
EDITORIAL
published: 04 March 2014

doi: 10.3389/fpsyg.2014.00187

Connectionism coming of age: legacy and future
challenges
Julien Mayor1*, Pablo Gomez2, Franklin Chang3 and Gary Lupyan4

1 Department of Psychology and Educational Sciences, University of Geneva, Genève, Switzerland
2 Department of Psychology, De Paul University, Chicago, IL, USA
3 Department of Psychological Sciences, University of Liverpool, Liverpool, UK
4 Department of Psychology, University of Wisconsin, Madison, WI, USA
*Correspondence: julien.mayor@unige.ch

Edited by:

Manuel Carreiras, Basque Center on Cognition, Brain and Language, Spain

Keywords: recurrent networks, interactive processing, probabilistic cognition, computational modeling, language acquisition, language processing,

speech perception, computational linguistics

ABOUT 50 YEARS AFTER THE INTRODUCTION OF THE
PERCEPTRON AND SOME 25 YEARS AFTER THE
INTRODUCTION OF PDP MODELS, WHERE ARE WE NOW?
In 1986, Rumelhart and McClelland took the cognitive science
community by storm with the Parallel Distributed Processing
(PDP) framework. Rather than abstracting from the biologi-
cal substrate as was sought by the “information processing”
paradigms of the 1970s, connectionism, as it has come to be
called, embraced it. An immediate appeal of the connectionist
agenda was its aim: to construct at the algorithmic level models
of cognition that were compatible with their implementation in
the biological substrate.

The PDP group argued that this could be achieved by turn-
ing to networks of artificial neurons, originally introduced by
McCulloch and Pitts (1943) which the group showed were able to
provide insights into a wide range of psychological domains, from
categorization, to perception, to memory, to language. This work
built on an earlier formulation by Rosenblatt (1958) who intro-
duced a simple type of feed-forward neural network called the
perceptron. Perceptrons were limited to solving simple linearly-
separable problems and although networks composed of percep-
trons were known to be able to compute any Boolean function
(including XOR, Minsky and Papert, 1969), there was no effective
way of training such networks. In 1986, Rumelhart, Hinton and
Williams introduced the back-propagation algorithm, providing
an effective way of training multi-layered neural networks, which
could easily learn non linearly-separable functions. In addition to
providing the field with an effective learning algorithm, the PDP
group published a series of demonstrations of how long standing
questions in cognitive psychology could be elegantly solved using
simple learning rules, distributed representations, and interactive
processing.

To take a classic example, consider the word-superiority effect,
in which people can detect letters within a word faster than indi-
vidual letters or letters within a non-word (Reicher, 1969). This
result is difficult to square with serial “information-processing”
theories of cognition that were dominant at the time (how could
someone recognize “R” before “FRIEND” if recognizing the word
required recognizing the letters?). Accounting for such findings
demanded a framework which could naturally accommodate
interactive processes within a bidirectional flow of information.

The so-called “Interactive-activation model” (McClelland and
Rumelhart, 1981) provided just such a framework.

The connectionist paradigm was not without its critics. The
principal critiques can be divided into three classes. First, some
neuroscientists (Crick, 1989) questioned the biological plausibil-
ity of backpropagation, when they failed to observe experimen-
tally complex and differentiated back-propagating signals that are
required to learn in multi-layered neural networks. A second cri-
tique concerned stability-plasticity of the learned representations
in these models. Some phenomena require the ability to rapidly
learn new information, but sometimes newly learned knowledge
overwrites previously learned information (catastrophic interfer-
ence; McCloskey and Cohen, 1989). Third, representing spatial
and temporal invariance—something that apparently came eas-
ily to people—was difficult for models, e.g., recognizing that the
letter “T” in “TOM” was the “same” as the “T” in “POT.” This
invariance problem was typically solved by multiplying a large
number of hard-wired units that were space- or time-locked (see
e.g., McClelland and Elman, 1986). Finally, critics pointed out
that the networks were incapable of learning true rules on which
a number of human behavioral, namely language-learning was
thought to depend (e.g., Marcus, 2003; cf. Fodor and Pylyshyn,
1988; Seidenberg, 1999).

The connectionist approach has embraced these challenges:
Although some connectionist models continue to rely on back-
propagation, others have moved to more biologically realistic
learning rules (Giese and Poggio, 2003; Masquelier and Thorpe,
2007). Far from being a critical flaw of connectionism, the phe-
nomenon of catastrophic interference (Mermillod et al., 2013)
proved to be a feature that led to the development of complemen-
tary learning systems (McClelland et al., 1995).

Progress has also been made on the invariance problem. For
example, within the speech domain representing the similar-
ity between similar speech sounds regardless of their location
within a word has been addressed in the past by Grossberg
and Myers (2000) and Norris (1994) and this issue presents
a new more streamlined and computationally efficient model
(Hannagan et al., 2013). An especially powerful approach to
solving the location invariance problem in the visual domain
is presented by Di Bono and Zorzi (2013), also in this
issue.
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A key challenge for connectionism is to explain the learning of
abstract structural representations. The use of recurrent networks
(Elman, 1990; Dominey, 2013) and self-organizing maps, has
captured important aspects of language learning (e.g., Mayor and
Plunkett, 2010; Li and Zhao, 2013), while work on deep learning
(Hinton and Salakhutdinov, 2006) has made it possible to model
the emergence of structured and abstract representations within
multi-layered hierarchical networks (Zorzi et al., 2013). The work
on verbal analogies by Kollias and McClelland (2013) continues
to address the challenges of modeling more abstract representa-
tions, but truly understanding how neural architectures give rise
to symbolic cognition is a gap that remains. Although learning
and representing formal language rules may not be completely
outside of the abilities of neural networks (e.g., Chang, 2009),
it seems clear that understanding human cognition requires
understanding how we solve these symbolic problems (Clark
and Karmiloff-Smith, 1993; Lupyan, 2013). Future generations of
connectionist modelers may wish to fill this gap and in so doing
provide a fuller picture of how neural networks give rise to intel-
ligence of the sort enables us to ponder the very workings of our
cognition.

WHAT’S NEXT?
The articles assembled in this issue demonstrate the range of
topics currently addressed by connectionist models: from word
learning in atypical populations (Sims et al., 2013), to sen-
tence processing (Hsiao and MacDonald, 2013), to multimodal
processing (Bergmann et al., 2013), to interactions between lan-
guage and vision (Smith et al., 2013). We expect this diversity
to continue to increase. We also hope to see greater increas-
ing integration between connectionism and a computationally
similar but philosophically distinct models employing Bayesian
inference. Although the computational similarities between these
two approaches have been previously recognized (McClelland,
1998), detailed tutorials like the one contained in this vol-
ume (McClelland, 2013) provide new clarity on the relationship
between these two approaches.

The influence of theoretical constructs introduced by the con-
nectionist approach have become part and parcel of cognitive
science (although they are now often not accompanied by the
label “connectionism” or “PDP”). The distributed representations
that challenge classical symbolic models and which emerge natu-
rally in neural networks are now no longer theoretical constructs
and can be directly observed in the brain (Kriegeskorte et al.,
2008; Chang et al., 2010). Evidence for rapid warping of these
representations by task demands (of the sort described by e.g.,
McClelland and Rogers, 2003) is also being confirmed through
modern neuroimaging (e.g., Çukur et al., 2013) 1. Many con-
nectionist models have stressed prediction as a way of learning
structure and statistical inputs (e.g., Dell and Chang, 2014). This
too finds wide support in contemporary neuroscience (Friston,

1It is useful to note that the methods that make these analyses possible,
most notably multi-voxel pattern analyses (MVPA, e.g., Norman et al., 2006)
and “representational dissimilarity matrices” (Kriegeskorte et al., 2008) are
adaptations of methods developed for analyzing dynamics of artificial neural
networks.

2010) leading some to even argue that prediction is the uni-
fying feature of all cognitive and perceptual processes (Clark,
2013, for review). Interactive processing—another core feature of
the connectionist paradigm—has become similarly foundational.
The interplay between bottom-up and top-down information is
now recognized to be critical from everything as simple as simply
detecting the presence of a visual stimulus, to consciousness itself
(e.g., Dehaene et al., 2003; Gilbert and Sigman, 2007; Lupyan and
Ward, 2013).

Finally, contemporary neural networks, most notably those
utilizing so called deep-learning, have found success in solving
practical problems such as image and speech recognition, and
natural language processing. For example, algorithms based on
the deep-learning approach are now used by Google to extract
high-level features from images with, in some cases, above-
human performance (Ciresan et al., 2011; Le et al., 2011).
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