
ORIGINAL RESEARCH ARTICLE
published: 04 March 2014

doi: 10.3389/fpsyg.2014.00181

Evaluation of model fit in nonlinear multilevel structural
equation modeling
Karin Schermelleh-Engel*, Martin Kerwer and Andreas G. Klein

Department of Psychology, Goethe University, Frankfurt, Germany

Edited by:

Tobias Koch, Freie Universität Berlin,
Germany

Reviewed by:

Judit Antal, The College Board, USA
Ehri Ryu, Boston College, USA

*Correspondence:

Karin Schermelleh-Engel,
Department of Psychology, Goethe
University, Grueneburgplatz 1 (PEG),
D-60323 Frankfurt am Main,
Germany
e-mail: schermelleh-engel@
psych.uni-frankfurt.de

Evaluating model fit in nonlinear multilevel structural equation models (MSEM) presents a
challenge as no adequate test statistic is available. Nevertheless, using a product indicator
approach a likelihood ratio test for linear models is provided which may also be useful for
nonlinear MSEM. The main problem with nonlinear models is that product variables are
non-normally distributed. Although robust test statistics have been developed for linear
SEM to ensure valid results under the condition of non-normality, they have not yet been
investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust
likelihood ratio test was investigated for models with single-level latent interaction effects
using the unconstrained product indicator approach. As overall model fit evaluation has a
potential limitation in detecting the lack of fit at a single level even for linear models, level-
specific model fit evaluation was also investigated using partially saturated models. Four
population models were considered: a model with interaction effects at both levels, an
interaction effect at the within-group level, an interaction effect at the between-group level,
and a model with no interaction effects at both levels. For these models the number of
groups, predictor correlation, and model misspecification was varied. The results indicate
that the robust test statistic performed sufficiently well. Advantages of level-specific
model fit evaluation for the detection of model misfit are demonstrated.
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INTRODUCTION
Multilevel structural equation modeling (MSEM) has gained
increasing attention over the last decades, as it combines advan-
tages of multilevel modeling (MLM) and structural equation
modeling (SEM) (cf. Muthén, 1994; Mehta and Neale, 2005;
Hox et al., 2010). MLM has been developed for the analysis of
clustered data and attempts to partition observed variances and
covariances into within- and between-group components, while
SEM aims at modeling the variances and covariances by tak-
ing the measurement errors into account. With the exception of
cross-level interactions, MSEM generally incorporates linear rela-
tionships among latent variables at the within-level and at the
between-level.

For the analysis of nonlinear single-level SEM with inter-
action or quadratic effects in the structural model, sev-
eral methods have been developed (for an overview see,
e.g., Schumacker and Marcoulides, 1998; Marsh et al., 2004;
Klein and Muthén, 2007; Moosbrugger et al., 2009; Brandt
et al., in press). These approaches include distribution-analytic
approaches (Klein and Moosbrugger, 2000; Klein and Muthén,
2007), product indicator approaches (e.g., Jöreskog and Yang,
1996; Marsh et al., 2004; Little et al., 2006; Moosbrugger
et al., 2009), Bayesian approaches (e.g., Lee et al., 2007;
Song and Lu, 2010), and method of moment approaches
(e.g., Wall and Amemiya, 2003; Mooijaart and Bentler, 2010;
Brandt et al., in press). The most often used methods are
the unconstrained product indicator approach (Marsh et al.,

2004) and the latent moderated structural equations approach
(LMS; Klein and Moosbrugger, 2000). For the analysis of non-
linear MSEM only these two approaches have already been
applied.

The unconstrained product indicator approach has been
developed for the estimation of latent interaction effects in
single-level SEM with robust properties when distributional
assumptions are violated. Products of indicator variables need
to be constructed to identify the latent product (interaction
or quadratic) terms. The parameters related to the measure-
ment model of the latent nonlinear term are freely estimated, an
advantage compared to the constrained approach which mod-
els these parameters as nonlinear functions of linear parameters
(Jöreskog and Yang, 1996). For parameter estimation a maximum
likelihood (ML) method developed for linear models is used
which assumes multivariate normality of the indicator variables,
an assumption violated in latent interaction models. Although
parameter estimators are asymptotically unbiased standard errors
are known to be generally underestimated (cf. Moosbrugger et al.,
2009). A model test that takes the nonnormality induced by
product indicators into account has not been developed yet,
but a test statistic for linear models based on the compari-
son the empirical and the model-implied covariance matrix is
available.

LMS is a distribution-analytic approach which does not
require the forming of product indicators. Instead, LMS exploits
the specific type of nonnormality implied by latent nonlinear
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effects for parameter estimation by using conditional distribu-
tions to represent the nonlinearity in the model (cf. Klein and
Moosbrugger, 2000; Kelava et al., 2011). The nonnormal density
function of the joint indicator vector is approximated by a finite
mixture distribution of multivariate normally distributed compo-
nents. For parameter estimation a ML method is used especially
tailored for nonlinear SEM. LMS parameter estimators are there-
fore unbiased and highly efficient. A model test is not yet available
as an adequate saturated model which in addition to the lin-
ear relations in the model also takes the nonlinearity induced
by product terms into account has not been defined yet. A χ2

difference test based on likelihood values is provided for testing
the significance of single model parameters. The power to detect
nonlinear effects is higher for LMS than for the unconstrained
approach.

Only recently researchers have started to investigate level-
specific nonlinear effects (i.e., interaction or quadratic effects) in
MSEM (Marsh et al., 2009; Leite and Zuo, 2011; Nagengast et al.,
2013). Using the unconstrained approach, Nagengast et al. (2013)
tested the expectancy-value model of motivation in a nonlinear
MSEM and found a significant latent interaction effect between
homework expectancy and homework value in predicting home-
work engagement at the within-group (student) level. Using
LMS, Marsh et al. (2009) extended the tests of the big-fish-little-
pond effect by investigating a latent quadratic effect of students’
individual achievement and a latent interaction between gender
and achievement on academic self-concept at the within-group
level. However, these nonlinear effects did not reach statistical
significance.

Up to now only a single simulation study for nonlinear MSEM
exists using the unconstrained approach (Leite and Zuo, 2011). In
this study, two types of mean centering, i.e., grand-mean center-
ing (cf. Marsh et al., 2009) and residual centering (cf. Little et al.,
2006), were applied for the analysis of a nonlinear MSEM with a
single latent interaction effect at the between-group level. Results
showed that both types of mean centering performed equally well
for detecting the interaction effect when product indicators were
highly reliable, while mean centering tended to perform slightly
better for less reliable product indicators.

These few studies already indicate that single nonlinear effects
can be detected using both approaches. However, researchers are
generally interested in the overall fit of the nonlinear MSEM and
not only in the significance of a single parameter. Unfortunately,
the model fit cannot be determined as no adequate test statistic
is provided by either of the nonlinear approaches. Researchers
therefore investigate the model fit of a linear MSEM using the χ2

test before including the product term in the model (cf. Nagengast
et al., 2013), although this practice is questionable because the
assumptions of multivariate normality and homoscedastic resid-
uals are violated for the linear model if there are nonlinear effects
in the population model.

Evaluating the fit of nonlinear MSEM therefore presents a
challenge. Although LMS does not provide any model test, the
unconstrained product indicator approach nevertheless provides
the likelihood ratio test developed for linear models. This test
is based on the comparison of the unstructured and the model-
implied covariance matrix with product terms included in the

matrices as if they were observed variables. As the product vari-
ables are always nonnormally distributed, the overall model test
does not follow a central χ2 distribution.

However, most statistical programs provide a robust test statis-
tic corrected for nonnormality in the data (cf. Bentler and
Dijkstra, 1985; Satorra and Bentler, 1994; Yuan and Bentler,
1998). Although the robust test statistic has originally been devel-
oped to correct the inflated test statistic due to unwanted non-
normality in the data, it may nevertheless correct the test statistic
sufficiently well due to nonnormality resulting from products of
normally distributed variables. In our simulation study the robust
test statistic will therefore be used as if the normality assumption
were just violated because of a multivariate nonnormality result-
ing from, e.g., floor or ceiling effects, rather than from the specific
type of nonnormality implied by latent interactions.

The main goal of this study is to investigate the performance
of the robust test statistic compared to the uncorrected ML test
statistic for nonlinear MSEM using the unconstrained approach.
In a Monte Carlo study we will investigate whether the robust
test statistics is able to reliably detect misspecification of a nonlin-
ear MSEM at the within-group level, at the between-group level,
and at both levels simultaneously. Cross-level interaction, which
occurs when the random slope of a within-group variable is pre-
dicted by a between-group level, will not be considered in this
study, because this type of nonlinear effect poses a particular chal-
lenge for model fit evaluation. As level-specific model evaluation
has been shown to be more informative for the detection at which
level the misfit occurs (cf. Ryu and West, 2009; Ryu, 2011), we will
also investigate the level-specific model fit.

NONLINEAR MULTILEVEL SEM
In the following, we will use the unconstrained product indicator
approach for the analysis of a nonlinear MSEM with interaction
effects at both levels. This approach needs the forming of product
variables as indicators of the latent interaction terms. The non-
linear MSEM contains a covariance structure at each level, and
components are needed in order to fit the model at the between
and the within level.

If data are collected from N individuals (i = 1,. . . , N) nested
in J groups (j = 1,. . . , J), the data vector yij of subject i in group
(cluster) j is decomposed into the sum of the group (cluster) aver-
age component yBj plus the individual deviations from the group
average yWij:

yij = yBj + yWij (1)

where the unobserved random components yBj and yWij are
assumed to be independent with expected values E(yBj) = μ and
E(yWij) = 0 (cf. Muthén, 1994; Yuan and Bentler, 2007).

The measurement models for the endogenous random com-
ponent vectors yBj and yWij are

yBj = μ + �
y
BηBj + εBj, yWij = �

y
WηWij + εWij (2)

where μ is a mean vector, �
y
B and �

y
W are the factor loading

matrices, ηB and ηW are the latent criterion (dependent) vari-
ables, and εB and εW denote the residual vectors at the between
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and the within level. Analogously, the data vector xij is also
decomposed into two unobserved random component vectors,
xBj and xW ij

xij = xBj + xWij (3)

where the vectors xBj and xWij are assumed to be independent
with expected values E(xBj) = ν and E(xWij) = 0.

The measurement models for the exogenous random compo-
nent vectors xBj and xWij are

xBj = ν + �x
BξBj + δBj, xWij = �x

WξWij + δWij (4)

where ν is a mean vector, �x
B and �x

W are the factor loading
matrices, ξB and ξW are the vectors of latent predictor and moder-
ator (independent) variables, and δB and δW denote the residual
vectors at the between and the within level.

The unconstrained approach requires the forming of prod-
uct indicators for defining the latent interaction terms. Although
several alternative strategies exist for the construction of these
indicators, most often used are the all-pair and the matched-
pair strategies. Kenny and Judd (1984) as well as Jöreskog and
Yang (1996) used the all-pair strategy for creating all possible
cross-products to define the latent interaction term, while using
the matched-pair strategy Marsh et al. (2004) showed that it is
sufficient to use each indicator of the latent predictor and the
moderator variable only once in forming the cross-products. As
cross-products can be created by using different combinations of
the indicators, Marsh et al. (2004) suggested matching the indi-
cators by reliability as the interaction effects were found to be
estimated with more precision when the indicators with the high-
est factor loadings were matched to form the cross-products. The
matched-pair strategy requires the number of indicators of the
latent predictor and the latent moderator variable to be the same
(for strategies using unequal numbers of indicators, cf. Jackman
et al., 2011 and Wu et al., 2013).

When the structural models include predictor variable ξB and
moderator variable ξB at the between level and predictor and
moderator variables ξ1W and ξ2W at the within level, the measure-
ment models for the latent interaction terms ξ1Bξ2B and ξ1Wξ2W
are

xkBjxlBj = τB + �xx
B ξ1Bj ξ2Bj + ςBj,

xkWijxlWij = τW + �xx
W ξ1Wij ξ2Wij + ςWij (5)

where τB and τW are mean vectors, �xx
B and �xx

W denote the fac-
tor loading matrices, xkBjxlBj are vectors of cross-products with
k = 1,. . . , K random components as indicators of ξ1B and l =
1,. . . , L (K = L) random components as indicator variables of ξ2B,
ξkWijxlWij are vectors of cross-products with k = 1, . . . , K ran-
dom components as indicator variables of ξ1W and l = 1,. . . , L
(K = L) random components as indicator variables of ξ2W , and
ςBj as well as ςWij denote the residual vector.

As nonlinear effects may occur at the between-group level, at
the within-group level, or at both levels simultaneously, the struc-
tural equations for a model with two latent level-specific predictor
variables (ξ1W , ξ2W ), two moderator variables (ξ1B, ξ2B), and a

latent interaction term at both levels are then given by

ηW = γ1Wξ1W + γ2Wξ2W + γ3Wξ1Wξ2W

+ζW (within-group level) (6)

ηB = α + γ1Bξ1B + γ2Bξ2B + γ3Bξ1Bξ2B +
ζB (between-group level) (7)

where α is the overall mean, γ1W , γ2W , and γ3W are effects at
the within level, γ1B, γ2B, and γ3B are effects at the between level,
and ζW and ζB are disturbance terms. In applied research, the
between-group level predictors do not have to match the within-
group level predictors, but in this study, we will only consider the
model in Equations (6) and (7) (see also Figure 1).

Based on the decomposition in Equations (1) and (3) and
under the assumption of identical covariance structures across
groups and uncorrelatedness of within-group and between-group
random components, the total covariance matrix �T of the
data vectors y and x is augmented by the cross-products, and
the augmented total covariance matrix �∗

T is then the sum of
the between-group covariance matrix �∗

B and the within-group
covariance matrix �∗

W (cf. Yuan and Bentler, 2007)

Cov(y, x) = �∗
T = �∗

B + �∗
W (8)

where the asterisk denotes matrices augmented by product vari-
ables. The nonlinear MSEM therefore contains a covariance
structure at each level augmented by matched-pairs of product
variables, and these level-specific covariance matrices are needed
for model fit evaluation.

MODEL FIT EVALUATION OF NONLINEAR MSEM
OVERALL MODEL FIT EVALUATION
For nonlinear MSEM, model fit evaluation is not as straightfor-
ward as it is for linear MSEM. For linear MSEM the standard
procedure (Ryu and West, 2009) is often used which is based on
the comparison of the unstructured covariance matrix with the
model-implied covariance matrix of the entire model comparable
to single-level SEM. An often used method for parameter esti-
mation is the ML method. The ML fit function leads to a test
statistic TML that is calculated as the product of the minimum of
the fitting function FML and (N − 1), where N equals sample size.
Under the assumptions of a correctly specified model, multivari-
ate normally distributed variables, and a sufficiently large sample
size, TML asymptotically follows a central χ2 distribution. A non-
significant test statistic TML indicates that the model fits the data.
The smaller the difference between both covariance matrices is
the better the model fits the data.

The main problem with model fit evaluation for nonlinear
MSEM is well-known from the evaluation of single-level non-
linear SEM: Model fit cannot be determined because a suitable
saturated model does not exist (Klein and Schermelleh-Engel,
2010). For nonlinear SEM as well as for nonlinear MSEM the tar-
get model is not nested within the saturated model that is repre-
sented by the unstructured covariance matrix. The unstructured
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FIGURE 1 | Path diagram of the nonlinear population MSEM with latent interaction effects at both levels. Product indicators were constructed using the
matched-pairs strategy.

covariance matrix is not appropriate for model fit evaluation of
nonlinear MSEM because covariances do not contain any infor-
mation about the nonlinearity (e.g., interaction effects) in the
data. For that reason, the assessment of overall model fit for a
nonlinear SEM is still an unresolved problem.

Nevertheless, nonlinearity is contained in the product vari-
ables that form the measurement models of the latent prod-
uct terms. The covariances between the product indicators
and the y-variables are therefore indicative of existing non-
linear effects. For model fit evaluation the covariance matrix
can therefore be augmented such that the new total covari-
ance matrix �∗

T comprises covariances between y-variables,
x-variables, and the matched-pairs of cross-products of the
x-variables.

For model fit evaluation, the likelihood ratio test of exact fit for
nonlinear MSEM can then be performed which tests the hypoth-
esis that both level-specific model-implied augmented covariance
matrices are equal to their population matrices (cf. Ryu and West,
2009):

�∗
B = �∗

B (θ) , �∗
W = �∗

W (θ) (9)

where θ is the parameter vector. For this omnibus test the ML test
statistic based on the augmented covariance matrices can then be

written as

T∗
ML = FML

[
�∗

W

(
θ̂
)

, �∗
B

(
θ̂
)]

− FML

[
�∗

W

(
θ̂s

)
, �∗

B

(
θ̂s

)]
(10)

where θ̂ denotes the vector of estimated parameters in the tar-
get model and θ̂s denotes the vector of estimated parameters in
the saturated model. Under the assumption of correctly specified
models at both levels, multivariate normality and a sufficiently
large number of groups, the test statistic follows a central χ2

distribution with dfT = dfB + dfW degrees of freedom.
Unfortunately, augmenting the empirical covariance matrix

by product variables implies a multivariate nonnormal distribu-
tion. The reason is that products even of normally distributed
variables are nonnormally distributed, i.e., highly kurtotic and
often skewed (cf. Craig, 1936; Aroian, 1944; Moosbrugger et al.,
1997; Klein and Moosbrugger, 2000). Therefore the assumption
of multivariate normality of the ML estimation method is always
violated when product terms are added to a structural equation
model.

Depending on the strategy used for the construction of prod-
uct terms, i.e., all-pair or matched-pair strategy, the amount of
nonnormality in the data set differs. For example, if each latent
predictor variable is measured by three indicators, for the all-
pair strategy nine product terms have to be created, while for the
matched-pair strategy only three product terms are needed. The
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all-pair strategy therefore produces a larger amount of nonnor-
mality than the matched-pair strategy. If the covariance matrices
are augmented by product variables due to the matched-pair
strategy the amount of nonlinearity is kept to a minimum.
Therefore the matched-pair strategy is used for the simulation
study.

For model fit evaluation of linear MSEM it is recommended
to use the rescaled test statistic of the ML estimator TMLR when
the normality assumption is violated (cf. Marsh et al., 2009; Hox,
2010; Kim et al., 2012). TMLR adjusts the unscaled test statistic
TML downward as a function of the multivariate kurtosis and may
therefore correct the nonnormality due to highly kurtotic prod-
uct variables sufficiently well. Robust test statistics are provided
by several computer programs. In Mplus, the robust test statistic
TMLR is provided which is asymptotically equivalent to the Yuan-
Bentler T2∗ test statistic (Muthén and Muthén, 1998–2012; see
also Satorra and Bentler, 1994). In the simulation study we will
use the rescaled test statistic based on the augmented covariance
matrix T∗

MLR and compare it to the uncorrected test statistic T∗
ML.

LEVEL-SPECIFIC MODEL FIT EVALUATION
The standard approach for multilevel models evaluates the model
fit for the entire model. However, this approach has some limi-
tations (cf. Yuan and Bentler, 2007; Ryu and West, 2009). If both
levels are evaluated simultaneously, a significant test statistic does
not provide any information on the level at which the model is
misspecified. Model misfit can exist at the between-group level,
the within-group level or at both levels simultaneously. As sam-
ple size is typically much larger at the within-level than at the
between-level, a much heavier weight is given to the within-group
model fit than to the between-group model fit for calculating the
overall fit statistic.

In order to deal with these problems two approaches exist.
Yuan and Bentler (2007) proposed to use a segregating approach
which fits the structural equation model at each level separately.
They showed that model misfit can be detected satisfactorily and
that the fit indices of single-level SEM can be extended to evaluat-
ing models at separate levels of a multilevel model. Ryu and West
(2009, based on Hox, 2002) suggested to estimate partially satu-
rated models. Model fit for one level is evaluated while the other
level is specified as a saturated model. This approach showed
quite similar results compared to Yuan and Bentler’s (2007) seg-
regating approach for the within-group model, but seemed to
perform better with regard to a slightly lower non-convergence
rate, a mean chi-square statistic closer to the nominal value, and a
smaller Type I error rate for estimating the correct between-group
model.

For evaluating the model fit of a nonlinear MSEM at the
within-group level using the partially saturated approach, the
within model is specified as the target model and the between
model is specified as saturated. The test statistic for the partially
saturated model is then

T∗
PS_W = FML

[
�∗

W

(
θ̂
)

, �∗
B

(
θ̂s

)]
− FML

[
�∗

W

(
θ̂s

)
, �∗

B

(
θ̂s

)]
.

(11)
Any misfit at the within-group level is due to the discrepancy
between �∗

W (θ̂) and �∗
W (θ̂s).

For evaluating the model fit of a nonlinear MSEM at the
between-group level, the between model is specified as the tar-
get model and the within model as saturated. The test statistic is
then obtained by

T∗
PS_B = FML

[
�∗

W

(
θ̂s

)
, �∗

B

(
θ̂
)]

− FML

[
�∗

W

(
θ̂s

)
, �∗

B

(
θ̂s

)]

(12)
Any misfit at the between-group level is due to the discrepancy
between �∗

B(θ̂) and �∗
B(θ̂s).

The degrees of freedom at both levels are calculated compa-
rable to MSEM with linear effects as the difference between the
number of parameters in the saturated model and the number
of parameters in the target model. In addition to evaluating the
complete model we will also evaluate partially saturated models
in the simulation study.

METHODS
We conducted a Monte Carlo study with the aim of investigat-
ing the performance of the robust test statistic TMLR compared
to TML for nonlinear MSEM. As these test statistics are often also
denoted as χ2 tests, we will use the terms χ2 test and robust χ2

test in the following. The model used for this study is a nonlin-
ear MSEM with interaction effects at both levels (see Figure 1, see
also Equations 6 and 7).

Using latent aggregation to account for sampling error
the manifest indicators of the latent variables were split into
their latent within and between components (see Figure 1).
Latent aggregation is the default option in Mplus for treating
within and between components as latent unobserved covariates
(Asparouhov and Muthén, 2007). Using the FSCORES option
in Mplus the estimated values of the latent components at the
between-group level, xBj, were obtained from random intercept
models. In the next step, the estimated values of the latent com-
ponents at the within-group level, xWij, were calculated by simple
subtraction. The vectors xWij and xBj can be regarded as latent
within and between components of the manifest indicator vari-
ables xij of the latent predictor variables. Finally, products of
the within and between components, x1W x4W , . . . , x3Bx6B (see
Figure 1), were calculated using the matched-pair strategy.

Data for four population models (M) with different numbers
of nonlinear effects were generated: (1) a model with linear effects
at the within-group level (W) and the between-group level (B),
but no nonlinear effects (0) at either levels (M_W0B0), (2) a
model with an interaction effect (I) only at the within-group level
(M_WIB0), (3) a model with an interaction effect only at the
between-group level (M_W0BI), and (4) a model with interaction
effects at both levels (M_WIBI).

Depending on the model, population parameters γ3W (within-
group level) and γ3B (between-group level) were set to either 0 or
to 0.20. The indicators each had a reliability of 0.80. This resulted
in factor loadings of 1.00 for the scaling variables and 0.894 for
all other indicators. Accordingly, error variances were 0.25 for
the scaling variables and 0.20 for all other indicators. The linear
effects γ1W , γ2W , and γ1B, γ2B were set to 0.30. The population
mean of ηB was set to zero by selecting the intercept α accord-
ingly. The variances of the latent dependent variables ηW and ηB

were set to 1.0, and the variances of the latent residuals ζW and ζB
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were selected accordingly with values between 0.82 (model with
no interaction effects) and 0.72 (model with interaction effects
and correlated predictors). Since population values at the within-
and between-group level were set equal, the intra class correlation
coefficient was 0.50 for all manifest variables. These parameter
values were held constant across all simulations.

The latent predictor variables at the between-group level and
the within-group level, ξ1B, ξ2B, and ξ1W , ξ2W , as well as all resid-
ual variables were generated as multivariate normally distributed
variables.

SIMULATION CONDITIONS
In the simulation study, three factors were varied: number
of groups (three levels: NG = 200, 500, 1000), correlation of
latent exogenous variables (two levels: φ21 = Corr(ξ1W , ξ2W ) =
Corr(ξ1B, ξ2B) = 0, 0.30), and the number of nonlinear effects
in the complete population model (four levels: no interaction
effects, within-group interaction effect, between-group interac-
tion effect, and interaction effects at both levels). The total
number of conditions was therefore 3 × 2 × 4 = 24. The num-
bers of groups were selected to ensure convergence. Prestudies,
not reported here, indicated estimation problems using less than
200 groups. The number of subjects (NS) in each group was set
to 30 to achieve a balanced design. Fixing the sample size of each
group at N = 30 yielded total sample sizes of 6000, 15,000, and
30,000 subjects, respectively. The value for the latent predictor
covariance φ21 was either 0 or 0.30. The amount of explained vari-
ance of the endogenous latent variables varied for the population
models between 18 and 28%.

For each condition 500 datasets were generated using the
statistical software R (R Core Team, 2013), and each dataset
was analyzed using the program Mplus, version 7 (Muthén and
Muthén, 1998–2012).

ANALYSIS MODELS
Using the ML and the MLR estimation method, overall model
fit was evaluated for complete multilevel models and for partially
saturated models (see Table 1). Model fit of partially saturated
models was evaluated level-specific by saturating one level and
analyzing the other level, while the model fit for both levels was
estimated by simultaneously analyzing complete models not sat-
urated at any level. Model misspecification at one level or at both
levels was either established by fixing the (existing) interaction
effect to zero while keeping the latent interaction term in the
structural equation, or by including the (nonexistent) interaction
effect in the model.

As the misspecified models and the correctly specified mod-
els are nested, it was also possible to conduct χ2 difference tests
for the evaluation of single nonlinear effects. While the overall
χ2 statistic tests all restrictions in the model simultaneously, the
χ2 difference statistic only tests the significance of single parame-
ters. The model difference test is generally preferred to the t-test,
as standard errors of the t-test are known to be biased when
the assumption of multivariate normality is violated. In order to
determine the power of the χ2 difference tests as well as their
Type I error rates, the unscaled χ2 difference value and not the
scaled χ2 difference value proposed by Satorra and Bentler (2001)

Table 1 | Overview over analysis models used for overall model fit

evaluation by means of χ2 tests and for evaluation of single

interaction effects by means of χ2 difference tests for complete

MSEM models and for partially saturated models (PS) at the

within-group (Ws) or at the between-group (Bs) level.

Population model Type I error Power

χ2 TEST

M_WIBI WIBI W0BI

PS_WIBs WIB0

PS_WsBI PS_W0Bs

PS_WsB0

χ2 DIFFERENCE TEST

M_W0B0 W0B0 vs. WIBI

PS_W0Bs vs. PS_WIBs

PS_WsB0 vs. PS_WsBI

M_WIB0 W0B0 vs. WIB0

PS_W0Bs vs. PS_WIBs

M_W0BI W0B0 vs. W0BI

PS_WsB0 vs. PS_WsBI

Population models are denoted by M, analysis models are denoted by their

respective within- or between-levels (W, B), I indicates an interaction effect at the

within- or between-group level (WI, BI), 0 indicates a missing interaction effect

(W0, B0), PS are partially saturated analysis models at the within- or between-

level (Ws, Bs). Misspecified models with either an interaction effect added to a

linear model or an existing interaction effect fixed to zero are in italics.

was used for nested model comparisons as suggested by Gerhard
et al. (in press) and Cham et al. (2012) for nonlinear SEM. Nested
model difference tests were performed for complete as well as for
partially saturated models (cf. Table 1).

In the following, the analysis models are denoted comparable
to the population models (see Table 1) but without the “M” at
the beginning of the name: “W” and “B” again indicate models
at the within- and the between-group level, “I” indicates that an
interaction effect is present while “0” indicates that the nonlinear
effect is fixed to zero.

There were four different types of analysis models: (1) models
estimating linear effects at both levels while the interaction effects
were fixed to zero (W0B0); (2) models estimating an interaction
effect at the within-group level but no interaction effect at the
between-group level (WIB0); (3) models estimating an interac-
tion effect at the between-group level but not at the within-group
level (W0BI), and (4) models estimating interaction effects at
both levels (WIBI). Additionally, there were two types of partially
saturated analysis models: Either the between-group level was
saturated (Bs) while model fit at the within-group level was eval-
uated (PS_W0Bs, PS_WIBs), or the within-group level was sat-
urated (Ws) while model fit at the between-group level was
evaluated (PS_WsB0, PS_WsBI).

EVALUATION OF THE MODEL TESTS
For all types of analysis models the means of the standard
χ2 values and the means of the robust χ2 values for estimat-
ing overall model fit were obtained from 500 replications for
each condition, and the rejection rates at the nominal level of
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α = 0.05 were computed. The rejection rates for linear mod-
els with interaction effects additionally included in the model
can be interpreted as the Type I error of the χ2 test, the rejec-
tion rates for misspecified models with interaction effects fixed
to zero can be interpreted as the power of the χ2 test to
detect misspecification. Analogously, means of χ2 difference val-
ues, Type I error rates, and power for χ2 difference tests were
obtained.

RESULTS
In the following, we will only report a representative selection
of the different analyses (see Table 1) because the results not
reported here lead to similar conclusions. No non-convergent
or inadmissible solutions (e.g., negative variance estimates) were
encountered across all simulated data sets. First, mean χ2 values
and Type I error rates for the overall model test by comparing
the ML and MLR estimators are given in Table 2. As MLR out-
performed ML in all conditions, only MLR results are reported
in the subsequent Tables. Power rates for misspecified models
at the within-group level and at the between-group level are
given in Table 3. Second, results of the χ2 difference tests include
Type I error rates (Table 4), power rates at the within-group level
(Table 5), and power rates at the between-group level (Table 6).

OVERALL MODEL FIT
MLR mean χ2 values and Type I error rates for the popula-
tion model M_WIBI are given in Table 2. For the ML estimator
Type I error rates were inflated across all conditions, indepen-
dent of the level being analyzed. The difference between observed
mean χ2 values and degrees of freedom was higher for the
complete model (WIBI) than for the partially saturated models
(PS_WIBs, PS_WsBI). Type I error rates using the MLR estimator
for the population model with interaction effects at both levels
(M_WIBI) were close to the nominal α level with values ranging
between 2.6 and 7.8%. Results also indicated that the MLR esti-
mator showed a slightly more conservative behavior for higher

numbers of groups (NG = 500, 1000) when the models partially
saturated at the within-group level were analyzed.

MLR mean χ2 values and power rates for the population
model M_WIBI are listed in Table 3. The results show that model
misspecifications at the within-group level could be reliably
detected. When the within-group interaction effect in the anal-
ysis models was fixed to zero, high χ2 values indicated significant
model misfit, and the rejection rate was 100% across conditions.
Mean χ2 values ranged from 278 to 1117 for the analyses of the
complete model with misspecification at the within-group level
(W0BI) with higher values in conditions with a larger number of
groups. The χ2/df -ratio was larger for partially saturated models
(PS_W0Bs) than for the unsaturated models.

Model misspecification at the between-group level with the
interaction effect fixed to zero was less reliably detected (see
Table 3). The rejection rates ranged from 12 to 58% for the com-
plete model (WIB0) and from 13 to 77% for the partially satu-
rated model (PS_WsB0). Power rates were in all conditions higher
in the partially saturated models than in the complete models
and increased in conditions with higher numbers of groups and
models, especially for models with correlated predictor variables.

For conditions with correlated predictor variables mean χ2

values and power rates were always larger than for conditions
with uncorrelated predictors. However, these differences were
relatively small.

χ2 DIFFERENCE TESTS
In order to investigate the behavior of the model difference test
for detecting single interaction effects at one level or at both lev-
els simultaneously, several model comparisons were performed.
MLR mean χ2 difference values and Type I error rates for the
comparison of the correctly specified model without interaction
effects at both levels (M_W0B0) with misspecified models which
additionally included an interaction effect either at both levels
simultaneously, or at the within-group level or the between-group
level only, are listed in Table 4. The results show that Type I error

Table 2 | ML and MLR mean χ2 values of overall model fit and Type I error rates for the population model with interaction effects at both levels

(M_WIBI) analyzed with the correct complete model (WIBI), the correct partially saturated within model (PS_WIBs), and the correct partially

saturated between model (PS_WsBI) under conditions of varying numbers of groups (NG) and uncorrelated predictor variables (�21 = 0).

Population model: M_WIBI

Analysis models

WIBI PS_WIBs PS_WsBI

NG χ̄2 df Type I error (%) χ̄2 df Type I error (%) χ̄2 df Type I error (%)

ML

200 113.59 100 25.6 56.74 50 18.2 56.87 50 17.4

500 113.27 100 26.6 56.63 50 17.2 56.65 50 18.2

1000 111.65 100 20.4 55.75 50 15.0 55.89 50 15.6

MLR

200 99.65 100 6.0 50.72 50 7.8 49.03 50 5.6

500 97.30 100 3.6 50.48 50 7.2 46.97 50 3.4

1000 95.20 100 2.8 49.65 50 4.2 45.75 50 2.6

χ̄2 is the mean of the Monte Carlo χ2 values.
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Table 3 | MLR mean χ2 values of overall model fit and power rates for the population model with interaction effects at both levels (M_WIBI)

analyzed with complete models misspecified at the within level (W0BI) or at the between level (WIB0), and analyzed with partially saturated

models with misspecification at the within level (PS_W0Bs) or the between level (PS_WsB0) under conditions of varying numbers of groups

(NG) and correlation of predictor variables (�21).

Population model: M_WIBI

MISSPECIFIED ANALYSIS MODELS AT THE WITHIN-GROUP LEVEL

W0BI PS_W0Bs

NG χ̄2 df Power (%) χ̄2 df Power (%)

�21 = 0

200 278.53 101 100 233.32 51 100

500 534.43 101 100 504.91 51 100

1000 966.16 101 100 960.51 51 100

�21 = 0.30

200 314.09 101 100 268.44 51 100

500 613.68 101 100 588.01 51 100

1000 1117.46 101 100 1118.05 51 100

MISSPECIFIED ANALYSIS MODELS AT THE BETWEEN-GROUP LEVEL

WIB0 PS_WsB0

NG χ̄2 df Power (%) χ̄2 df Power (%)

�21 = 0

200 106.69 101 12.0 55.98 51 13.4

500 112.66 101 21.6 61.87 51 28.8

1000 125.29 101 49.4 74.72 51 66.6

�21 = 0.30

200 108.39 101 13.2 58.03 51 16.0

500 113.69 101 20.8 63.68 51 30.4

1000 130.93 101 57.8 80.45 51 77.0

χ̄2 is the mean of the Monte Carlo χ2 values. Misspecified models with either an interaction effect added to a linear model or an existing interaction effect fixed to

zero are in italics.

Table 4 | MLR mean χ2 difference values (�χ̄2) and Type I error rates for comparing correctly specified complete or partially saturated models

without nonlinear effects (W0B0, W0Bs, WsB0) with misspecified models with an added interaction effect at both levels, at the within-group

level (WI), or at the between-group level (BI) under conditions of varying numbers of groups (NG) and varying correlation of predictor

variables (�21).

Population model: M_W0B0

W0B0 vs. WIBI PS_W0Bs vs. PS_WIBs PS_WsB0 vs. PS_WsBI

NG �χ̄2 �df Type I error (%) �χ̄2 �df Type I error (%) �χ̄2 �df Type I error (%)

�21 = 0

200 2.05 2 3.4 1.00 1 3.8 1.05 1 3.6

500 1.94 2 3.4 0.93 1 3.4 1.01 1 3.4

1000 2.07 2 4.6 1.05 1 4.4 1.02 1 3.6

�21 = 0.30

200 2.23 2 5.4 1.05 1 5.0 1.18 1 5.6

500 2.22 2 6.0 1.11 1 6.0 1.11 1 3.8

1000 1.99 2 3.6 1.07 1 4.6 0.91 1 3.2

�χ̄2 is the mean of the Monte Carlo χ2 difference values. Misspecified models with either an interaction effect added to a linear model or an existing interaction

effect fixed to zero are in italics.
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Table 5 | MLR mean χ2 difference values (�χ̄2) and power rates for comparing misspecified complete or partially saturated models with a fixed

interaction effect at the within-group level (W0) with the correct models (WIB0, PS_WIBs) without nonlinear effects at the between-group

level under conditions of varying numbers of groups (NG) and varying correlation of predictor variables (�21).

Population model: M_WIB0

Misspecified Analysis Models at the Within-Group Level

W0B0 vs. WIB0 PS_W0Bs vs. PS_WIBs

NG �χ̄2 �df Power (%) �χ̄2 �df Power (%)

�21 = 0

200 180.22 1 100 183.61 1 100

500 439.28 1 100 455.09 1 100

1000 872.00 1 100 909.39 1 100

�21 = 0.30

200 212.27 1 100 215.98 1 100

500 518.49 1 100 536.94 1 100

1000 1026.03 1 100 1070.55 1 100

�χ̄2 is the mean of the Monte Carlo χ2 difference values. Misspecified models with either an interaction effect added to a linear model or an existing interaction

effect fixed to zero are in italics.

Table 6 | χ2 difference mean values (�χ̄2) and power rates for comparing misspecified complete or partially saturated models with a fixed

interaction effect at the between-group level (B0) with the correct models (WIB0, PS_WsBI) without nonlinear effects at the within-group level

under conditions of varying numbers of groups (NG) and varying correlation of predictor variables (�21).

Population model: M_W0BI

Misspecified Analysis Models at the Between-Group Level

W0B0 vs. W0BI PS_WsB0 vs. PS_WsBI

NG �χ̄2 �df Power (%) �χ̄2 �df Power (%)

�21 = 0

200 7.04 1 68.0 6.93 1 68.0

500 15.11 1 96.4 14.63 1 96.0

1000 29.48 1 100 28.35 1 100

�21 = 0.30

200 7.95 1 75.4 7.86 1 74.6

500 18.05 1 98.6 17.51 1 98.6

1000 35.36 1 100 34.04 1 100

�χ̄2 is the mean of the Monte Carlo χ2 difference values. Misspecified models with either an interaction effect added to a linear model or an existing interaction

effect fixed to zero are in italics.

rates were close to the nominal α level and tended to be a bit
conservative in conditions with uncorrelated predictor variables.
Results of partially saturated models did not deviate from the
results of complete models, and Type I error rates did not depend
on the number of groups.

In Tables 5 and 6, MLR mean χ2 difference values and
power rates for population models M_WIB0 and M_W0BI
are listed. The results indicate that mean χ2 difference val-
ues were substantially higher for models with within-group
misspecification than for models with between-group misspec-
ification. Additionally, these values were considerably larger
for increasing numbers of groups but only moderately larger
for correlated predictor variables. Power of the χ2 differ-
ence test to detect within-group level misspecifications was

100% in all conditions (Table 5), while power to detect
between-group level misspecifications ranged from 68 to 100%
(Table 6).

DISCUSSION
In this study we investigated the overall model fit of MLR com-
pared to ML for nonlinear MSEM with interaction effects at a
single level or at both levels simultaneously. We also investigated
χ2 difference tests for detecting single interaction effects. The core
findings are:

(1) MLR corrected the overall test statistic sufficiently well, while
ML always yielded inflated χ2 values. Therefore only MLR
results were reported.
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(2) For properly specified models, Type-I error rates of the χ2

test were close to their nominal α-levels.
(3) Misspecification at the within-group level was reliably

detected using the χ2 test, while the power to detect misspec-
ification at the between-group level was fairly low.

(4) The MLR χ2 difference test performed generally fairly well
with regard to Type I error rates and power although for the
smallest number of groups (N = 200) power of this test was
low when models at the between-group level were analyzed
compared to the within-group level.

(5) Correlated predictors had a negligible effect such that the
power to detect model misspecification slightly increased for
both types of χ2 tests compared to models with uncorrelated
predictors.

Although an adequate overall model test for nonlinear MSEM
is not yet available, the likelihood ratio test based on covari-
ance matrices augmented by product terms performed quite well.
Using the robust test statistic TMLR of the Mplus program, non-
normality resulting from nonlinearity in the model was corrected
sufficiently well while TML, which assumes multivariate normal-
ity, should not be used for model fit evaluation of nonlinear
MSEM.

Compared to previous research (Yuan and Bentler, 2007; Ryu
and West, 2009) the partially saturated approach was more infor-
mative than the standard approach. When model fit evaluation of
the entire model indicated a poor fitting model, only level-specific
evaluation was able to identify the specific level at which the mis-
fit occurred. Power to detect misfit at the between-group level was
quite low comparable to previous research (Ryu and West, 2009).
Group sizes of NG = 200 did not seem to be sufficiently large to
detect model misfit reliably, and even NG = 1000 resulted in low
power for the standard approach (58%) and a power of 77% for
the partially saturated approach for correlated latent exogenous
variables. Power to detect misfit at the within-group level was
always larger than power at the between-group level. This result
could be expected because the total sample size was used for the
analyses at the within-group level resulting in sample sizes up to
30,000 subjects.

Misspecified models were specified by fixing the nonlinear
effects to zero while keeping the product indicators in the model.
This type of misspecification is necessary for testing the signifi-
cance of single nonlinear effects using a χ2 difference test, a test
often used because it is generally more reliable than the t-test. In
our simulation study Type I error rates of the overall χ2 test as
well as the χ2 difference test were close to the nominal α level (see
also Gerhard et al., in press). Power to detect misspecification of a
single nonlinear effect was again larger at the within-group level
than at the between-group level for both χ2 tests mirroring results
of the partially saturated approach for ML-CFA (cf. Ryu and West,
2009).

As with all simulation studies there are some limitations which
we would like to note. First, this study only considered a bal-
anced design with within-group sample sizes held constant across
groups. Additionally, the numbers of groups were large and the
model structure and parameter values were identical at both lev-
els. Further studies should investigate other designs which may

be more appropriate for empirical research. Second, for the con-
struction of the product indicators the matched-pair strategy was
applied (Marsh et al., 2004) which uses each indicator of the
latent exogenous constructs only once in specifying the cross-
products. Alternatively, the all-pair strategy originally introduced
by Kenny and Judd (1984) could have been applied which uses
all possible cross-products. Using all possible products of indica-
tor variables may be especially useful when the reliability of the
indicator variables differs or when the number of indicators of
the latent predictor and moderator variable are unequal. In our
example this would have resulted in nine instead of in three prod-
uct indicators measuring each latent interaction term. Whether
this amount of nonnormality introduced by the all-pair approach
could be also corrected by MLR remains to be investigated in
a later study. Third, the indicator variables were generated with
zero means. Because we only used balanced designs, the grand
mean was identical to the mean of the clusters and therefore
multicollinearity could be reduced at both levels. As in applied
research balanced designs are not to be expected, more research
is needed in order to investigate the consequences of using dif-
ferent methods for centering variables in the context of nonlinear
models.

In conclusion, the robust ML estimator performed quite
well in reliably detecting misspecification of nonlinear MSEM.
Although the results of our simulation study indicate that MLR
corrects the test statistic sufficiently well especially at the within-
group level when the unconstrained product indicator approach
is used, further research is necessary in order to develop a model
test which takes the specific type of nonnormality implied by
latent nonlinear effects explicitly into account.
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