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Assessing goodness of model fit is one of the key questions in structural equation
modeling (SEM). Goodness of fit is the extent to which the hypothesized model
reproduces the multivariate structure underlying the set of variables. During the earlier
development of multilevel structural equation models, the “standard” approach was to
evaluate the goodness of fit for the entire model across all levels simultaneously. The
model fit statistics produced by the standard approach have a potential problem in
detecting lack of fit in the higher-level model for which the effective sample size is much
smaller. Also when the standard approach results in poor model fit, it is not clear at
which level the model does not fit well. This article reviews two alternative approaches
that have been proposed to overcome the limitations of the standard approach. One is
a two-step procedure which first produces estimates of saturated covariance matrices
at each level and then performs single-level analysis at each level with the estimated
covariance matrices as input (Yuan and Bentler, 2007). The other level-specific approach
utilizes partially saturated models to obtain test statistics and fit indices for each level
separately (Ryu and West, 2009). Simulation studies (e.g., Yuan and Bentler, 2007; Ryu
and West, 2009) have consistently shown that both alternative approaches performed well
in detecting lack of fit at any level, whereas the standard approach failed to detect lack of fit
at the higher level. It is recommended that the alternative approaches are used to assess
the model fit in multilevel structural equation model. Advantages and disadvantages of the
two alternative approaches are discussed. The alternative approaches are demonstrated
in an empirical example.

Keywords: multilevel structural equation model, model fit, fit indices, model fit statistics, level-specific fit
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INTRODUCTION
Research in the behavioral sciences increasingly employs multi-
level multivariate research designs. In multilevel data, also called
hierarchically structured or clustered data, lower-order units are
clustered within higher-order units, for example, students within
classrooms. Multilevel data structures may also arise in studies
involving repeated measurements (e.g., diary data) collected from
multiple individuals. In analyzing multilevel data, the need for
multilevel modeling is twofold. First, observations taken from
the lower-order units typically do not meet the independence
assumption, because observations in the same cluster are likely
to be more homogenous than those from different clusters. When
the dependency due to clustering is ignored, the analysis yields
incorrect standard errors and therefore invalid statistical infer-
ences. Multilevel modeling takes this dependency into account
and provides appropriate adjustment for the standard errors lead-
ing to valid statistical inferences. Second, in multilevel research,
the relationship between variables at one level does not necessar-
ily generalize to the relationship between the same set of variables
at another level. Multilevel modeling allows researchers to inves-
tigate the relationships between variables at different levels in the
hierarchical structure.

Structural equation modeling (SEM, Jöreskog, 1978; Bentler,
1980) is a general framework for modeling and analyzing multi-
variate data. In SEM, latent variable models can be specified to
estimate the relationships between latent constructs and observed
indicators, and a set of linear relationships with more than one
dependent variable can be estimated simultaneously. Multilevel
structural equation modeling (MSEM) is a general framework
which combines SEM and multilevel modeling simultaneously.
In other words, MSEM is an advanced SEM technique developed
for multilevel research. MSEM can be applied to a wide range
of applications that involve multilevel multivariate data, includ-
ing multilevel factor analysis and multilevel path analysis models.
With the theoretical development of MSEM (e.g., Goldstein and
McDonald, 1988; Muthén, 1990, 1994; Longford and Muthén,
1992; Muthén and Satorra, 1995) together with the development
of software packages, the use of MSEM in behavioral and social
science research is becoming increasingly popular.

Like other applications of SEM, applications of MSEM
usually address two issues: (a) assessing the goodness of fit of
the hypothesized model to the data, and (b) estimating and
testing individual parameters in the hypothesized model. Issue
(a) assesses how well a hypothesized model approximates the
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multivariate structure underlying the set of variables. Issue
(b) can only be addressed in a meaningful way in a well-fitting
model. A poor fitting model does not approximate the underlying
structure observed in the data; the parameter estimates obtained
in the poor fitting model cannot be interpreted as reasonably
summarizing the relationships between the variables (Browne
and Cudeck, 1993; West et al., 2012).

In MSEM, it has been a standard approach that the model fit
is evaluated using test statistics and fit indices that were devel-
oped for model fit evaluation in single-level SEM. In the standard
approach, the entire multilevel model is evaluated simultaneously.
In multilevel data, effective sample size is typically much larger
at the lower level than at the higher level. The model fit evalua-
tion obtained by the standard approach is likely to be dominated
by the model fit at the lower level, and may not be sensitive to
detect lack of fit at the higher level (Yuan and Bentler, 2007; Ryu
and West, 2009; Hox, 2010). Also when the standard approach
results in poor model fit, it does not indicate whether the model
fit is poor at the lower level, at the higher level, or at both
levels.

Two alternative approaches have been proposed to the eval-
uation of model fit in MSEM. This article reviews the stan-
dard approach followed by a discussion of its limitations. Then
the alternative approaches are introduced. Model fit evaluation
methods are illustrated using an empirical data set. Practical rec-
ommendations are provided for researchers who wish to adopt
MSEM in their research.

MULTILEVEL STRUCTURAL EQUATION MODEL
Throughout this article, I use individual to indicate level-1 unit
and cluster to indicate level-2 unit. Suppose that data are col-
lected from N individuals (i = 1, 2, . . . , N) nested within J (j =
1, 2, . . . , J) clusters. The clusters are a simple random sample
from a population of clusters, and the individuals are a simple
random sample within each cluster. At level 2, the observations
taken from clusters are independent of one another. At level 1,
the individual-level observations are independent of one another
within each cluster, but not across clusters.

Let yij denote a data vector for individual i in cluster j. In
multilevel data, there are two sources of random variation: ran-
dom variation due to between-cluster differences at level 2 and
random variation due to between-individual differences within
clusters at level 1. In MSEM, the data vector is decomposed into
means, between-cluster random components, and within-cluster
random components as shown in Equation (1):

yij = μ + yBj + yWij (1)

where E
(

yBj

)
= E

(
yWij

)
= 0. Note that yBj and yWij are latent

(i.e., not directly observed) random components that reflect
between-cluster and within-cluster variation, respectively. In
MSEM, all level-1 variables are subject to the model-based
decomposition shown in Equation (1). For level-2 variables, the
decomposition can be simplified because the level-1 random
components are zero (i.e., yWij = 0).

Based on the decomposition shown in Equation (1), the mean
and covariance structure of yij are:

E
(

yij

)
= μ (2)

Cov
(

yij

)
= Cov

(
yBj

)
+ Cov

(
yWij

)
or �y = �B + �W (3)

The covariance structure of yij is decomposed into level-1 and
level-2 covariance structures as shown in (3) based on two
assumptions. First, the level-1 and level-2 random components

are uncorrelated [i.e., Cov
(

yBj, yWij

)
= 0]. Second, the level-1

covariance structure is homogeneous across clusters (i.e., �Wj =
�W for all j). A typical MSEM model consists of the level-
2 covariance structure �B (θ) and level-1 covariance structure
�W (θ), and mean structure μ (θ), where θ is a vector of parame-
ters in the hypothesized model. In many applications, the mean
structure is specified as a saturated model (i.e., the number of
parameters in the mean structure is equal to the number of means
in the data).

Assuming multivariate normality for each of the level-1 and
level-2 random components, the maximum likelihood (ML) solu-
tion is obtained using the fitting function in Equation (4) (Bentler
and Liang, 2003; Liang and Bentler, 2004).

FML =
J∑

j = 1

[
log

∣∣�gj (θ)
∣∣+ tr

(
�−1

gj (θ) SBj

)]

+
J∑

j = 1

(
nj − 1

) [
log |�W (θ)| + tr

(
�−1

W (θ) SWj

)]
(4)

where nj = number of individuals in group j, SBj = nj

(
ȳj − ȳ

)
(

ȳj − ȳ
)′

in which ȳj = n−1
j

∑nj

i = 1 yij and ȳ = N−1 ∑J
j = 1∑nj

i = 1 yij, SWj = (
nj − 1

)−1
(

yij − ȳj

) (
yij − ȳj

)′
, and �gj (θ) =

�W (θ) + nj�B (θ). For perfectly balanced case in which nj = n
for all j, the ML fitting function simplifies to

FML = J
[

log
∣∣�gj (θ)

∣∣+ tr
(
�−1

gj (θ) SBj

)]
+ (N − J)

[
log |�W (θ)| + tr

(
�−1

W (θ) SWj

)]
(5)

The first term of the ML fitting function reflects the lack of
fit in the level-2 covariance structure, and the second term
reflects the lack of fit in the level-1 covariance structure. Note
that the first and second terms are differentially weighted
by the level-2 sample size J and the effective level-1 sample
size (N − J).

“STANDARD” MODEL FIT EVALUATION
This section briefly reviews the test of exact fit and fit indices (CFI
and RMSEA) produced by the “standard” approach to evaluating
model fit in MSEM. The standard approach refers to the conven-
tional method in which the goodness of fit is examined for the
entire multilevel structural equation model simultaneously. Note
that the standard approach parallels to the model fit evaluation in
single-level SEM.

Frontiers in Psychology | Quantitative Psychology and Measurement February 2014 | Volume 5 | Article 81 | 2

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Ryu Model fit in multilevel SEM

TEST OF EXACT FIT
The standard test of exact fit test the joint hypothesis H0: �B =
�B (θ) and �W = �W (θ). �B and �W are level-2 and level-1
covariance structures that underlie yBj and yWij in the popu-
lation. �B (θ) and �W (θ) are the model-implied level-2 and
level-1 covariance structures, respectively, that are reproduced
by the hypothesized model with parameters θ. The test of exact
fit is obtained using the likelihood ratio test between the satu-
rated model [i.e., just identified model with degrees of freedom
(df ) = 0] and the hypothesized model with a positive df. The ML
test statistic TML is obtained by

TML = FML

(
θ̂
)

− FML

(
θ̂S

)
(6)

where FML

(
θ̂
)

is the ML fitting function value for the hypoth-

esized model and FML

(
θ̂S

)
is the ML fitting function value for

the saturated model. Under the assumptions of proper model
specification, multivariate normality, and sufficiently large J, TML

follows a chi-square distribution. The df is equal to the difference
in the number of parameters between the hypothesized and the
saturated models. If the model-implied covariance structure fits
the unrestricted covariance structure exactly in the population,
TML follows a central chi-square distribution with df = differ-
ence in the number of parameters between the hypothesized and
the saturated models. If exact fit does not hold in the population,
TML follows a non-central chi-square distribution with the same
df and non-centrality parameter λ = (N − 1) F0, where F0 is the
ML fitting function value reflecting lack of fit in the population
(MacCallum et al., 1996).

COMPARATIVE FIT INDEX (CFI)
The CFI (Bentler, 1990) is a fit index that measures goodness
of fit of the hypothesized model compared to a baseline model.
Typically an independence model in which the variances are
estimated freely without any constraints and all the covariances
are fixed to zero is used as the baseline model 1. In Equation
(7), � compares the non-centrality parameter in the hypoth-
esized model to the non-centrality parameter in the baseline
model.

� = 1 − λHypothesized

λBaseline
(7)

When the fit of the hypothesized model is as poor as the fit of
the baseline model, � becomes zero. The better the fit of the
hypothesized model than the fit of the baseline model, the closer
� approaches to 1. Equivalently, � can be obtained using the
chi-square test statistic and the df.

1The baseline model should be nested within the hypothesized model, i.e.,
the baseline model can be specified by adding constraints in the hypothesized
model. In some applications, the independence model is not appropriate as a
baseline model to compute CFI because the independence model is not nested
within the hypothesized model. In this case, an alternative baseline model
must be used (Widaman and Thompson, 2003).

CFI = 1 −
Max

[(
χ2

Hypothesized − df Hypothesized

)
, 0
]

Max
[(

χ2
Baseline − df Baseline

)
, 0
] (8)

ROOT MEAN SQUARED ERROR OF APPROXIMATION (RMSEA)
The RMSEA (Steiger, 1990; Browne and Cudeck, 1993) provides a
measure of lack of fit in the population with an adjustment for the
parsimony of the model. RMSEA attempts to estimate the error
of approximation of the model in the population apart from the
error of estimation due to sampling error. The sample ML fit-
ting function value is a biased estimator of the population fitting
function value. A less biased estimator is obtained by Equation
(9) (MacCallum et al., 1996).

F̂0 = F̂ML − df

(N − 1)
(9)

RMSEA is a measure of lack of fit in the population per degree of
freedom. From Equation (9), RMSEA is obtained by

RMSEA =
√

F̂0

df
=
√

Max

[(
χ2 − df

df (N − 1)

)
, 0

]
(10)

LIMITATIONS OF THE STANDARD APPROACH
In the standard approach, the test statistic for exact fit test is
obtained using the ML fitting function shown in Equations (4)
and (5), in which the lack of fit at level 1 and the lack of fit at level
2 are weighted differentially by (N − J) and J, respectively. The fit
indices CFI and RMSEA are calculated using the chi-square test
statistic, and the goodness of fit or the lack of fit at each level is
not equally reflected in these fit indices. Therefore the model fit
evaluation obtained by the standard approach is likely to be dom-
inated by the level-1 model, and may not be sensitive to detect
lack of fit in the level-2 model (Yuan and Bentler, 2007; Ryu and
West, 2009; Hox, 2010). Also when the standard approach results
in poor model fit, it does not indicate whether the model fit is
poor at level 1, at level 2, or at both levels.

Two alternative approaches have been proposed to overcome
the limitations of the standard approach. Both approaches assess
the model fit at each level separately to overcome the limitations
of the standard approach. The level-specific model fit evaluation
by Ryu and West (2009) utilizes partially saturated models to
evaluate the fit of the level-1 and level-2 models separately. The
segregating procedure by Yuan and Bentler (2007) separates mul-
tilevel covariance structure into multiple single-level covariance
structure models.

LEVEL-SPECIFIC MODEL FIT EVALUATION
In the literature, the idea of using partially saturated models
for separate assessment of model fit at each level was initially
suggested by Hox (2002, 2010). Based on this idea, Ryu and
West (2009) developed level-specific test statistics for exact fit
test, CFIs, and RMSEAs, and investigated the performance of the
level-specific statistics in a simulation study. In this approach, a
partially saturated model in which the level-1 model is saturated
(i.e., just identified with df = 0) is used to assess the model fit
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at level 2; a partially saturated model in which the level-2 model
is saturated is used to assess the model fit at level 1. In this arti-
cle, subscripts PS_B and PS_W are used to denote level-specific
model fit statistics obtained using the partially saturated mod-
els. The subscript PS_B indicates that the statistics evaluates the
goodness of fit at level 2. The subscript PS_W indicates that the
statistic evaluates the fit at level 1.

LEVEL-SPECIFIC TEST OF EXACT FIT
For assessing model fit at level 2, a partially saturated
model is specified in which the level-1 model is saturated
([�B (θ) , �W (θS)]), where θ is a vector of parameters in a
hypothesized model and θS is a vector of parameters in a satu-
rated model. From Equation (6), the test statistic for this partially
saturated model is

χ2
PS_B = FML

[
�B

(
θ̂
)

,�W

(
θ̂S

)]
−FML

[
�B

(
θ̂S

)
,�W

(
θ̂S

)]
(11)

Any lack of fit captured in Equation (11) is due to the discrep-

ancy between �B

(
θ̂
)

and �B

(
θ̂S

)
. Therefore the level-specific

test statistic for exact fit at level 2 is obtained by Equation (11)
by comparing a partially saturated model [�B (θ) , �W (θS)] to a
fully saturated model [�B (θS) , �W (θS)]. The df is the difference
in number of parameters between the hypothesized and saturated
models at level 2.

Another partially saturated model [�B (θS) ,�W (θ)] is used
for assessing model fit at level 1. The level-specific test statistic
shown in Equation (12) serves as the test of exact fit in the level-1
model.

χ2
PS_W = FML

[
�B

(
θ̂S

)
, �W

(
θ̂
)]

− FML

[
�B

(
θ̂S

)
,�W

(
θ̂S

)]
(12)

The df is the difference in number of parameters between the
hypothesized and saturated models at level 1.

LEVEL-SPECIFIC CFIs
CFIPS_B and CFIPS_W are computed using the level-specific test
statistics shown in Equations (11) and (12), respectively. The
baseline models should also be partially saturated. For level-2
model fit evaluation, an appropriate baseline model is a partially
saturated independence model in which the level-2 model is an
independence model and the level-1 model is a saturated model.
CFIPS_B is computed by the same formula as in Equation (8)
using the statistics and degrees of freedom obtained from the par-
tially saturated model and the partially saturated independence
model. For level-1 model fit evaluation, a partially saturated inde-
pendence model in which the level-1 model is an independence
model and the level-2 model is a saturated model serves as an
appropriate baseline model to compute CFIPS_W.

LEVEL-SPECIFIC RMSEAs
As mentioned earlier, RMSEA is a measure of lack of fit in pop-
ulation per df. An unbiased estimator of the level-specific fitting

function value in the population would be desirable level-specific
RMSEA. The ML fitting function shown in Equation (5) can be
rewritten as

FML = (J) FML_B + (N − J) FML_W (13)

where FML_B captures the discrepancy between model and data in
the level-2 covariance structure, and FML_W captures the discrep-
ancy in the level-1 covariance structure. Using Equations (9) and
(10), RMSEAPS_B can be obtained by

RMSEAPS_B =
√√√√Max

[(
χ2

PS_B − df PS_B

df PS_B (J)

)
, 0

]
(14)

as a less biased estimator of the lack of fit at level 2 in population.
Likewise, RMSEAPS_W can be obtained by

RMSEAPS_W =
√√√√Max

[(
χ2

PS_W − df PS_W

df PS_W (N − J)

)
, 0

]
(15)

as a less biased estimator of the lack of fit at level 1 in population.

PERFORMANCE OF LEVEL-SPECIFIC FIT EVALUATION
In a simulation study, Ryu and West have empirically shown that
the level-specific method successfully detected misspecification
both at level 1 and at level 2, whereas the standard approach
failed to detect lack of fit in the level-2 model. The CFI and
RMSEA obtained by the standard approach incorrectly indi-
cated good model fit (i.e., CFI greater than 0.95 and RMSEA
smaller than 0.05, following the conventional rule of thumb;
see West et al., 2012, Table 13.1) when the level-2 model was
incorrectly specified. Both CFI and RMSEA were more biased
toward incorrectly indicating good model fit (a) when the num-
ber of groups was smaller with the group size held constant,
and (b) when the number of groups was smaller for a fixed
total sample size. These results imply that the standard approach
is more likely to miss the lack of fit in the level-2 model
when the sample consists of smaller number of level-2 units for
the same total sample size (e.g., the problem of the standard
approach is more severe when multilevel data are collected from
fewer clusters of larger size than from more clusters of smaller
size).

The level-specific test statistics obtained by ML estimation rely
on the assumption of multivariate normality. The multivariate
normality assumption is important for ML estimator to achieve
its asymptotic properties. In a simulation study, Ryu (2011) inves-
tigated how level-specific ML statistics are influenced by skewness
and kurtosis when the assumption of multivariate normality is
not met. Under positive skewness and kurtosis, the statistics were
larger than the expected value under multivariate normality, and
the Type I error rates for the level-specific exact fit tests were
higher than the nominal level. Rule of thumb cutoff values for
appreciable bias were skewness ≥ 2 and kurtosis ≥ 7 for the ran-
dom components at each level. These rule of thumb cutoff values
were consistent with the recommendation provided by Curran
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et al. (1996) for the ML test statistic in single-level SEM. Under
positive skewness, the upper tails of the distribution of the level-
specific ML statistics were thicker than the theoretical chi-square
distribution. (i.e., more likely to yield a larger value). Under pos-
itive kurtosis, the upper tails of the distribution became longer
(i.e., potentially yielding an extremely large value). The level-
specific ML test statistics were affected by positive skewness and
kurtosis only when the distributional assumption is violated at
the corresponding level, but not when the assumption is violated
at the other level.

SEGREGATING PROCEDURE
The Yuan and Bentler (2007) segregating procedure involves two
steps. In the first step, the ML estimates for unrestricted level-1
(�W ) and level-2 (�B) covariance matrices, and their asymptotic
covariance matrices are obtained. The second step uses the esti-
mated covariance matrices �̂W and �̂B as if they are observed
covariance matrices that are used as input data in single-level
SEM.

The ML estimates �̂W and �̂B are obtained by maximizing
the log-likelihood function shown in Equation (16), assuming
multivariate normality.

l =
J∑

j = 1

[
cj − 1

2
log

∣∣�gj

∣∣− nj

2

(
ȳj − μ

)′
�−1

gj

(
ȳj − μ

)

−
(
nj − 1

)
2

log |�W | − 1

2

nj∑
i = 1

(
yij − ȳj

)′
�−1

W

(
yij − ȳj

)]
(16)

where �gj = �W + nj�B. Yuan and Bentler (2002, 2005, 2007)
theoretically showed an asymptotic distribution in which the ML
estimates in MSEM converges. For the segregating procedure,
Yuan and Bentler (2007) showed that when the level-2 sample size
J approaches infinity or the average group size n̄ approaches infin-
ity, the distribution of the ML estimates for unrestricted level-1
covariance matrix asymptotically converges in a normal distribu-
tion, and the asymptotic covariance matrix equals to the inverse
of the normal theory based information matrix that is obtained
by fitting the level-1 model in conventional single-level SEM. The
distribution of the ML estimates for unrestricted level-2 covari-
ance matrix asymptotically converges in a normal distribution,
and the asymptotic covariance matrix equals to the inverse of the
normal theory based information matrix that is obtained by fit-
ting the level-2 model in conventional single-level SEM. Based
on these asymptotic properties, a multilevel structural equation
model can be segregated into two separate single-level structural
equation models.

In the second step, the hypothesized level-1 model �W (θ) is
fit to �̂W ; the hypothesized level-2 model �B (θ) is fit to �̂B. The
level-1 and level-2 models are estimated and evaluated separately
using single-level SEM. In each model, the model fit is evaluated
using the standard procedure (described in section “Standard”
Model Fit Evaluation) developed for single-level SEM. Because
the level-1 and level-2 models are evaluated separately, the model
fit evaluation for the level-2 model is not dominated by the level-1
model.

Yuan and Bentler provided a SAS program for the first
step to produce estimates of unrestricted covariance matri-
ces at each level (Multi-Single.sas, freely downloadable from
www.nd.edu/∼kyuan/multilevel). Their SAS program produces
estimates of level-1 and level-2 covariance matrices, but does not
produce the mean vector. In many applications of MSEM, the
mean structure in the model is specified as a saturated model
(i.e., the number of mean parameters is equal to the number of
means in the data). In this case, estimating a two-level covariance
structure model without a mean structure is not a serious dis-
advantage of the segregating procedure. For models in which the
mean structure is necessary, it is possible to modify the SAS pro-
gram to produce estimated mean vector, and to use the estimated
mean vector and level-2 covariance matrix as input data for the
level-2 model with a mean structure.

Yuan and Bentler also proposed five test statistics for evaluat-
ing segregated models: maximum likelihood (ML), ML rescaled
(MLR), residual-based asymptotically distribution free (RADF),
corrected residual-based ADF, (CRADF), and residual-based F
statistic (FR). Their simulation study showed that each of these
statistics was less powerful in detecting poor fit in the level-2
model when applied to the entire multilevel model than when
applied to segregated models. The ML statistics resulted in
inflated Type I error rates under lognormal distribution. RADF
statistics did not perform well even when applied to segregated
models under multivariate normality. CRADF and FR test statis-
tics showed a lower statistical power than the ML and MLR
statistics.

The advantage of the segregating procedure over simultaneous
evaluation of the entire multilevel model has also been replicated
in other studies (Ryu, 2008; Ryu and West, 2009). In these studies,
the segregating procedure successfully detected misspecification
both at level 1 and level 2, whereas the standard approach failed
to detect the lack of fit at level 2. Compared to the level-specific
approach, the segregating procedure resulted in a slightly higher
non-convergence rate. The model fit evaluation results were com-
parable for the level-1 model between the level-specific and the
segregating approaches. But the two approaches showed small but
consistent discrepancies in the model fit statistics for the level-2
model both when the level-2 model was correctly and incor-
rectly specified. For the level-2 model, the ML test statistics and
the RMSEA values were larger in the segregating procedure than
those in the level-specific approach.

LEVEL-SPECIFIC AND SEGREGATING APPROACHES:
ADVANTAGES, DISADVANTAGES, AND PRACTICAL
CONSIDERATIONS
In practice, the level-specific approach requires estimating at least
two additional multilevel models in order to obtain level-specific
model fit evaluation: two partially saturated models. Additional
baseline models need to be estimated in order to compute level-
specific CFIs. Level-specific test statistics and fit indices are not
yet implemented in software packages. Additional computation
is needed to obtain level-specific fit statistics. The segregating
approach requires two steps: to produce estimated covariance
matrices at each level in the first step, and then to estimate the
level-1 and level-2 models as separate single-level models using
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these covariance matrices as input in the second step. Once the
first step is completed, the multilevel model is segregated into
two single-level models. Model fit is evaluated in two single-
level models. Test statistics and fit indices can be obtained using
software packages without additional computation.

Yuan and Bentler’s SAS program (Multi-Single.sas,
www.nd.edu/∼kyuan/multilevel) produces estimated level-1
and level-2 covariance matrices and asymptotic covariance
matrices for the variance and covariance estimates, for the first
step of the segregating procedure. For a set of five variables, for
example, the SAS program produces (5 × 5) covariance matrices
at each level and (15 × 15) asymptotic covariance matrices for
the elements in the (5 × 5) covariance matrices. A limitation of
the segregating procedure is that the SAS program may require a
huge amount of computer memory and fail to run. This problem
may occur when the number of number of variables is large so
that the dimension of the covariance matrices and asymptotic
covariance matrices will also be large, or when the sample size is
large2.

It is not recommended that partially saturated models or seg-
regated single-level models are used to obtain parameter estimates
and standard errors. The parameter estimates and standard errors
should be obtained using MSEM which finds a solution for the
set of parameters in the entire hypothesized model. It is possible
to use the segregating procedure to produce parameter estimates
and standard errors in addition to model fit evaluation. In the
past when the availability of SEM software packages with multi-
level modeling capability was limited, the segregating procedure
allowed researchers to obtain estimates and standard errors for a
multilevel structural equation model using single-level technique.
However MSEM software packages are widely available now.

Segregating a multilevel model into multiple single-level mod-
els introduces potential problems. First, estimated covariance
matrices are used as input data for model estimation in the
second step. The parameter estimates depend on the estimated
covariance matrices. In practice, the theoretical properties of the
estimated covariance matrices do not necessarily hold with a
finite sample size. Second, a multilevel structural equation model
is one hypothesized model which consists of two components.
The estimation method finds a solution which best satisfies the
criterion for the set of parameters in the hypothesized model.
Change in model specification in one part of the model may
influence the estimated solution for parameters in other parts of
the model. In the segregating procedure, the level-1 and level-2
models are separated into two models. The estimation method
finds a solution to best satisfy the criterion for the set of param-
eters in the level-1 model, and for the set of parameters in the
level-2 model, separately. The solution from separate estima-
tion in multiple single-level models is not necessarily the same
as the solution from simultaneous estimation in a multilevel
model. Third, research questions often require that constraints
are imposed on parameters at different levels, for example, the
relationship of math self-confidence with math achievement at

2As an example, for the set of 5 variables, the SAS program failed to run due
to insufficient memory for a sample size of 6597 clustered in 281 schools when
executed in Intel(R) Core 2 Quad CPU @ 2.83 GHz, 3.23 GB of RAM.

the student level is the same as the relationship at the school level.
An equality constraint can be easily imposed between the two
parameters in MSEM. But in the segregating approach, it is not
straightforward to impose a constraint between a parameter in
the level-1 model and another parameter in the level-2 model.

AN EMPIRICAL EXAMPLE
This section demonstrates the standard, level-specific, and segre-
gating approaches to evaluating model fit in multilevel structural
equation model using an empirical data set from TIMSS (Trends
In International Mathematics and Sciences) 2003 International
Database (Source: TIMSS 2003 Assessment, Copyright ©2005
International Association for the Evaluation of Educational
Achievement; Martin, 2005). The data are from 5928 students
clustered in 164 schools in Singapore. The school size ranged
from 26 to 42, mean = 36.146, and standard deviation = 2.031. A
two-level model shown in Figure 1 depicts hypothesized relation-
ships of mathematics motivation and gender with mathematics
achievement (Chiu, 2007). The mathematics motivation variables
are self-confidence in mathematics (MConf), student’s valuing or
utility of mathematics (MUtil), and student’s interest in math-
ematics (Mint). Each of the motivation variables was measured
by a composite score of items from a 4-point Likert type scale in
which a lower score indicated higher motivation. The Singapore
national math Rasch score was used for mathematics achievement
(MAch, mean = 150, standard deviation = 10, see TIMSS 2003
User Guide; Martin, 2005).

In the two-level path model, a variable indicating gender of
students (Female: 1 = female, 0 = male) is hypothesized to
account for each of the motivation variables and achievement.
The level-1 variable Female is decomposed into level-1 and level-
2 latent random components as shown in Equation (1), as are

FIGURE 1 | A two-level path model of mathematics motivation,

gender, and achievement. MConf, self-confidence; MUtil, student’s
valuing or utility; MInt, student’s interest; MAch, mathematics achievement.
Female: 1 = female; 0 = male. At level 2, MConfB, MUtilB, and MIntB are
correlated with one another. At level 1, MConfW, MUtilW, and MIntW are
correlated with one another.
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all the other level-1 variables. Specifically, the level-1 random
component FemaleW is a binary variable distinguishing female
and male students; the level-2 random component FemaleB is
a continuous variable indicating proportion of females in each
school. At level 1, the relationships of FemaleW with other math-
ematics variables represent gender difference among students.
At level 2, the relationships of FemaleB on other mathemat-
ics variables represent relationships between the proportion of
females and the aggregated level of mathematics variables among
schools.

Three models were estimated. I first estimated the model
depicted in Figure 1 (ModelC). Then I estimated two addi-
tional models with additional constraints. In ModelMW, the
structural relationship between MConfW and MAchW at level
1 was fixed to zero. In ModelMB, the structural relationship
between FemaleB and MAchB at level 2 was fixed to zero.
Maximum likelihood (ML) estimation in Mplus 7 (Muthén
and Muthén, 1998–2012) was used for estimation. For segre-
gating approach, the Yuan and Bentler’s SAS program was used
to produce estimates of level-1 and level-2 covariance matri-
ces. Then the level-1 and the level-2 models were estimated
as separate single-level path models using ML estimation in
Mplus 73.

3The mean structure is ignored in the segregating procedure. The mean struc-
ture in the example model was saturated, and therefore ignoring the mean
structure did not affect the overall model fit.

Table 1 presents the model fit statistics obtained by the
standard, level-specific, and segregating approaches. All three
approaches indicated that ModelC fit well both at level 1 and
at level 2 4. Table 2 presents the ML estimates and standard
errors for ModelC 5. The estimates and standard errors presented
under “Multilevel model” were obtained by MSEM. The esti-
mates and standard errors presented under “Segregated model”
were obtained by Yuan and Bentler’s segregating procedure. The
results for the level-1 model were identical (within rounding
error) between the multilevel and segregated single-level mod-
els. For the level-2 model, the estimates were comparable but the
standard errors were smaller in the segregated single-level models
than in the multilevel model.

For ModelMW, in which the structural relationship between
MConfW and MAchW was constrained to be zero, all three
approaches detected the lack of fit due to the constraint. The limi-
tation of the standard approach is that the fit statistics are likely to

4In the segregating procedure, the RMSEAYB_B for the level-2 model was
0.103 (greater than the conventional rule of thumb < 0.08 for adequate
fit). But the 90% confidence interval for the RMSEAYB_B was [0.000, 0.258],
and the p value for H0 : RMSEAYB_B ≤ 0.05 was 0.166. Also examination
of the residual covariance matrices supported good model fit (the largest
normalized residual was small than 2). Note that the level-2 sample size
was 164.
5Due to limited space, only the estimates and standard errors of structural
paths are presented. The estimates for other parameters are available upon
request to the author.

Table 1 | Model fit statistics obtained by the standard, level-specific, and segregating approaches.

ModelC ModelMW ModelMB

STANDARD APPROACH

Test of exact fit χ2 (2) = 1.646, p = 0.439 χ2 (3) = 257.781a χ2 (3) = 12.737, p = 0.005

CFI 1.000 0.960 0.998

RMSEA 0.000 0.120 0.023

LEVEL-SPECIFIC APPROACH FOR LEVEL-2 MODEL (PS_B)

Test of exact fit χ2
PS_B (1) = 0.895, p = 0.344 χ2

PS_B (2) = 11.986, p = 0.003

CFIPS_B 1.000 0.884

RMSEAPS_B 0.000 0.175

LEVEL-SPECIFIC APPROACH FOR LEVEL-1 MODEL (PS_W)

Test of exact fit χ2
PS_W (1) = 0.676, p = 0.411 χ2

PS_W (2) = 256.812a

CFIPS_W 1.000 0.959

RMSEAPS_W 0.000 0.149

SEGREGATING PROCEDURE FOR LEVEL-2 MODEL (YB_B)

Test of exact fit χ2
YB_B (1) = 2.742, p = 0.098 χ2

YB_B (2) = 26.120a

CFIYB_B 0.994 0.921

RMSEAYB_B 0.103 0.272

SEGREGATING PROCEDURE FOR LEVEL-1 MODEL (YB_W)

Test of exact fit χ2
YB_W (1) = 0.677, p = 0.411 χ2

YB_W (2) = 256.748a

CFIYB_W 1.000 0.959

RMSEAYB_W 0.000 0.149

ap < 0.001. The degrees of freedom for test of exact fit are shown in parentheses. Standard, model fit evaluation for the entire model using the standard approach

(i.e., both level-1 and level-2 models are evaluated simultaneously); PS_B, fit evaluation for level-2 model obtained using the level-specific approach; PS_W, fit

evaluation for level-1 model obtained using the level-specific approach; YB_B, fit evaluation for level-2 model obtained using the segregating procedure; YB_W, fit

evaluation for level-1 model obtained using the segregating procedure.
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Table 2 | Estimated two-level path model of mathematics motivation,

gender, and achievement (ModelC).

Structural path Multilevel model Segregated model

LEVEL 1

MConf → MAch −2.929 (0.181)* −2.928 (0.181)*

MUtil → MAch −0.909 (0.205)* −0.909 (0.205)*

MInt → MAch −0.558 (0.169)* −0.559 (0.169)*

Female → MConf 0.165 (0.019)* 0.165 (0.019)*

Female → MInt 0.052 (0.020)* 0.052 (0.020)*

Female → MAch 0.957 (0.222)* 0.957 (0.222)*

LEVEL 2

MConf → MAch −36.850 (4.967)* −36.779 (2.536)*

MUtil → MAch 7.460 (11.228) 7.363 (4.716)

MInt → MAch 13.455 (7.025)† 13.421 (3.235)*

Female → MConf 0.056 (0.065) 0.050 (0.046)

Female → MInt 0.069 (0.060) 0.062 (0.036)

Female → MAch 6.844 (2.001)* 6.793 (1.344)*

Multilevel model, maximum likelihood (ML) estimates obtained by multilevel

structural equation modeling. Segregated model, ML estimates obtained from

separate single-level path models using Yuan and Bentler’s segregating proce-

dure. Standard errors are shown in parentheses. *p < 0.05; †p = 0.055.

be dominated by the level-1 model because of larger sample size.
In this example, the effective sample size for the level-1 model was
5764, which is much larger than the level-2 effective samples size
164. The limitation of the standard approach was less severe for
the level-1 model. The level-2 model was the same for ModelC
and ModelMW, and the fit statistics for the level-2 model (PS_B
and YB_B) were identical.

ModelMB, in which the structural relationship between
FemaleB and MAchB is constrained to be zero, demonstrates
the limitation of the standard approach and the advantage of
the alternative approaches. In the standard approach, both the
CFI and RMSEA indicated good model fit. However, the level-
specific (PS_B) and segregating (YB_B) approaches produced
the fit indices that indicate poor model fit. In ModelC, the pro-
portion of females was significantly related to the aggregated
level of mathematic achievement at level 2. The estimated dif-
ference in mathematics achievement was 6.844 in terms of the
Singapore national math Rasch score (i.e., 0.684 standard devia-
tion) between schools with no female students (FemaleB = 0) and
schools with only female students (FemaleB = 1). Alternatively
the estimate can be interpreted that the estimated difference in
Singapore national math Rasch score was 3.422 (i.e., 0.342 stan-
dard deviation) between schools with 25% female students and
schools with 75% female students. If the researcher relied on the
standard approach to evaluating model fit, she would have incor-
rectly concluded that the proportion of females is not related
to the aggregated level of mathematics achievement. The level-
1 model was the same for ModelC and ModelMB, and the fit
statistics for the level-1 model (PS_W and YB_W) were identical.

CONCLUDING REMARKS
Establishing a well-fitting model is an important and necessary
step in applications of MSEM. A conventional practice has been

that the model fit is evaluated using the fit statistics parallel
to those developed for single-level SEM. Recently, a number of
studies have pointed out limitations of the standard approach
and have proposed alternative methods to overcome the limi-
tations. This article reviewed two alternative approaches, both
of which provide statistical methods to evaluate the model at
each level separately. Simulation studies have shown that both
approaches perform well in detecting lack of fit at both levels,
whereas the standard approach failed to detect lack of fit in the
level-2 model. As mentioned earlier, MSEM usually address two
issues: (a) assessing the goodness of fit of the hypothesized model
to the data, and (b) estimating and testing individual parame-
ters in the hypothesized model. It is recommended that one or
both of the alternative approaches are used to address (a). It is
not recommended that the alternative approaches are used to
address (b). Once a well-fitting model is selected, the parameter
estimates and the standard errors in the selected model should be
obtained using an estimation method which finds a solution for
the whole set of parameters in the entire multilevel model (i.e.,
estimation method developed for MSEM). The ability of the level-
specific and segregating approaches to assess model fit separately
at each level provides researchers with valuable information in the
evaluation of MSEM models.
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