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To respond to a touch, it is often necessary to localize it in space, and not just on the skin.The
computation of this external spatial location involves the integration of somatosensation
with visual and proprioceptive information about current body posture. In the past years,
the study of touch localization has received substantial attention and has become a central
topic in the research field of multisensory integration. In this review, we will explore
important findings from this research, zooming in on one specific experimental paradigm,
the temporal order judgment (TOJ) task, which has proven particularly fruitful for the
investigation of tactile spatial processing. In a typical TOJ task participants perform non-
speeded judgments about the order of two tactile stimuli presented in rapid succession
to different skin sites. This task could be solved without relying on external spatial
coordinates. However, postural manipulations affect TOJ performance, indicating that
external coordinates are in fact computed automatically. We show that this makes theTOJ
task a reliable indicator of spatial remapping, and provide an overview over the versatile
analysis options for TOJ. We introduce current theories of TOJ and touch localization, and
then relate TOJ to behavioral and electrophysiological evidence from other paradigms,
probing the benefit of TOJ for the study of spatial processing as well as related topics
such as multisensory plasticity, body processing, and pain.
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INTRODUCTION
The sense of touch is essential for many aspects of human
function and cognition. Touch is intricately interweaved with
the planning of our actions, with the perception of pain, with
the defense of our body against physical threats, and, ultimately,
with our sense of self. Among the different functions related
to touch perception, its spatial processing – that is, where we
perceive a touch to have taken place – has received consider-
able attention in psychology and neuroscience. In this review,
we will explore some of these efforts, focusing on one spe-
cific experimental paradigm, tactile temporal order judgments
(TOJ). This paradigm has proven particularly valuable for the
investigation of tactile localization and its relationship to the
many touch-related research topics, in particular when combined
with changes in limb position. The most influential postural
manipulation has been limb crossing. In fact, many experi-
mental paradigms besides TOJ have relied on this manipulation,
and, accordingly, the merits of limb crossing as an experimen-
tal manipulation for the investigation of touch will be extensively
discussed.

In a typical TOJ task, participants are presented with two tactile
stimuli, one to each hand, in short temporal succession. Par-
ticipants’ task is to report which of the two stimuli came first.
With uncrossed hands, human observers can resolve stimulus
order accurately even at very short intervals (∼30–70 ms), but

performance becomes markedly impaired when the hands are
crossed, with a larger time interval required between stimuli for
correct performance (∼120–300 ms, Yamamoto and Kitazawa,
2001a; Shore et al., 2002). In fact, the sequence of touches is
often perceived in reversed order, indicating that the tactile events
are systematically referred to the wrong hands (e.g., Yamamoto
and Kitazawa, 2001a). This crossing effect in touch is thought
to be due to a conflict between two spatial reference frames that
are concurrently active. One reference frame is skin-based and,
accordingly, somatotopically organized, and the other is external-
spatial, possibly based on representations of visual space. Notably,
the crossing effect is large in size, and it is reliable and stable,
persisting even when the two tactile stimuli differ in frequency
or duration (Roberts and Humphreys, 2008), and regardless of
gender (Cadieux et al., 2010) and handedness (Wada et al., 2004),
though the latter two can affect the size of the effect. Further-
more, the crossing effect persists when no time restrictions are
imposed, and when only one stimulus order (e.g., right-hand
first) requires a response, such as in a go/no go task (Roberts
and Humphreys, 2008). The persistence of the TOJ crossing effect
makes this paradigm particularly attractive for the investigation of
touch localization.

We will first inspect the TOJ task and the processes it
is thought to involve. We will establish different ways with
which TOJ performance can be measured, and scrutinize the
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paradigm’s merit in investigating spatial processing. We will
then give an overview over current theories that attempt to
explain crossing effects, both generally, and specifically for
TOJ, and discuss the time course of the localization process.
Once these aspects have been covered, we will then show how
the paradigm has been helpful in the investigation of sev-
eral areas of research, including the time course and reference
frames involved in tactile localization, multisensory plasticity
and integration, bodily awareness and its disorders, and pain
perception.

MEASURING THE TOJ CROSSING EFFECT
Temporal order judgment performance has been assessed with
an unusually high number of different measures (see Figure 1),
including measures of sensitivity and bias, as well as reaction time
(RT). Crossing effects (i.e., differences in performance between
crossed and uncrossed postures) have been observed with all of
these measures.

MEASURES OF SENSITIVITY
TOJ are typically assessed at several stimulus onset asynchronies
(SOA), often in the range of 15–200 ms (e.g., Shore et al., 2002),
but sometimes of up to 3000 ms (e.g., Yamamoto and Kitazawa,
2001a; Heed et al., 2012). By convention, left-first SOA are denoted
as negative, and right-first SOA as positive; thus, an SOA of −50 ms
indicates that the left stimulus led the right by 50 ms.

At each SOA, the percentage of right-first responses is used as
a measure of performance. When plotted, performance resem-
bles a typical psychophysical, S-shaped curve, which can be
fitted reasonably well with cumulative Gaussian and logistic func-
tions (See Figure 1A). The standard deviation of the Gaussian
fit has been used as a summary statistic, and denotes the SOA
at which participants judge stimulus order correctly in 84%
of trials (e.g., Yamamoto and Kitazawa, 2001a; Azañón and
Soto-Faraco, 2007). This time interval is referred to as the just
noticeable difference (JND, Figure 1A). Graphically, an increase
in the Gaussian’s standard deviation results in a shallower rise
of the S-curve. Thus, the smaller the JND (as expressed in the
standard deviation), the steeper is the curve, and the better is
performance.

A different approach to analyze TOJ is to linearize the S-shaped
performance curve by probit-transforming right-first response
probabilities at each SOA (e.g., Shore et al., 2002; Schicke and
Röder, 2006; see Figure 1C). This approach has the advantage
that linearization of response values allows the use of regular
regression analysis. However, the disadvantage is that only short
SOA can be analyzed with probit transformation. This is because
the psychometric functions asymptote at higher SOA, and as a
consequence, probit transformation is not adequate to analyze
large SOA (in psychometric fitting, two additional model param-
eters fit the upper and lower asymptotes, see Wichmann and Hill,
2001; Yamamoto and Kitazawa, 2001a; Roberts and Humphreys,
2008). The slope of the regression line can be interpreted in anal-
ogy to the Gaussian’s rise, with a steeper slope indicating better
performance.

When responses are not analyzed with a Gaussian fit, the JND
cannot be derived from a model parameter. Instead, the data points

of the slope at which the proportion of right-first responses is 25
and 75%, respectively, are projected onto the SOA axis (Shore
et al., 2002; see Figure 1C). The SOA between these two projec-
tions, divided by 2, is then referred to as JND and denotes the SOA
at which the two tactile stimuli must be presented for the partici-
pant to make 75% correct responses1. Recall that the JND of the
Gaussian fit indicated a correctness level of 84%; accordingly, the
JND computed from the two analysis approaches are not directly
comparable.

Crossing effects have also been assessed by comparing the
cumulated percentage of correct responses over all SOA in
uncrossed and crossed conditions (Cadieux et al., 2010, see also
Heed et al., 2012, see Figure 1D); this measure has the advantage of
being free of the assumption that the response profile across SOA
follows a specific distribution (as is assumed by both psychometric
function fitting and probit transformation), but, as opposed to the
previous methods, it is blind to differences between SOA. Further-
more, percentage correct scores are the measure of choice when
only one or two SOA are used (Roberts and Humphreys, 2008;
Hermosillo et al., 2011), as curves and lines cannot be estimated
in this case.

N-SHAPED RESPONSE CURVE
An unusual finding pertaining to TOJ is that some participants
show systematically reversed (“flipped”) responses for short SOA
in crossed postures. As a consequence, their response curves are
N-shaped rather than S-shaped (Yamamoto and Kitazawa, 2001a;
Azañón and Soto-Faraco, 2007; see Figure 1B). It is unknown
whether participants displaying N-shaped response curves process
TOJ differently than S-type participants, or whether their response
pattern is an extreme variant of systematic errors observed in
the reduced steepness of S-curves in crossed conditions in other
participants. Some studies have, therefore, excluded N-shape
participants (Kóbor et al., 2006).

When analyzed with probit slopes (which include only short
SOA, that is, the descending leg of the N), N-shapes result in neg-
ative slopes and can be included in a group analysis. Alternatively,
data can be fitted with the “flip” model (Yamamoto and Kitazawa,
2001a). This model uses different functions to fit performance in
uncrossed and crossed postures. For uncrossed postures, which
are reliably S-shaped, data are fitted with a cumulative Gaussian.
For crossed postures, two normal curves (i.e., “non-cumulative”
Gaussians) are added to the cumulative Gaussian fitted to the
uncrossed condition. The two additional Gaussians account for
the flip and are proposed to reflect a specific, additional process
prompted by limb crossing. Importantly, the model fits both S-
and N-shaped response curves for crossed conditions and does
not, therefore, need to posit that there are processing differences
between N and S-type participants. However, the model requires
five free parameters and, thus, requires a large amount of SOA.

1To assess the 75% correct measure, one must measure the difference in SOA between
chance responses (50%; that is, when left and right-hand first responses are perceived
equally often) and 25% right-first responses for left-first trials (because 25% right-
first responses are equivalent to 75% left-first responses). For right-first trials, one
must, in analogy, measure the difference in SOA between 50 and 75% right-first
responses. Thus, halving the distance between 25 and 75% gives the average of
left-first and right-first SOA.
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FIGURE 1 | Different analysis options for TOJ. (A) Typical single participant
result of uncrossed and crossed hands TOJ. With uncrossed hands, the
psychophysical curve is steeper than with crossed hands, indicating the
performance advantage for the uncrossed posture. The PSE is the SOA at
which left and right stimuli are equally often perceived to have occurred
first. The just noticeable difference (JND) corresponds to the standard
deviation of the Gaussian fit in this panel. It denotes the SOA at which
participants judge stimulus order correctly in 84% of trials. The inset
illustrates the JND difference for uncrossed and crossed postures. (B)

Hypothetical example of N-shaped response probability profile in a crossed
posture. (C) Probit analysis of the data in (A). Right-first response
proportions are linearized by probit transformation and regressed thereafter.
The crossing effect is evident in the difference of slopes between
conditions. The JND is derived by projecting the 25 and 75% right first
probabilities onto the SOA axis. (D) Data in (A) can be plotted as
proportion-correct rather than right-first. The crossing effect can then be
assessed as the proportion correct difference (PCD, proportion correct
difference, see Cadieux et al., 2010) in the two postures.

MEASURES OF BIAS
S-shaped response curves are not only defined by the standard
deviation – a measure of sensitivity –, but additionally by their
mean, that is, the SOA at which a participant perceives the two
stimuli to be simultaneous and, accordingly, responds “right first”
and “left first” equally often. In psychophysics, this SOA is referred
to as the point of subjective simultaneity (PSS) or the point of
subjective equality (PSE), and denotes a bias toward one or the
other response. In TOJ, one would expect the PSS for two stim-
uli to be 0, reflecting that participants perceive simultaneity when
the stimuli are indeed presented simultaneously (see Figure 1A).
However, the PSS may differ from zero for a number of reasons,
for example due to differences in neural transmission speeds when
stimuli are presented to different body parts, or due to handed-
ness (Wada et al., 2004). Changes of the PSS have been relevant
especially in clinical context (e.g., Moseley et al., 2009). Note,
that the bias is independent of sensitivity. Thus, a change of
the PSS is independent of a change of the slope. This expresses
that participants may be biased toward one of the two stimuli,
but be uncertain about their response only within a small range
of SOA.

REACTION TIME
Crossing the hands affects not only response accuracy, but also RT.
As for the proportion of right-first responses, RT can be assessed
separately for each SOA, or be cumulated across all SOA. It is
generally found that RT decreases with increasing SOA, resulting
in a roof-like RT curve. When analyzed by SOA, RT differences
between postures (i.e., uncrossed vs. crossed) are sometimes
greater at longer than at shorter SOA (Yamamoto and Kitazawa,
2001a; Heed et al., 2012), but in any case, faster responses are
found for uncrossed hands. Note, that participants are usually
asked to respond as accurately as possible, without emphasis on
speed. In principle, RT effects may be different if speed were
stressed.

The obvious disadvantage of the plethora of measures used
for the TOJ paradigm is that comparison across studies can be
difficult. A systematic comparison of the advantages and disad-
vantages of each measure, for example in terms of sensitivity,
fitting error, etc., has not been published. However, one recent
study compared a large part of the above-mentioned measures for
three experiments and found largely consistent results across mea-
sures for comparisons of uncrossed and crossed conditions (Heed
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et al., 2012). However, crossing effects were more reliable for accu-
racy than for RT, with some crossing effects not evident in the
latter.

CROSSING EFFECTS: SPECIFICITY FOR SPATIAL PROCESSING
STIMULATION OF NON-HOMOLOGOUS BODY PARTS
When stimuli are applied to the two hands in the TOJ paradigm,
one might suggest that the crossing effect arises because the
homologous regions of primary somatosensory cortex (SI) are
activated in short succession. Because there is crosstalk between
homologous regions of SI, mediated by connections crossing the
corpus callosum (Iwamura et al., 2001; Jung et al., 2012), bilateral
stimulation may hinder a sensitive comparison of the two tac-
tile stimuli. However, TOJ crossing effects are also evident when
the two tactile stimuli differ in characteristics like frequency or
duration (Roberts and Humphreys, 2008). Individualizing stim-
ulus characteristics might be expected to lead to differences in
activity in primary somatosensory cortices. Yet, information is
still transmitted across the corpus callosum even when stimuli
are clearly different. Hence, this transferred information may
still be the cause of stimulus confusion in TOJ. To address this
possibility, TOJ stimuli have been presented to non-homologous
limbs, assuming that the body part-specific cross-callosal con-
nections should then not play a role in stimulus comparisons.
Crossing effects were comparable when homologous fingers (e.g.,
the two index fingers) and non-homologous fingers of the two
hands (e.g., index vs. little finger) were stimulated (Shore et al.,
2002; Heed et al., 2012). Maybe more compellingly, when a tac-
tile stimulus pair was presented to one hand and the opposite
side’s foot, crossing the arm over the leg impaired performance
in a similar manner as when two hands or two feet were stimu-
lated in crossed postures (Schicke and Röder, 2006, see Figure 2).
Thus, a crossing effect was evident although the two tactile stim-
uli were applied to entirely different body parts. Because callosal
connections between the SI of the two hemispheres are specific
to homologous regions (Jung et al., 2012), these results suggest

that TOJ crossing effects are not a result of lateral connections
in SI.

VARIATION OF RESPONSE MODALITY
In tactile TOJ paradigms, responses are often given with the
limbs that receive tactile stimulation, that is, with a crossed
limb in crossed conditions. The main reason for this practice
is that this stimulus-response mapping can be instructed with-
out the use of the terms “left” and “right.” Any other mapping
(e.g., when using foot responses) requires specification of what
is meant by left and right – the hand (anatomical coding) or
space (external coding). However, an obvious criticism of this
response mode is that crossed postures may provoke higher RT
and higher error rates because they are unusual and uncom-
fortable. Yet, hand posture does not seem to influence RT in
simple detection tasks in which participants simply respond as
fast as possible when a stimulus is perceived, and do not have
to make a choice about the stimulus. For instance, hand cross-
ing did not affect performance is such a task with the use of
visual stimuli (Anzola et al., 1977; Nicoletti et al., 1984). Analo-
gous results have been obtained in touch: detection (as opposed
to localization) of tactile stimuli were unaffected by hand pos-
ture (Badde et al., 2012). In contrast, when a choice had to be
made as to whether the touch was presented to the right or the
left hand, a crossing effect was observed. Similarly, when TOJ
were made about two visual stimuli occurring near the hands,
there was either no crossing effect at all (Yamamoto and Kitazawa,
2001a), or it was substantially reduced to a difference in JND
of just 5 ms between postures (compared to 90 ms for tactile
stimulation, Shore et al., 2002). Moreover, the deficit not only
occurs when responses are given with the stimulated finger, but
also when participants respond with a foot pedal (Yamamoto
et al., 2005; Heed et al., 2012), respond verbally (Pagel et al., 2009;
Hermosillo et al., 2011), or by looking at either a neutral tar-
get or toward the limb that was stimulated first (Yamamoto and
Kitazawa, 2001a; Pagel et al., 2009). In contrast, when the order of

FIGURE 2 | TOJ crossing effects for stimuli presented to hands and

feet. Crossing effects are evident for TOJ between different limbs,
suggesting that TOJ effects are not due to activation of homologous regions
in primary somatosensory cortex, but stem from stimulus coding in a
higher-level spatial representation. (A) Probit slopes for uncrossed and

crossed conditions with different combinations of hand and foot stimuli. A
crossing effect was present for all combination of stimulated limbs. (B) TOJ
performance for stimulation of the right hand and left foot. Figure modified
from Schicke and Röder (2006), Copyright (2006) National Academy of
Sciences, USA.
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two tactile stimuli must be determined with respect to a non-
spatial criterion, for example, stimulus duration or vibration
frequency, then no crossing effects are observed (Roberts and
Humphreys, 2008), presumably because tactile localization is no
longer required. All these findings suggest that the TOJ cross-
ing effect is intimately related to touch localization in external
space, and is not due to difficulties in responding with crossed
hands.

SPATIAL EFFECTS WITH UNCROSSED LIMBS
It is of note that effects of hand posture are also observable inde-
pendent of hand crossing. For example, TOJ are slightly better
when the hands are placed far apart rather than close together
(Shore et al., 2005) whether or not the hands are crossed (Roberts
et al., 2003). This effect is present even when the separation
between the limbs is illusory, for example when the visual appear-
ance of arm posture is manipulated by means of a mirror reflection
while arm posture is actually kept constant (Gallace and Spence,
2005). Although such posture effects achieved without limb cross-
ing result in much smaller effects than crossing manipulations,
their existence nonetheless suggests that integration of skin loca-
tion with body posture is indeed a general principle of tactile
localization, and is not a special case pertaining to crossed limbs
alone (see Azañón et al., 2010b).

Finally, one might argue that crossing effects are due to percep-
tual processes unrelated to localization, such as posture itself, that
is, crossing any body part would influence perceptual judgments of
any other body part. Several experimental findings argue against
this view. When TOJ are made about stimuli at the tip of sticks, a
crossing effect is evident also when the sticks are crossed while the
hands remain uncrossed (Yamamoto and Kitazawa, 2001b). In this
situation, body posture is unchanged, indicating that the crossing
effect cannot be due simply to postural factors. Furthermore, in a
recent study, stimuli for the TOJ task were delivered to the little fin-
gers while the index fingers were crossed (Badde et al., 2013). TOJ
for the little fingers were entirely unaffected by the index fingers’
posture, again suggesting that introducing a crossing manipula-
tion affects the spatial processing of touches to the crossed body
parts, but does not affect more general aspects of touch processing,
e.g., due to discomfort or general confusion.

THEORIES OF TOUCH REMAPPING
Four distinct theoretical approaches have been proposed to
account for TOJ crossing effects.

SPACE–TO–BODY PROJECTION ACCOUNT
The first account, put forward by Kitazawa and colleagues
(Yamamoto and Kitazawa, 2001a; Kitazawa, 2002), assumes that
a comparison of tactile stimuli requires conscious access to their
representation. Most importantly, conscious perception is sug-
gested to rely on an external spatial reference frame. Specifically,
a stimulus is first perceived in space and then projected back onto
the skin location whence it was perceived. Thus, in this account
remapping is directed from the external to an anatomical location.
For example, a stimulus to the left crossed hand is perceived as a
right spatial event and is then assigned to the left hand, which
currently occupies that spatial location. Remapping is assumed

to take about 300 ms when the hands are crossed, based on the
systematic reversals observed when two tactile stimuli are pre-
sented at short SOAs (Yamamoto and Kitazawa, 2001a). As long
as remapping has not been performed, the brain is suggested to
rely on a default posture of the body, according to which each
hand is located in its regular hemispace. In the TOJ task with
crossed hands the second stimulus, in the case of short SOA, is then
thought to arrive before remapping has been completed, leading
to erroneous assignment of the tactile stimulus to the wrong hand
based on the default posture, rather than based on the remapped
posture (see Azañón et al., 2010b and Longo et al., 2010, for further
considerations about the default posture).

APPARENT MOTION ACCOUNT
A second account, put forward by Kitazawa and colleagues some
years after their first account (Kitazawa et al., 2008; Takahashi
et al., 2013), assumes that ordering stimuli in time is achieved
by integrating single stimuli into a motion signal. Similarly to
visual apparent motion, tactile stimuli in the TOJ task are sug-
gested to give rise to an illusory motion percept. According to this
account, the TOJ is based on the direction of motion. The stimu-
lus that occurred earlier according to the motion percept is judged
as having occurred first. In the case of crossed TOJ, each stim-
ulus location is initially projected to the wrong hand (analogous
to the authors’ first account). At short SOA, the motion signal is
therefore constructed with an inverted direction vector, leading
to erroneous TOJ responses. Motion stimuli have been found to
affect TOJ (Craig, 2003; Craig and Busey, 2003; Sanabria et al.,
2005; Shibuya et al., 2007; Kitazawa et al., 2008), suggesting that
motion signals may indeed be important for TOJ. Furthermore,
tactile apparent motion was found to be strongest for those SOA at
which responses are most likely flipped for N-shape participants
(Takahashi et al., 2013).

SPATIAL CONFLICT ACCOUNT
The third account, put forward by Shore and colleagues (Shore
et al., 2002; Cadieux et al., 2010), assumes that a tactile stimu-
lus is initially represented according to its somatotopic location
on the skin and then remapped into external coordinates. After-
ward, the two spatial representations, each based on a different
reference frame, are concurrently available. In the TOJ task, this
concurrent availability leads to conflict, because each stimulus is
now represented with both left and right characteristics. Crossing
effects in terms of higher RT are then proposed to be due to the
time required to resolve this conflict. Crossing effects in terms of
higher error rates are attributed to confusion due to conflicting
information, and the cognitive effort to resolve the conflict.

SPATIAL INTEGRATION ACCOUNT
The fourth account, put forward by Badde et al. (in press), is
similar to that of Shore and colleagues in that it assumes that
somatotopic and external spatial reference frames are concur-
rently active. However, it is assumed that a location estimate is
computed for each stimulus by integrating all sources of infor-
mation (here, somatotopic and external) with specific top-down
modulated weights. A role for top-down modulation has been
inferred from the finding that memory load modulates crossed
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hands performance, suggesting that tactile remapping might not
proceed entirely automatically (Badde et al., in press). According
to Badde et al. (2012) integration is carried out in any tactile task,
and should, therefore, result in crossing effects even in tasks that
involve only a single tactile stimulus. Importantly, weights are not
adjusted according to posture, but only according to task demands.
That is, this account explicitly proposes that limb crossing leaves
the manner in which the different reference frames are integrated
unchanged. Errors in this account are instead attributed to the
probabilistic outcome of the spatial integration process. The large
size of the crossing effect in the TOJ task is attributed to a reduc-
tion of certainty about the location of the first stimulus due to
the integrated location estimate of the second stimulus. A pos-
sible implementation of the integration across reference frames
has been proposed in a different context (Buchholz et al., 2012).
These authors suggested that excitatory and inhibitory interac-
tions within spatial maps, known to be at work, for example, in
the superior colliculus, may account for changes of behavioral per-
formance in the orientation of coordinated eye-head movements
to visual-tactile stimuli across different hand postures.

COMMON ASPECTS OF ALL THEORETICAL ACCOUNTS
Several aspects are common to all four theoretical accounts. First,
all accounts posit transformation processes for tactile stimuli
between somatotopic and external spatial coordinates. This aspect
is probably the most important feature of the TOJ paradigm. Given
that non-spatial explanations of the TOJ crossing effect (discom-
fort, inexperience, etc.) have been discounted, the presence of a
crossing effect is therefore interpreted as an indicator that spatial
remapping does indeed take place in a given experimental situa-
tion. This conclusion is independent of the theoretical approach
the experimenter may favor. Second, all four accounts posit the
involvement of (at least) two spatial representations in touch local-
ization. Kitazawa and colleagues propose that a representation of a
default posture is available for use when the calculation of the skin

coordinate of the stimulus has not been determined. The other
accounts propose that stimuli are initially represented with respect
to the skin, and are recoded into an external spatial location. In
contrast, the accounts differ in how they explain the performance
deficit observed in TOJ: according to Kitazawa and colleagues,
errors in the crossed posture are due to the use of the default repre-
sentation, which introduces a conflict with the limbs’ true posture.
Shore and colleagues as well as Badde and colleagues posit that
TOJ performance deficits during crossing result from resolution
of conflict (Shore) and from integration of information (Badde).

In sum, although different theoretical proposals have been put
forward to account for TOJ crossing effects, they all agree in that
they interpret the existence of crossing effects as an indicator of
spatial remapping, as well as an indicator of the use of external
spatial coordinates in touch.

THE TIMING OF TACTILE REMAPPING
The suggestion that remapping into external spatial coordinates
is a time-consuming process raises the question of which time
course this process may take. In their initial study, Yamamoto
and Kitazawa (2001a) found performance with crossed hands to
be similar to performance with uncrossed hands when stimuli
were approximately 300 ms apart. Accordingly, they suggested
this duration as an estimate for the duration of the remapping
process. Several studies have since been dedicated to this issue.
In one study, participants had to judge the elevation of a visual
stimulus (up vs. down), which could be presented in the left
or the right hemifield (Azañón and Soto-Faraco, 2008a,b; see
Figure 3). A spatially non-predictive tactile cue, delivered to one
of the hands, preceded the visual stimulus at different intervals.
When the hands were crossed, responses to the visual stimulus
were faster when it occurred on the anatomically same side as
the tactile cue (that is, in the opposite side of space) when the
SOA between the two stimuli was short (<60 ms). In contrast,
responses were faster for the external-spatial side of the tactile

FIGURE 3 | Cueing effects between touch and vision. An inversion of
spatial cueing effects of touch on vision was observed when the hands
were crossed. These results suggest that touch is initially remapped on
the basis of its anatomical representation before it is referred to an
external location. (A) Typical trial with crossed hands. Participants were
asked to judge the position of the light (up or down), regardless of the
side of presentation and the location of the preceding tactile cue.
(B) When the interval between tactile cues and visual targets was less

than 60 ms, spatial cueing effects appeared to be determined by
somatotropic representations, as responses to the visual targets were
faster in opposite cue-target side trials (anatomically congruent but
spatially incongruent) than in same-side trials. The pattern reversed after
about 200 ms, so that tactile cues produced a facilitation of targets
presented at the same external location. No differences were found with
uncrossed hands. Figure modified from Azañón and Soto-Faraco (2008a),
with permission from Elsevier.
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cue when the SOA between tactile cue and visual stimulus was
longer (360 ms). This result suggests that, initially, the brain has
access only to the anatomical coordinate of the touch, but that the
external coordinate becomes available some time between 60 and
360 ms. A change of reference frames has also been demonstrated
for the execution of saccades to single tactile stimuli (Groh and
Sparks, 1996; Overvliet et al., 2011). When the tactile stimulus was
delivered to crossed hands, saccades regularly started in the direc-
tion of the wrong hand and turned around to the correct hand in
mid-flight. This turn was evident, on average, 284 ms after initia-
tion of the saccade. Because the time needed for the actual motor
preparation was estimated, based on findings in monkeys, to be
in the range of 95 ms (Overvliet et al., 2011), the authors con-
cluded that remapping must be completed already around 190 ms
after stimulation. The estimate given for completion of remap-
ping was even lower in a study that employed stimulation of the
hands and feet while measuring somatosensory evoked potentials
(SEP; Heed and Röder, 2010). This study factorized anatomical
and external distance between attended and stimulated locations
by asking participants to attend to one limb while tactually stim-
ulating another limb with a single stimulus. External distance was
manipulated by changing hand posture, such that the hands were
spatially close either to the respective foot of the same body side
(with uncrossed hands) or to the respective opposite foot (with
crossed hands). The SEP in the time range between 100 and 140 ms
was modulated both by anatomical distance as well as by external
distance between attended and stimulated location. This result
implies that external coordinates can be available already at this
time point, given that attention was partly directed according to
external spatial criteria. This time estimate was confirmed in a
setting which did not rely on attentional manipulations, but com-
pared SEP to single tactile stimuli when the hands were uncrossed
vs. crossed (Rigato et al., 2013). Finally, a significant difference
between uncrossed and crossed postures was evident over the left
temporal scalp at even earlier stages of tactile processing (70–90 ms
post-stimulus) independent of the hand at which the stimulus
had occurred (Soto-Faraco and Azañón, 2013). Moreover, the size
of the ERP posture effect was positively correlated with partici-
pants’ TOJ crossing deficit measured in the same session. Thus,
the larger the difference due to posture in somatosensory process-
ing (indexed by the SEP), the larger was the crossed-hands deficit
in the TOJ task.

There is currently no theoretical account that integrates these
different findings regarding the timing of tactile remapping
(though see Soto-Faraco and Azañón, 2013 for a consideration of
different deflections of the SEP in the context of remapping). Yet,
the picture emerging from these studies is consistent, in that tactile
information appears to be used in the original, somatotopic refer-
ence frame, but becomes available in the external reference frame
rather quickly, probably within the first 100 ms, but maximally
190 ms post-stimulus.

TYPES OF REFERENCE FRAMES INVOLVED IN TACTILE
LOCALIZATION
The automatic recoding of touch into external coordinates may
provide important advantages for the processing of tactile infor-
mation. On the one hand, it may allow efficient integration of

spatial information derived from touch with information from
the other senses. On the other hand, an external spatial coordinate
may allow rapid orienting and movement toward the tactile event.

Vision has been suggested to dominate the other senses in
spatial processing under normal circumstances (Alais and Burr,
2004), due to its high acuity when compared to that of audi-
tion and touch. Indeed, it plays a dominant role in sensorimotor
coordination as the location of reaching targets is often encoded
in eye-centered coordinates, irrespectively of the target modal-
ity and the effector to be used (Batista et al., 1999; Cohen and
Andersen, 2000; Pouget et al., 2002). Accordingly, the exter-
nal coordinates used by the tactile system may be visual in
nature. Such recoding would be attractive from a multisen-
sory perspective, effectively converting any touch we perceive
into the coordinates used by the visual system for immediate
integration.

DEVELOPMENTAL ASPECTS: BLIND INDIVIDUALS
Even though remapping does occur in absence of vision, for
instance when locating tactile stimuli in the dark or with a blind-
fold (Kóbor et al., 2006; Schicke and Röder, 2006), several studies
suggest that tactile remapping is closely related to the development
of the visual system during ontogeny. For instance, congenitally
blind participants were unaffected by crossing the hands when
performing a TOJ (Röder et al., 2004, see Figure 4). Strikingly,
people who had turned blind later in life performed just like the
sighted, and showed a marked crossing effect. Furthermore, a
man born with bilateral cataracts and, thus, functionally blind,
and whose vision was surgically restored at age 2, did not exhibit
a crossing effect (Ley et al., 2013). Even more, this man did use
external coordinates for the representation of touch in a task that
involved bimodal, visual, and tactile, stimulation. These results
suggest a pivotal role for the visual system during early life for the
development of coordinate transformations in touch: if vision is
available after birth, then the default use of an external reference
frame is established and remains intact, even if vision is lost at a

FIGURE 4 |TOJ performance of blind compared to sighted individuals.

Congenitally blind individuals performed equally well with uncrossed and
crossed hands. In contrast, late blind individuals and sighted participants
showed the typical crossing effect, with larger JND in the crossed posture.
These results suggest that the automatic use of external coordinates in
touch localization depends on visual development during ontogeny. Figure
modified from Röder et al. (2004), with permission from Elsevier.
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later point in time. In contrast, when vision is not available after
birth, then the tactile system does not seem to integrate an external
reference frame as a default source of spatial information, even if
vision becomes available later. At least if vision is restored early on,
then the use of external coordinates in touch can be established
for specific situations, presumably predominately those involving
the integration of touch with vision.

DEVELOPMENTAL ASPECTS: CHILDREN
The finding that late blind individuals seem to use external coor-
dinates in touch processing just like the sighted bears the question
of when during ontogeny this processing feature develops. To this
end, children between the ages of 5 and 10 were tested with the TOJ
paradigm (Pagel et al., 2009). A crossing effect was not observed
in the youngest children, up to about 5½ of age. After this age, a
crossing effect was evident in some children, indicating that they
used external coordinates to localize touch. At the age of about
8½, a crossing effect was seen in all tested children. The fact that
some children did not show a crossing effect after the age of 5½
suggests that the integration of different reference frames may
develop over an extended period of time, consistent with findings
about the development of multisensory integration of touch with
vision (Röder et al., 2013). Furthermore, it is important to stress
that these TOJ results do not speak to the existence of an external
reference frame in yet younger children. Rather, they suggest that
its automatic use in touch does not start before age five. In contrast,
that external coordinates are available for touch has been demon-
strated for 10-month-old babies (Bremner et al., 2008). When they
received a touch to crossed hands, their manual responses toward
the stimulus were more often correct than not, indicating that
stimulus location must have been coded in external spatial coor-
dinates. However, these responses occurred only in some trials
and several seconds after stimulus application, suggesting that the
recoding of touch location into external coordinates is not yet
automatic and efficient at this age.

REPRESENTATION OF SPACE OUTSIDE THE VISUAL FIELD
These studies suggest that extensive visual experience during the
first years of life might lead to crossmodal links between touch
and vision that are used by the remapping system to encode
touch in external space. This is probably related to the finding
that the crossing effect was weaker when the hands were crossed
behind the back, where no prior visual experience can lead to the
configuration of visuotactile representations (Kóbor et al., 2006).
A second study even found similar TOJ performance in front and
back space, suggesting that the external coordinates used in touch
cannot be solely related to vision, but must involve other refer-
ence anchors. It has been suggested that external coordinates in
regions we cannot access directly through vision may be built up
by the motor system (Heed and Röder, 2012). Imagine someone
tipping you on the shoulder from behind. Your reaction will be to
turn your upper body around to direct your eyes toward the person
who touched you. A reference frame instrumental to such behavior
would be one related to the movement necessary to reach a given
location. Intriguingly, an ERP study of touch processing for stimuli
in front of and behind the body supports this idea (Gillmeister and
Forster, 2011). Stimuli were delivered to the two hands held close

together or far apart. Participants had to detect infrequent target
stimuli among the stimulus stream presented to the two hands.
For each trial, a cue indicated where the stimulus would most
likely occur. When the hands were positioned in front of the body,
the effect of cueing was larger when the hands were held far apart
than when they were held closer together, presumably because the
greater spatial distance between the hands supported the selec-
tive attentional deployment to one hand (Eimer et al., 2004, see
also Driver and Grossenbacher, 1996; Lakatos and Shepard, 1997;
Soto-Faraco et al., 2004; Shore et al., 2005). Conversely, the ERP
attention effect for stimuli behind the back was greater when the
hands were held together than apart. The authors suggested that
this result implies a spatial representation that “warps” around the
body, much like one might expect from a representation based on
movement.

The importance of movement planning for tactile localization
is further highlighted by an experiment in which participants made
TOJ in the context of hand movements. In each trial, participants
adopted an uncrossed or crossed posture, and had to execute a
movement with the two hands, to end in an uncrossed or crossed
posture. Tactile stimuli were presented shortly before the move-
ment was executed, that is, during the movement planning phase
(Hermosillo et al., 2011). When the hands were uncrossed, but
a crossing movement was planned, TOJ were impaired. In con-
trast, when the hands were crossed, but an uncrossing movement
was planned, TOJ were ameliorated. These effects were stronger
the closer the stimuli were presented to movement initiation and,
therefore, the later they were presented in the motor planning
process, suggesting a link between movement planning and the
weight assigned to the future hand posture in judging tactile loca-
tion. The authors suggested that the influence of motor planning
on touch localization may be mediated by efference copy of the
motor commands.

INFLUENCE OF VISUAL MOTION ON TACTILE LOCALIZATION
Yet another demonstration of the importance of vision on touch
remapping was given by adding visual location information in
a tactile TOJ task. Two tactile stimuli were presented, one to
each middle finger, in short succession. With each tactile stim-
ulus, a visual stimulus was projected onto one of the middle
fingers (Kitazawa et al., 2008). The order of the visual stimuli
was either identical to the tactile stimuli, or reversed. When the
spatial direction of visual stimuli was incongruent with that of
tactile stimuli, many subjects reported inverted judgments, that is,
they took visual information into account although it was task-
irrelevant. A similar effect was evident when tactile stimuli were
applied to three adjacent fingers on a single hand (Shibuya et al.,
2007). In this latter study, simultaneous visual stimuli could occur
in 9 locations, arranged as a square and projected on top of the
hand. When the hand was directed away from the body, the effect
of the visual stimuli was present when they were arranged from
left to right. When the hand was rotated by 90◦, the effect of the
visual stimuli was present when they were arranged from top to
bottom. Thus, the effects of vision on touch were mediated in an
external reference frame.

In sum, many findings suggest a pivotal role of vision for touch
localization. This effect is evident in two very different aspects.
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First, touch localization appears to develop differently when the
visual system is present than when it is not, as in congenitally
blind individuals. Second, when vision has developed normally,
it not only provides a spatial reference frame for touch, but, in
addition, strongly affects tactile localization by providing spatial
information which appears to be integrated into the tactile location
estimate. Nevertheless, the external reference frames on which the
tactile system relies appear not to be exclusively visual, as demon-
strated by the use of external reference frames in regions that are
inaccessible to the visual system, and the effects of movement
planning on tactile localization. These latter results suggest that
external coordinates in touch may be determined, in part, by the
motor system.

FLEXIBILITY IN THE USE OF DIFFERENT REFERENCE FRAMES
The fact that late blind people show a crossing effect in TOJ many
years after they have become blind seems to imply that the way the
brain integrates information from the different reference frames is
rather rigid. This implication is at odds with many other findings
about the principles by which the brain integrates information
across the senses. For example, haptic information is regarded
more when the quality of visual information is degraded (Ernst
and Banks, 2002), and such effects are observable between blocks
of an experiment, that is, over short time scales. Such weighting
of information from different sources is often near-optimal, in
the sense that the importance given to a source of information is
closely related to its reliability (Alais and Burr, 2004).

BAYESIAN CALIBRATION OF LOCALIZATION
Following up on these principles, Miyazaki and colleagues
(Miyazaki et al., 2006) manipulated the frequency with which the
left and the right stimulus occurred first in a TOJ experiment with
uncrossed hands. The distribution of SOA was biased toward one
of the hands. This shift in SOA distribution led participants to
adjust their responses such that the PSS – the SOA at which par-
ticipants’ responses chose both hands with equal probability – was
shifted toward the peak of the prior distribution. Formulated dif-
ferently, when the distribution of SOA was biased toward one side,
participants biased their response to report the stimulus of that
side to have occurred first. This adjustment behavior is consistent
with participants calibrating their responses in a Bayesian manner
by adjusting their prior, rather than recalibrating the perceived
time across hands by shifting the PSS as if the mean SOA of the
shifted distribution were zero. Thus, such adjustment of responses
probably does not reflect an alteration of perception. Rather, the
change in response appears to reflect a strategic choice about
how to integrate different sources of information for the choice
of response (Smeets et al., 2006). Further underlining this inter-
pretation, it has recently been demonstrated that several priors
for the TOJ task can be acquired concurrently by setting different
contexts, as for example a different color cue for each prior on the
computer screen (Nagai et al., 2012).

SHORT-TERM PLASTICITY: TOUCH LOCALIZATION AS WEIGHTED
INTEGRATION
To test whether weighting is also applied during the integration of
anatomical and external reference frames in touch localization,

Badde et al. (2012) used a modified TOJ paradigm: in a first
experiment, participants performed normal TOJ. In a second
experiment, stimulation was identical to the TOJ paradigm, but
participants were instructed to respond to the location of the
first stimulus and ignore the second stimulus. Finally, in a third
experiment participants were presented with only a single tactile
stimulus. The task was identical as in their second experiment,
that is, to respond to the location of the stimulus. Hand crossing
affected all three tasks. Thus, both top-down information (i.e.,
the change of task instructions from experiment one to experi-
ment two) as well as bottom-up information (i.e., a change in
stimulation from experiment two to experiment three) affected
the crossing effect. Probabilistic modeling suggested that these
changes were accounted for by the weighing of anatomical and
external spatial information during their integration. The model
did not need to recur to the assumption that crossing deterio-
rated the quality of sensory information. These modeling results
therefore imply that crossing effects, including those found in
TOJ experiments, result from the brain’s strategy to derive a
location estimate by considering all information available, for
example, anatomical and external coordinates. According to this
reasoning, crossing effects result from a usually adaptive strat-
egy of multisensory integration rather than failure of spatial
computations.

Other experimental results further substantiate the idea of
weighted integration. In one experiment, uncrossed or crossed
rubber hands were placed over participants’ hidden, real hands.
The posture of the rubber hands was either congruent or incon-
gruent with the real hands’ posture. Performance with crossed,
real hands in a TOJ task improved when the rubber hands were
uncrossed (Azañón and Soto-Faraco, 2007). Interestingly, this
improvement was only observed when the movement of the
real hand was coupled to the movement of the anatomically
corresponding rubber hand, suggesting that visual influence on
proprioceptive input depends on the degree to which the visual
information about the body is coupled to the observer’s own
actions. These results indicate that on-line visual information can
be used adaptively, again suggesting that cross-modal integration
is flexible on a short-term basis.

SHORT TERM PLASTICITY: EFFECTS OF LEARNING
So far then, we have seen that the use of external spatial infor-
mation for tactile localization seems mandatory, but that their
weighting appears to be flexible. Yet, if weights are indeed
adjustable, is it then really impossible to entirely ignore exter-
nal spatial information, for example by giving it a zero weight?
This question has been addressed by training sighted partici-
pants over ten sessions on different days in uncrossed and crossed
hand TOJ (Craig and Belser, 2006). To allow learning, partici-
pants received feedback after every trial. TOJ performance with
uncrossed hands remained unchanged throughout training. In
contrast, performance with crossed hands improved over sessions,
but asymptoted over the last 2–3 sessions, with a clear performance
deficit still evident. These results imply that even extensive training
does not enable us to entirely ignore external spatial coordinates.
This controlled learning study has been complemented by study-
ing musicians who frequently cross their hands when playing their
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instruments – professional drummers (Craig and Belser, 2006) and
piano players (Kóbor et al., 2006). The study involving drummers
did not find a difference between the crossing effect of musicians
and non-musicians; the study involving pianists reported a reduc-
tion (but, importantly, not elimination) of the crossing effect.
These findings are well in line with those of the controlled learning
study, suggesting that, even if the weight of external coordinates
can be reduced (as evident in the piano players), it does not seem
to be possible to ignore them entirely.

INEVITABILITY OF SPATIAL CODING
In attempting to answer the question whether remapping is
mandatory, the TOJ paradigm suffers one drawback: the task is
spatial in nature in that it requires participants to indicate which
of two stimuli, defined by their location on the body, occurred
first. To make a strong claim about the automaticity of tactile
remapping, one should, however, show that the external location
of a tactile stimulus affects performance even when all aspects of
the experimental task are non-spatial. To address this concern,
participants made color judgments about visual stimuli presented
in the left and right space (Azañón et al., 2010a). Stimuli were
preceded by a task-irrelevant tactile cue. In a first experiment,
participants responded by pressing one of two buttons with a
foot. In this situation, the color decision was improved when
the tactile cue had been presented on the side of the visual stim-
ulus. Importantly, this was the case even when the hands were
crossed, suggesting that tactile attention was oriented to the exter-
nal (already remapped) location of the hand. Because the foot
response may have introduced a spatial aspect to the task, the
experiment was repeated, but participants gave a verbal response.
In this case, an effect of the tactile cue was still evident, though
it was reduced. Finally, in a third experiment all visual stimuli
occurred in one spatial location. They were either preceded by a
tactile cue in some, but not in other trials. Blockwise, the cue was
located near or far from the visual stimuli. Even in this situation,
a spatial effect of the tactile cue was evident with crossed hands.
Thus, this series of experiments suggests that touch is remapped
even if spatial aspects are removed from the task. Nevertheless,
spatial effects appear to be stronger if any aspect of the task bears
spatial characteristics.

In sum, although the brain does seem to weigh spatial informa-
tion for tactile localization in dependence of the current context,
it appears to be reluctant to entirely discount any kind of infor-
mation that is available. In the case of TOJ, the mandatory use of
external coordinates leads to objective errors. This strategy may
strike as counter-intuitive, if not maladaptive. However, similar
reliance on different sources of information, and the attempt to
integrate them into a common, sensible percept, has been evident
in many other experimental situations as well. A very striking case
is the Pinocchio illusion (Lackner, 1988). In this illusion, partici-
pants receive vibration to their biceps or triceps. This stimulation
evokes the feeling that the arm is contracted or extended, respec-
tively. If, at the same time, participants close their eyes and touch
their nose, many experience their nose to be pushed into their
head (for arm contraction), or to grow up to 30 cm long (for
arm extension). Apparently, the brain tries to resolve the appar-
ent conflict of the hand touching the nose while at the same time

moving away from the head. Thus, rather than discounting incom-
patible information, the brain appears to prefer to integrate all
available information in a seemingly meaningful manner. Other
well-known examples of obligatory integration are the McGurk
effect of visual and auditory speech perception (Mcgurk and Mac-
Donald, 1976) and the ventriloquist illusion, in which we perceive
the voice of an actor to originate from her doll (Bertelson, 1999).

TOUCH AND THE REPRESENTATION OF THE BODY
The Pinocchio illusion illustrates how important touch is for the
brain to create a representation of the body it commands. The
importance of touch becomes evident in yet another intrigu-
ing illusion, namely the rubber hand illusion (RHI). Participants
develop the feeling that an artificial hand belongs to themselves
under the condition that their real (occluded) hand is touched
in synchrony with touches they observe on the artificial hand
(Botvinick and Cohen, 1998). Interestingly, the illusion addition-
ally leads to a reduction of skin temperature in the limb involved
in the illusion (Moseley et al., 2008). Moreover, when two tactile
stimuli are applied in succession to each hand when the illusion
is present in one hand, TOJ responses are shifted toward the non-
stimulated hand, revealed by a change in PSS (Moseley et al., 2008).
That is, in order for the two stimuli to be perceived as simultane-
ous, the tactile stimulus had to be applied to the experimental hand
(the one that was previously stroked in synchrony with the rubber
hand) before the tap is applied to the other hand. This change
in PSS was interpreted as indicating a shift of processing prior-
ity toward the other, non-involved hand, in line with the idea that
ownership of the rubber hand is accompanied by the disownership
of the real hand (see Figure 5).

In recent years, it has been a prominent idea that the brain
may represent tools in a manner similar to the body’s own limbs.
In a famous study, macaque monkeys were trained to use a rake
to retrieve raisins that were otherwise out of their reach (Iriki
et al., 1996). Before training, neurons in the intraparietal sulcus
responded to raisins when they were brought near the hand by an
experimenter. After training, these neurons responded to raisins
also when they were brought near the rake. These findings were
interpreted to indicate that the rake was represented as belonging
to the body (though see Holmes and Spence, 2004 for criticism of
this study). If tools are assimilated to the body in some way after
training, then the processing principles for the body should trans-
fer to the processing of the tool. To test this idea, participants were
asked to make TOJ of tactile stimuli presented to the end of sticks
they were holding in their hands (Yamamoto and Kitazawa, 2001b;
Yamamoto et al., 2005). In different conditions, participants held
both their hands and the sticks uncrossed, or they crossed either
their hands or the sticks. Note, that the hands remained uncrossed
when the sticks were crossed; thus, although the tactile stimu-
lus occurred at the crossed tool tip, the hand holding the stick
and perceiving the stimulus remained uncrossed. Nevertheless,
a comparable crossing effect was observed for both the hands-
crossed (with tools uncrossed) and the tools-crossed (with hands
uncrossed) conditions. Furthermore, in a fourth condition, par-
ticipants crossed both hands and sticks, so that the sticks ended in
the same hemifield as when hands and sticks were held uncrossed.
In this situation, performance was almost as good as when hands
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FIGURE 5 |Tactile processing during the rubber hand illusion (RHI).

When two tactile stimuli were applied in succession to each hand during the
RHI on the right hand, TOJ responses were shifted toward the non-stimulated
left hand (i.e., positive shifts of PSE). This suggests a change in the weight
given to the processing of tactile information during the RHI, implying that
ownership of an artificial body part is accompanied by consequences for the
real body part. (A) a tactile TOJ task was presented to the participant during

control trials (no stroking), asynchronous stroking of the rubber and the
experimental hand, and during the RHI. (B) During the RHI, the tactile
stimulus had to be presented to the experimental hand before the tactile
stimulus was presented to the non-stimulated hand in order for them to be
perceived as occurring at the same time, as compared to the asynchronous
and control conditions. Figure modified from Moseley et al. (2008), Copyright
(2008) National Academy of Sciences, USA.

and sticks were held uncrossed. The occurrence of a crossing effect
thus seemed to depend on the position of the effector at which
the stimulus was presented, that is, here, the sticks. In a follow-
up study, the same authors used L-shaped rather than straight
sticks (Yamamoto et al., 2005). Again, the crossing effect depended
mainly on the tool tips being crossed in space, whereas the config-
uration of the hands and the tools were largely irrelevant. These
results may indicate that, rather than the entire tool being incor-
porated to belong to the body, incorporation may be restricted to
relevant parts of a tool (see also Holmes et al., 2004). For the sticks,
this was their tip to which the touch was applied.

Interestingly, a similar effect of double crossing has been
demonstrated without the use of tools, when stimuli were pre-
sented to the little fingers (Heed et al., 2012): In one condition,
the hands were held uncrossed. In a second condition, the hands
were crossed, and the little fingers changed side with the hands. In
a third condition, the hands were again crossed, but the little fin-
gers were crossed back into their normal hemifield. Performance
with crossed-back fingers was improved compared to the normal
crossed hands posture, but did not fully recover to uncrossed per-
formance. Thus, like in the tool study by Yamamoto and Kitazawa,
double crossing reduced the crossing effect. Once again, these
results show that it is not crossing per se which causes the TOJ
performance deficit, but rather the spatial configuration in which
it results. The two studies may point to a general mechanism of
touch localization: information about the posture of all body parts
connected to the stimulated location may be integrated with their
own weight. Integrating a tool would rely on the same mech-
anism, by simply adding some additional information about the
spatial position of the tool to be integrated with the body’s postural
information (cf. Heed et al., 2012). This proposal thus extends the
idea of integration of anatomical and external-spatial information
by adding information in both reference frames for several body
parts.

HANDS AND FINGERS
The fact that postural information about hands and fingers seems
to be integrated in the crossed-back finger task suggests that touch
on fingers and hands is remapped using a common external ref-
erence frame. Nevertheless, results of experiments concerning
remapping for fingers and hands have not been unequivocal.

SPATIAL REPRESENTATION OF THE FINGERS: EVIDENCE FOR
SOMATOTOPIC CODING
Reports about patients with brain lesions have suggested that the
brain entertains separate representations of the hands and the
fingers. According to these reports, some patients can imitate fin-
ger movements, but not hand movements, whereas other patients
present with the opposite deficiency pattern (Goldenberg and Kar-
nath, 2006). With respect to touch localization, there are some
tactile illusions which suggest that touch localization at the fingers
does not take finger posture into account, at least when posture
is atypical. For instance, when a participant crosses one finger
over another and then touches an object with the two fingers, she
will regularly perceive to be touching two rather than one object
(termed Aristotle’s illusion, see Benedetti, 1985, 1988). This can
be interpreted as a failure to integrate the atypical crossed pos-
ture of the fingers with tactile information, so that the location
of the touch is processed as if the fingers were uncrossed. In the
above example, the two skin sites touching the object when crossed
(the outer sides of each finger) are usually non-adjacent when the
hands are uncrossed. Thus, the brain tries to resolve the apparent
conflict of two non-adjacent skin sites touching a single object
by inducing the percept of two separate objects, rather than by
integration of the fingers’ true posture. Intriguingly, these effects
persist even after extensive training and only after a long period of
adaptation with crossed fingers are participants able to remap the
tactile stimuli to the correct finger (Benedetti, 1991). In a similar
vein, a finger identification task (Haggard et al., 2006, though see
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Riemer et al., 2010) as well as tactile inhibition of return (Röder
et al., 2002) were reported to be unaffected by finger posture. In
yet a different approach, the direction of tactile motion presented
to a single fingertip has been reported to be affected by a distract-
ing stimulus with incongruent motion. However, this was only the
case when the distractor was presented to a finger on the target
hand, but not when target and distractor were delivered to differ-
ent hands (Evans and Craig, 1991). This result supports the idea
that orienting of tactile attention might be determined by somato-
topic coordinates, before touch is remapped. Indeed, a subsequent
study found similar interference effects when the fingers of the two
hands were placed close together versus when they were placed far-
ther apart, suggesting that external coordinates did not play a role
for task performance (Evans et al., 1992, but see Zampini et al.,
2005).

SPATIAL REPRESENTATION OF THE FINGERS: EVIDENCE FOR EXTERNAL
CODING
In sum, all these results suggest that touch to the hands and fingers
may be represented differently in the brain. However, a different
picture emerges from the TOJ task. In one study, a strong bias
toward somatotopic coordinates was reported for a modified TOJ
task in which participants judged the direction of movement of
two tactile stimuli, one presented to the index and the other to
the middle finger (de Haan et al., 2012). Note, that this instruction
differs from the usual TOJ instruction to report the first stimulus,
but that, nevertheless, temporal order is crucial to solve the task (as
motion direction is defined by the order of stimuli). With crossed
fingers, participants most of the time responded as if their fingers
were uncrossed. However, a proportion of stimuli was reported
in the correct direction, implying that remapping had probably
taken place, but that remapped information was given little weight.
In contrast, when participants were instructed to report the first
stimulus (rather than a motion direction), a strong crossing effect
was evident for crossed fingers (Heed et al., 2012). Thus, external
coordinates appeared to play an important role in this version of
the task.

Another study presented two tactile stimuli to two out of four
possible fingers (the index and little fingers of the two hands;
Badde et al., 2013). During half of the experiment, all fingers were
uncrossed. In the other half, the index fingers were crossed, but
the little fingers remained unchanged. When the two index fin-
gers were crossed, and stimuli were presented to them, a large
crossing effect was evident. However, when the first stimulus was
applied to a crossed index finger, and the second stimulus was
presented to an (uncrossed) little finger, the crossing effect was
reduced. When the two little fingers were stimulated, crossing of
the index fingers had no effect at all on performance. This finding
suggests that the crossing effect depends on the specific posture
of each involved body part (here, different uncrossed and crossed
fingers).

Further evidence for the use of external coordinates in touch
localization for the fingers has come from an experiment in which
participants judged the direction of tactile motion over uncrossed
fingers within a hand (Kuroki et al., 2011). Participants were first
adapted to one direction for 10 s, with the fingers placed either
crossed uncrossed, or vertically (that is, uncrossed but turned by

90◦). Perceived motion direction was then assessed with hori-
zontally aligned uncrossed fingers. Adaptation led to a motion
direction after-effect opposite to the external direction of motion,
independent of whether the fingers were crossed or uncrossed in
the adaptation phase. Because the testing direction was orthogo-
nal to motion adaptation in the vertical condition, no after effect
was evident in that condition.

Summing up, findings concerning the spatial processing for
touch on the fingers have been ambiguous. Neuropsychological
findings suggest that differences between fingers and other body
parts, especially the hands, do exist. How these differences pertain
to tactile localization is not yet clear. Although some newer studies
have suggested that touch is remapped for the fingers just like
for other body parts, there is not yet an explanation for some
phenomena, as for instance the Aristotle illusion, within such a
framework.

PAIN AND DISORDERS
The topics we have discussed potentially bear significance for clin-
ical purposes. It is, therefore, exciting to see that the paradigms
we have described in this paper have been used to investigate dif-
ferent types of disorders, as well as pain. The representation of
the own body is a central aspect of pain processing. TOJ have
proven useful to shed light on this relationship. Patients suffering
from unilateral complex regional pain syndrome (CRPS), affect-
ing one arm or hand, prioritized the processing of their unaffected
hand. This was shown by a shift of the PSS of two tactile stim-
uli toward the unaffected hand, as compared to healthy controls
(Moseley et al., 2009, 2012). Importantly, this effect reversed when
the hands were crossed: patients now prioritized the hand that was
located in the side of space affected by the pain syndrome, and not
their affected hand (located in the “unaffected space”). Crossing
did not affect the PSS in the healthy control group. This result sug-
gests that the changes in tactile processing that accompany CRPS
depend on the side of space in which the syndrome is located on
the body, rather than on the affected limb per se. This finding
implies that the perception of pain partly depends on its localiza-
tion in external space. To investigate the neural underpinnings of
this external spatial modulation, painful and non-painful stimuli
were delivered to uncrossed and crossed hands of healthy partic-
ipants (Gallace et al., 2011). For both types of stimuli, intensity
ratings were lower in the crossed posture, and SEPs were reduced
with crossed relative to uncrossed hands, starting at about 150 ms
post-stimulus (referred to by the authors as N2, often referred to as
N140 by others), whereas earlier processing was unaffected. Simi-
larly, crossing effects in the standard TOJ task have been found to
be comparable for painful and non-painful stimuli (Sambo et al.,
2013). Thus, touch and pain processing show striking similari-
ties. This, in turn, allows the formulation of hypotheses about
which brain regions mediate the spatial processing common to
both modalities. Given the crucial role of posterior parietal cortex
in spatial transformations (Bolognini and Maravita, 2007; Azañón
et al., 2010b; Takahashi et al., 2013), this region has been suggested
as a prime candidate for the prevalence of external spatial reference
frames also in pain processing (Sambo et al., 2013).

An involvement of parietal cortex has also been suggested
for a disorder that has been described only recently, namely
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the body integrity identity disorder (BIID; Aoyama et al., 2012).
Patients suffering from this disorder have a strong dislike for
one part of their bodies, usually one limb, to the extent that
they wish this limb were amputated. The etiology and mech-
anisms of this disorder have so far remained unclear, but the
close relationship between body processing and touch localiza-
tion have led to the hypothesis that basic processes in touch
perception may be affected in BIID patients. To test this idea,
BIID patients with dislike for the lower part of one of their
legs made TOJ about two tactile stimuli, one on the unaf-
fected, upper part, and one on the affected, lower part of
the leg. Whereas the JND was comparable to healthy individu-
als (Schicke and Röder, 2006), the PSS was biased toward the
affected limb. This was interpreted to reflect enhanced attention
to the affected limb, consistent with the behaviorally evident over-
concern that the patients display for this limb (Aoyama et al.,
2012).

SUMMARY, CONCLUSION, AND FUTURE DIRECTIONS
Our review has shown that TOJ have been an invaluable research
tool for the investigation of tactile spatial processing and many
topics beyond. In particular, we have highlighted the reliability and
validity of the TOJ crossing effect as an indicator of the encoding of
touch in external space. Nevertheless, several important questions
remain.

The TOJ crossing effect is puzzlingly large. Yet, whereas remap-
ping effects can be observed also in single stimulus paradigms
(e.g., Overvliet et al., 2011; Badde et al., 2012), they are by an
order of magnitude smaller than the two-stimulus TOJ effects.
Elucidating the mechanisms behind the large TOJ effects will pro-
vide further knowledge of the current, and possibly new, models
of tactile spatial processing and advance our understanding of
somatosensory processing more generally. In this context, cogni-
tive and computational modeling may be promising research tools
by which the different theoretical accounts we have presented may
be evaluated.

We have covered a number of broad topics related to touch and
body processing. To begin with, several studies have attempted
to characterize the timing of tactile remapping using crossed-
hands paradigms (Yamamoto and Kitazawa, 2001a; Azañón and
Soto-Faraco, 2008a; Heed and Röder, 2010; Overvliet et al., 2011;
Soto-Faraco and Azañón, 2013). These studies suggest that tac-
tile information is initially available in somatotopic space, but
promptly transformed, within 100–200 ms, into external coor-
dinates. However, although the results of these different studies
appear largely consistent, the exact timeline of touch localiza-
tion remains to be determined. Furthermore, recall that it has
been suggested that the TOJ crossing effect arises from tempo-
ral imprecision (Kitazawa et al., 2008). Thus, drafting an adequate
account of spatial touch processing may indeed require theoretical
integration of spatial and time processing for this modality. It is,
furthermore, of note that our understanding of the neural under-
pinnings of tactile spatial processing is limited, although first steps
to map psychological function to brain regions and neural pro-
cesses have been undertaken (e.g., Azañón et al., 2010b; Heed and
Röder, 2010; Buchholz et al., 2011, 2013; Soto-Faraco and Azañón,
2013; Takahashi et al., 2013; Ruzzoli and Soto-Faraco, 2014).

Furthermore, a considerable number of TOJ studies have inves-
tigated the nature of the reference frames involved in touch
localization. Whereas differences in tactile localization between
blind and sighted individuals, as well as changes during ontogeny,
suggest that visual coordinates are of particular importance
in touch, the brain may consider additional reference frames
in the definition of spatial information in touch. For exam-
ple, whether spatial information related to movement planning
and execution affect touch processing is currently unresolved.
Similarly, most research has focused on a generalized visual
coordinate system, leaving unresolved the specific representa-
tional code adopted by this reference frame. Even if it were
strictly based on visual space, it could still be organized in
many different forms, either in egocentric (e.g., retinotopically,
trunk-, head or limb-centered) or allocentric (non-body related)
space. How such representations are combined, and whether
different contexts induce biases between them is still largely
unknown.

A recent trend has been to conceptualize tactile remap-
ping as an integrative process that weighs different pieces of
spatial information from many sources, possibly according to
current context like task requirements. This idea seamlessly
connects to concepts of other domains of multisensory inte-
gration (Ernst and Banks, 2002). However, conclusive evidence
that similar weighting processes are at work in different mul-
tisensory domains has not been made available. Clearly, such
similarities bear the promise of discovering widely applicable,
consistent processing principles across different sensory and cog-
nitive domains. The concept of weighting is closely related
to the intriguing topic of plasticity. If tactile remapping truly
weighs reference frames depending on context, then the pro-
cess of remapping must allow for rapid processing changes.
The time and level of information required to allow these
changes, their duration, and even the level of consciousness at
which they might be processed are exciting topics for future
research.

Finally, the relevance of touch to body processing has led to
increasing interest in characterizing tactile behavior in different
patient groups. For such investigations, two aspects are especially
relevant for any experimental paradigm: on the one hand, it is
desirable that results obtained from patients can be compared to
a large body of knowledge obtained from a healthy population, so
that conclusions about potential processing deficits can be drawn.
On the other hand, any paradigm for use with patients should
be easily applicable. TOJ fulfill both of these criteria, and they
may thus be a good approach for further touch-related patient
studies.

Taken together, we believe that the results obtained from the
TOJ task highlight its utility in investigating tactile processing.
This seemingly simple task has been used to build an extensive
assembly of interconnected, widely relevant research findings, and
the basis upon which new experiments can build is impressive.
The TOJ task allows focusing on different aspects of behavior,
including sensitivity, bias, and RT, allowing flexible use of the
paradigm for many types of research questions. It will be delightful
to see the paradigm used in future endeavors of psychological
science.
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