the effect of
expertise on human actions in complex setups.

Beyond these three principles there are idiosyncratic aspects of
the game of chess which relate to piece value, with the way the
move on the board and where they are more effective, which dic-
tate a specific strategy in the board. Expert play is expected to
be more in-line with certain strategic themes. Here we examined
three core aspects of chess strategy: (1) Knights are more effective
when they are centralized, (2) Rooks play first along the 1st row
to find an optimal centralized column where they are effective,
(3) The queen should not risk going for long travels early in the
game.

At different stages of the game (moves 5, 10, 20, 30, and 40)
we calculated the average density of white pieces (N: knights,
R: Rooks, Q: Queen) along the board. For each square we per-
formed a two-sample t-test comparing the distribution of densi-
ties for the high and low rated players and corrected for multiple

comparisons with a strict Bonferroni criterion. Results showed
that, as expected, knights were significantly more centralized
(over the whole board) for higher rated players and were more
likely to be found in their initial square (b1 or g1) or advanced
in the enemy camp for weaker players (Figure 3A). Rook move-
ment revealed that by move 5 higher rated players are more likely
to have castled and by move 10 a higher probability of central-
izing the rooks on the 1st row (Figure 3B). Rooks position in
weaker players instead was much more likely to be in the ini-
tial squares (a1 and h1). Also, as with knights, weaker players
are more likely to advance the rook in the enemy camp. Another
consistent finding is that stronger players place their rooks in the
queen-side (left side of the board for white). Instead weaker play-
ers more rapidly attack on the king-side: for instance by move
30, white rooks are more likely to be found in squares close to
the opponent-king location. This reflects a more positional play
and a less direct tendency of directly going to mate the enemy
king for high rated players. Finally, as expected, stronger play-
ers tend to postpone queen development (by move 5 and 10 the
queen is more likely to be in the initial square d1) and through-
out the game develop the queen on the first rows (Figure 3C). We
emphasize that these results do not convey information about the
absolute distribution of occupation of a piece. Instead they reflect
differential distributions, i.e., indicating whether a given pieces
is more likely to be occupied by stronger or weaker players. To
avoid confusion Figure S4 shows the average degree of occupancy
of these pieces throughout the game for each expertise level. As
for previous hypotheses, we replicated and found similar results
for games with longer time budgets (see Figure S5).

DISCUSSION
Here we showed differences in general and domain-specific pat-
terns of actions depending on expertise level. We found that
weaker players play more locally, tend to focus sequences of
actions in the same piece and more rapidly exchange pieces to
reduce the total number of pieces on the board. Our working
hypothesis is that these observations reflect a different focus of
attention to space and objects with expertise.

Our first working hypothesis was that the end location of a
movement (the place where a piece is located) functions like a
spatial cue in the board space. Our conjecture is that the ten-
dency to continue playing close to that cue is a reflection of the
persistence of attention to this location.

Attention involves a sequence of operations: 1- attentional
shifting to the target location, 2-attentional engagement, 3-
attentional disengagement (Posner and Petersen, 1990; Fox et al.,
2002; Koster et al., 2006). The persistence of play in a given
location has three likely and related explanations: a first possi-
bility is that novices have difficulties disengaging attention from
the cued place in the last movement (Sheridan and Reingold,
2013). Another possibility is that expert players have more effec-
tive preattentive mechanisms to encode saliency mechanisms in
peripheral locations of the board (Sigman and Gilbert, 2000;
Intriligator and Cavanagh, 2001; Pylyshyn, 2007; Vinckier et al.,
2007). Chess masters have an advantage for the recognition of
chess pieces (Saariluoma, 1995; Kiesel et al., 2009; Bilalic et al.,
2010) and chess themes (Reingold et al., 2001a,b), which may
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FIGURE 3 | Piece distribution over the board reveals domain-specific and

expertise-dependent strategies. Probabilities to find a type of piece
(normalized by the number of remaining pieces of this type) in each square
(8∗8 checkerboard) were compared for high and low expertise groups at
different game stages (moves 5, 10, 20, 30, and 40). The t-value resulting of
the two-sample t-test (high vs. low expertise group), in each square is color
coded for those significantly different comparisons with p < 0.001 Bonferroni
corrected for multiple comparisons. Red positive values indicate significantly
higher probabilities for strong players and blue negative values, significantly

higher probabilities for weaker players. (A) Knights, (B) Rooks, and (C) Queen
occupancy comparisons reveal that strong players centralize more their
knights and rooks, delaying the queen development, compared with lower
rated players delaying more the development of knights and rooks (but not
the development of the queen, which is almost always not good) and/or
occupying more advanced squares with all. It should be noted that the this
figure represents the differential occupancy of each square, showing that
strong or weak players locate each type of piece comparatively more
frequently than the other group.

serve as salient detector providing new cues which compete with
the previous spatial cue. A third possibility is that expert players
can attend to themes or schemas (strings of pieces) and the focus
of attention is spread over the whole attended object (Houtkamp
et al., 2003; Alvarez and Scholl, 2005; Richard et al., 2008). In
line with this idea, the size and form of the selection window
has been proposed to be controlled by top-down mechanisms
and dependent on the task difficulty (Belopolsky and Theeuwes,
2010).

Our results based on the spontaneous distributions of actions
during a game are consistent with a recent report by Sheridan and
Reingold analyzing the distribution of attention in the Einstellung
Effect (Sheridan and Reingold, 2013). The authors present a prob-
lem in which there is a move which almost indefectibly attracts
attention (for instance a region on the board where there seems
to be mate, with the king exposed and many pieces attacking
it). In this construction, the best move is away from this specific
location of the board. Weaker players very often do not con-
sider this optimal (but distant from a very salient location) move
and their gaze remains in the Einstellung region of the board.
Instead, stronger players can disengage from this location which
allows them to find the distant and optimal move (Sheridan and
Reingold, 2013).

Weaker players are less likely to organize the representation
of the board in large chunks (Chase and Simon, 1973; Gobet
and Simon, 1996) and thus, comparing variations when many
pieces remain on the board requires more attentional shifts
and executive function. Koechlin and colleagues have coined the
idea of a “lazy” executive system which is triggered only when
strictly needed (Koechlin and Summerfield, 2007). Combining

these premises, we reasoned that all players will seek to min-
imize effort. To achieve this, weaker players will prefer posi-
tions with less number of pieces on the board. As expected by
this prediction we show that weak players tend to “simplify”
the problem by more rapidly removing pieces of the board
consistently.

We initially chose using 180 s games to test our hypotheses
based on: 1- evidences showing that rapid processes (related with
pattern recognition) rather than slow processes (fundamentally,
search mechanisms) are responsible of chess expertise (Burns,
2004; Sigman et al., 2010), 2- the time used for each movement
is close-related with the common psychological experiments and
3- the FICS database for 180 s games is larger than those for
longer time budgets. However, we also replicated all our results
for longer time budgets (300 and 900 s) indicating the robust-
ness of the conclusions and absence of 180 s time budget-related
artifacts.

The effect size of all our results is small but consistent with
our working hypotheses and each result was replicated in three
different time budgets, favoring the consistency and reliability of
our results.

Our study focused on chess but there is no reason to think
that the main of the conclusions derived here (with the excep-
tion of specific strategic patterns shown in Figure 3) are specific
to chess and hence are likely be generalized to the effect of exper-
tise on other domains of human action and decision making (i.e.,
novice car drivers focusing his/her attention only in the front road
but not in the car mirrors or novice sport players deciding their
actions based only in the ball location because they are not able to
simultaneously attend to their partners and opponents locations).
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Figure S1 | Spatial effects are also observed in longer games: 300 s time

budget. (A) Probability distributions of movement distances. As for 180 s

games (Figure 1B), probabilities to make a movement close to the

previous one are higher at short distances, for both expertise levels. (B)

Weak players made their movements closer to the previous one. The

same analysis explained for 180 s games was made for 300 s games,

obtaining similar results (see Figure 1C). Probability distributions for both

High and Low rated players were contrasted on each entry of the 15∗15

distance square independently. t-value of each independent two-sample

t-test (with p-value < 0.001, Bonferroni corrected for multiple

comparisons) is color-coded. Positive (red) t-values indicate significantly

higher probabilities for high rated players and negative (blue) values, for

weaker players. (C) Radial or Euclidean distances. Again, as in Figure 1D

for 180 s games, distances were one-dimension collapsed and the

difference between probabilities of making movements corresponding to

a distance square [P(High) – P(Low)] was plotted vs. each radial distance.

High and low rated groups distributions were independently compared in

each radial distance [two-sample t-test on each variable (D1 and D2)]. Red

asterisks (t > 5.2 for D1 and t > 4.9 for D2) indicates distances were

P(High) is significantly higher than P(Low); blue asterisks (t < −7.3 for D1

and t < −7.8 for D2), distances were P(Low) > P(High); in both p < 0.001,

Bonferroni corrected for multiple comparisons.

Figure S2 | Spatial effects are also observed in longer games: 900 s time

budget. (A) Probability distributions of movement distances. As for 180 s

(Figure 1B) and 300 s (Figure S1A) games, probabilities to make a

movement close to the previous one are higher at short distances (for

both expertise levels). (B) Weak players made their movements closer to

the previous one. The same analysis explained for 180 s and 300 s games

was made for 900 s games, obtaining similar results (see Figure 1C).

Probability distributions for both high and low rated players were

contrasted on each entry of the 15∗15 distance square independently.

t-value of each independent two-sample t-test (with p-value < 0.001,

Bonferroni corrected for multiple comparisons) is color-coded. Positive

(red) t-values indicate significantly higher probabilities for high rated

players and negative (blue) values, for weaker players. (C) Radial or

Euclidean distances. Again, as for 180 s games (Figure 1D) and 300 s

games (Figure S1C), distances were one-dimension collapsed and the

difference between probabilities of making movements corresponding to

a distance square [P(High) – P(Low)] was plotted vs. each radial distance.

High and low rated groups distributions were independently compared in

each radial distance [two-sample t-test on each variable (D1 and D2)]. Red

asterisks (t > 6.9 for D1 and t > 4.9 for D2) indicates distances were

P(High) is significantly higher than P(Low); blue asterisks (t < −5.3 for D1

and t < −5 for D2), distances were P(Low) > P(High); in both p < 0.001,

Bonferroni corrected for multiple comparisons.

Figure S3 | For longer games (300 and 900 s time budget), object-based

mechanisms also depend on expertise level. (A,B) Weak players repeat

the same piece on consecutive movements more frequently than strong

players. As for 180 s games (Figure 2A), we plotted the probability to

repeat the same piece on successive movements vs. the number of

pieces for both expertise levels for 300 and 900 s games. To quantify

these observations we first submitted the data to a Two-Way ANOVA test

with number of pieces and expertise level as independent factors and

their interactions. Results for 300 s games showed a main effect of both

factors (Expertise, p < 0.0001, F = 41.9, df = 1; Number of Pieces:

p < 0.0001, F = 61.6, df = 15 and Interaction, p < 0.0001, F = 10.1,

df = 15). Results for 900 s games showed a main effect of both factors

(Expertise, p < 0.0001, F = 197.8, df = 1; Number of Pieces: p < 0.0001,

F = 89.7, df = 15 and Interaction, p < 0.0001, F = 31.4, df = 15). We

followed these tests with independent two sample t-tests (corrected with

a strict Bonferroni criterion for multiple comparisons) for each number of

pieces left, comparing the distributions for high and low rated players.

Each value of the distribution is obtained from one of the 35 different sets

of each expertise level. All comparisons consistently showed greater

repetition probability for lower than higher rated player. For 300 s games,

this effect was significant for 7–14 pieces remaining on the board

[t(34) < −4.9, p < 0.001]. For 900 s games, this effect was significant for

8–16 pieces remaining on the board [t(34) < −6.4, p < 0.001]. Dashed

black line shows the random threshold. (C,D) Low-rated players reduce

the number of pieces more rapidly than high-rated players. As it was

previously showed for 180 s games, the number of remaining pieces over

the board is significantly higher for high rated players almost for the whole

game for both 300 and 900 s games. First, we made a two-way ANOVA

test with number of pieces and expertise level as independent factors and

their interactions showed a main effect of both factors. ANOVA results for

300 s games: Expertise, p < 0.0001, F = 1.3∗104, df = 1; Move number:

p < 0.0001, F = 3.2∗104, df = 39 and Interaction, p < 0.0001, F = 175,

df = 39. ANOVA results for 900 s games: Expertise, p < 0.0001,

F = 0.98∗104, df = 1; Move number: p < 0.0001, F = 2.2∗104, df = 39

and Interaction, p < 0.0001, F = 79, df = 39. We followed these tests

with independent two-sample t-tests (corrected with a strict Bonferroni

criterion for multiple comparisons) for each move number, comparing the

distributions for high and low rated players. All comparisons consistently

showed significant greater number of pieces almost along the whole

game [in 300 s games, move numbers 3, and 8–40, t(34) > 5, p < 0.001; in

900 s games, move numbers 3 and 7–40, t(34) > 6, p < 0.001] for high

rated players, evidencing than low rated players exchange (or loss) their

pieces more rapidly than stronger players in 300 and 900 s games.

Figure S4 | Occupation distribution of pieces throughout the game for

both expertise levels. Probabilities to find a (A) Knight, a (B) Rook, or the

(C) Queen at each square of the chess board is represented for each

rating group at different game stages (move numbers 5, 10, 20, 30, and

40). It should be noted that both groups occupy almost the same squares

along the board (there are not “exclusive” squares), but some places are

comparatively more occupied by weak or strong players (see Figure 3).

Figure S5 | Piece distribution over the board also reveals domain-specific

and expertise-dependent strategies in longer games (300 and 900 s time

budget). Probabilities to find a type of piece (normalized by the number of

remaining pieces of this type) in each square (8∗8 checkerboard) were

compared for high and low expertise groups at different game stages

(moves 5, 10, 20, 30, and 40). The t-value resulting of the two-sample

t-test (high vs. low expertise group), in each square is color coded for

those significantly different comparisons with p < 0.001 Bonferroni

corrected for multiple comparisons. Red positive values indicate
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significantly higher probabilities for strong players and blue negative

values, significantly higher probabilities for weaker players. (A,D) Knights,

(B,E) Rooks, and (C,F) Queen occupancy comparisons reveal that strong

players centralize more their knights and rooks, delaying the queen

development, compared with lower rated players delaying more the

development of knights and rooks (but not the development of the queen,

which is almost always not good) and/or occupying more advanced

squares with all. It should be noted that the this figure represents the

differential occupancy of each square, showing that strong or weak

players locate each type of piece comparatively more frequently than the

other group. (A–C) correspond to 300 s games. (D–F) correspond to 900 s

games.
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