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Maximum likelihood (ML) estimation of categorical multitrait-multimethod (MTMM) data
is challenging because the likelihood involves high-dimensional integrals over the crossed
method and trait factors, with no known closed-form solution. The purpose of the study is
to introduce three newly developed ML methods that are eligible for estimating MTMM
models with categorical responses: Variational maximization-maximization (e.g., Rijmen
and Jeon, 2013), alternating imputation posterior (e.g., Cho and Rabe-Hesketh, 2011),
and Monte Carlo local likelihood (e.g., Jeon et al., under revision). Each method is briefly
described and its applicability for MTMM models with categorical data are discussed. An
illustration is provided using an empirical example.
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1. INTRODUCTION
The multitrait-multimethod (MTMM) design is an impor-
tant methodological tool for investigating the construct validity
(convergent and discrimination validity) of psychological mea-
sures. The advantages of applying confirmatory factor analysis
(CFA), or more broadly, structural equation models (SEM) has
been widely recognized for the analysis of MTMM data (e.g,.
Widaman, 1985; Marsh and Hocevar, 1988; Marsh, 1989; Marsh
and Grayson, 1995; Dumenci, 2000; Eid et al., 2006). For instance,
SEM allows measurement error to be separated from method-
specific effects and tests the nature of trait and method influences
(Nussbeck et al., 2006).

Traditional applications of SEM to MTMM data are based
on continuous outcome variables which was required by tradi-
tional SEM software (e.g., Joreskog and Sorbom, 1984). However,
psychological inventories often employ categorical response cat-
egories based on a Likert scale. Researchers usually aggregate
the item-level categorical responses to create (sub)test-level con-
tinuous outcomes. However, this leads to an undesirable loss
of information at the item level that could be useful for test
construction. For example, researchers could be interested in
choosing only those items with high convergent and discriminant
validity coefficients in establishing a test (Nussbeck et al., 2006).

Typical SEM MTMM models include multiple traits and
methods that are treated as latent variables (or factors, random
effects). Multiple traits are needed in order to estimate the dis-
criminant validity of represented constructs and the degree to
which observed scores measure the traits under consideration;
multiple methods are needed to evaluate the impact of differ-
ent methods on the observed scores, that is, to which degree
observed scores are influenced by the way they are measured (i.e.,
rater biases or biases due to the use of different scales for the
same constructs). Trait and method factors are cross-classified
(or crossed) with each other in the sense that a set of differ-
ent traits are measured by the same set of methods. The cross

structure creates major challenges in maximum likelihood (ML)
estimation. In particular, with categorical responses, the ML com-
putation involves numerical integration over high dimensional
intractable integrals over the crossed latent variables. For exam-
ple, when integrals over method and trait factors are evaluated
using Gaussian quadrature (e.g., Bock and Aitkin, 1981), the
number of evaluation points increases exponentially with the
total number of latent variables (i.e., method + trait factors).
Even though the number of quadrature points can be reduced
with adaptive quadrature (e.g., Pinheiro and Bates, 1995; Rabe-
Hesketh et al., 2005), the total number of evaluation points still
increases exponentially with the number of latent variables. In
addition, adaptive quadrature involves the computation of the
posterior mode and curvature at the mode of the latent distribu-
tion for each response pattern, whose complexity also increases
with the number of latent variables (Rijmen, 2009).

Limited information techniques have been adopted to esti-
mate SEM models for categorical data (e.g., Browne, 1984; Bollen,
1989; Satorra, 1989, 1992; Joreskog, 1994; Muthen et al., unpub-
lished manuscript). Unlike full ML estimation methods, limited
information ML methods do not take into account the com-
plete joint contingency table of all items, but only marginal tables
up to the fourth order (Mislevy, 1986). Weighted least squares
estimation is then carried out, which is reasonably fast even for
high-dimensional models. However, the number of elements in
the optimal weight matrix, which has to be invertible, grows with
the fourth power of the number of indicators (Mislevy, 1986);
accordingly, SEM MTMM models with multiple indicators may
require a huge sample size, which may be impractical in most
psychological applications (Rijmen, 2009).

Alternatively, Muthen et al. (unpublished manuscript) pro-
posed a robust weighted least squares method (WLSMV) where
the optimal weight matrix is replaced by a diagonal matrix.
The performance of WLSMV has been evaluated in the con-
text of simple structure CFA models (Yu, 2002; Beauducel
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and Herzberg, 2006) and of a longitudinal population model
(Muthen et al., unpublished manuscript). Recently, Nussbeck
et al. (2006) performed a simulation study to evaluate the perfor-
mance of WLSMV on CT-C(M-1) models for ordinal responses
and showed that WLSMV works quite well with adequate sample
sizes. Still, the quality of WLSMV and its data requirements have
not been thoroughly established in a variety of situations and for
more complex SEM MTMM models.

In principle, estimation methods that are developed for item
response theory (IRT) models can be applied to MTMM models
for categorical data since many SEM models can be parameterized
as IRT models (e.g., Muthen, 1978; Takane and de Leeuw, 1987).
For ML estimation of complex IRT models, Monte Carlo (MC)
methods have been widely utilized to approximate the likelihood
(or the posterior), e.g., single sample methods such as stochas-
tic EM (e.g., Ip, 1994) or metropolis-Hastings Robbins-Monro
(MH-RM) (e.g., Cai, 2010), and multiple sample methods such
as MCEM (e.g., McCulloch, 1997). Single sample methods are fast
but highly depend on initial values of model parameters whereas
multiple sample methods can be computationally slow for com-
plex problems. In addition, a modified expectation-maximization
(EM) algorithm has been developed which uses a sequence of
integrations over subsets of latent variables in the E-step to esti-
mate highly complex IRT models (Rijmen et al., 2008; Rijmen,
2009; Jeon et al., 2013b). However, its computational complexity
remains high for MTMM types of models because the latent-
space cannot be decomposed into low-dimensional sub-spaces
due to the crossed structure of the latent variables (for details,
see Rijmen and Jeon, 2013).

This paper introduces three recent developments in ML esti-
mation of IRT models with crossed random effects structures:
(1) Variational maximization-maximization (MM; e.g., Rijmen
and Jeon, 2013), (2) alternating imputation posterior (AIP; e.g.,
Cho and Rabe-Hesketh, 2011), and (3) Monte Carlo local like-
lihood (MCLL; e.g., Jeon et al., under revision). We provide
a brief review of each method and discuss the applicability
of each method for estimating MTMM models for categorical
indicators.

The rest of this paper is organized as follows: Section 2
describes a SEM MTMM model that is considered in this paper.
Section 3 provides a description of the three estimation meth-
ods. In Section 4, an empirical illustration will be provided using
the MCLL method as an example. This paper ends with some
concluding remarks in Section 5.

2. MTMM MODEL
Typical SEM MTMM models contain multiple traits (e.g., depres-
sion and anxiety) measured by multiple methods (e.g., self,
teacher, and peer ratings). In statistical terms, traits and meth-
ods are two latent variables (or factors) that are crossed with each
other. Therefore, the models can be applied to cases where mul-
tiple latent variables of two kinds are present in a cross-classified
factorial design.

As an illustration, we consider a SEM MTMM model with cor-
related trait factors and uncorrelated method factors (CT-UM).
We focus on binary variables, but an extension to polytomous
variables is straightforward.

Suppose total I binary indicators are observed for person p
(p = 1, . . . , N) for T continuous trait factors θT

pt (t = 1, . . . , T)

and M method factors θM
pm (m = 1, . . . , M). The conditional

probability of a correct response (or response being 1) to indi-
cator i, πpi = p(ypi = 1|θT

pt, θ
M
pm), can then be written as

g
(
πpi
) = αT

it θ
T
pt(i) + αM

imθM
pm(i) + βi, (1)

where g(·) is the link function, αT
it is the loading for indicator i for

the tth trait factor θT
pt(i) that indicator i belongs to, αM

im is the load-

ing for indicator i for the mth trait factor θT
pm(i) that indicator i

belongs to, and βi is the intercept (or location) for indicator i. For
link function g(·), a logit or probit link is typically used for binary
responses. For polytomous responses, the cumulative logit link or
the adjacent-category logit link can be used. Variances of all latent
variables are fixed to 1 for factor standardization (and all fac-
tor loadings are estimated). In each combination of method and
trait factors, more than one indicator variables can be allowed.
The CT-UM model in (1) assumes that trait factors are corre-
lated with each other whereas method factors are uncorrelated
with each other and with trait factors; that is, θT

pt ∼ N(0, �T)

and θM
pm ∼ N(0, I), where I is an identity matrix and the diagonal

elements of �T are 1.
Model (1) assumes that the variance of observed data is addi-

tively decomposed into multiple variance components involved
with trait factors θT

pt and method factors θM
pm. This allows us

to define the consistency and method-specificity coefficients as
the proportion of the true variance (without error) to variance
determined by trait and method factors, respectively:

γ T
pi =

αT
it Var

(
θT

pt

)
αT

it Var
(
θT

pt

)+ αM
imVar

(
θM

pm

) , (2)

γ M
pi =

αM
imVar

(
θM

pm

)
αT

it Var
(
θT

pt

)+ αM
imVar

(
θM

pm

) , (3)

where γ T
pi is the consistency coefficient and γ M

pi is the method-

specificity coefficient. The consistency coefficient γ T
pi can also be

seen as evidence of convergent validity (Nussbeck et al., 2006).
Note that model (1) is equivalent to an IRT model with two

crossed latent variables. Rost and Carstensen (2002) presented
such a model with two crossed latent traits that represent item
contents and contexts, respectively. In their multidimensional
facet model, the factor loadings (or discrimination parameters)
were fixed to 1, and a joint maximum likelihood (JML) method
was used for estimation; however, JML is known to produce
inconsistent parameter estimates for a finite number of items
regardless of the person sample size (Neyman and Scott, 1948;
Andersen, 1970; Ghosh, 1995). Jeon et al. (2013a) presented a
bifactor extension of the MTMM IRT model where a general fac-
tor is incorporated in addition to the method and trait factors.
The method and trait factors are assumed to be independent of
each other conditional on the general factor. In addition, with
fixed factor loadings, model (1) can be seen as a generalized linear
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mixed model with crossed random effects. Such a model has been
widely utilized in psychometrics e.g., for investigating random
item effects (e.g., De Boeck, 2008; Cho et al., 2014).

The computational complexity of estimating model (1) can be
shown by writing down its likelihood function

L
(

y;�
) =

∫
θT

1

· · ·
∫

θT
T

∫
θM

1

· · ·
∫

θM
M

p
(

y|θT, θM
)(∏

t

p
(
θT

t

))
(∏

m

p
(
θM

m

))
dθM

M · · · dθM
1 dθT

T · · · dθT
1 , (4)

where y is the vector of responses, � the vector of all parameters,

� = (
αT, αM, β,

)′
, p(θT

t ) and p(θM
m ) are the prior distribu-

tions for θT
t and θM

m , and p
(

y|θT, θM
)

is the joint probability

of all observed responses given the latent variables where θT =(
θT

1 , . . . , θT
T

)′
and θM = (

θM
1 , . . . , θM

M

)′
, and

p
(

y|θT, θM
)

=
∏
m

∏
t

p
(

yip|θT
t , θM

m

)
.

The multiple integrals in Equation (2) have no closed form solu-
tion and require numerical integration, which is challenging with
regular quadrature methods. For example, to estimate a model
with three method and three trait factors, even with a mod-
erate amount of eight quadrature points, a total of 262, 144(=
86) evaluations are required with Gaussian quadrature, which is
prohibitive in practical settings.

3. ESTIMATION METHODS
In this section, we describe three recent developments in ML
estimation of latent variable models with crossed factors for
categorical data.

3.1. VARIATIONAL MAXIMIZATION-MAXIMIZATION (MM)
The variational maximization-maximization (MM) algorithm
(Rijmen and Jeon, 2013; Jeon et al., under revision) is a modified
version of the EM algorithm (Dempster et al., 1977). In the tradi-
tional E-step, the expectation of the complete data log-likelihood,
log f

(
y, θ; �

)
is computed over the posterior distribution of the

latent variables θ (or missing data) given the observed data y and
given current parameter estimates. For instance, the expectation
(or Q function) can be defined at the mth iteration as

Q
(
�; �(m)

)
= E

{
log f

(
y, θ; �

) |y; �(m)
}

=
∫

θ
p
(
θ |y; �(m)

)
log f

(
y, θ; �

)
dθ ,

where �(m) are the current parameter estimates and
p
(
θ |y; �(m)

)
is the probability density of the latent vari-

ables given the data for the current parameter estimates. The
challenge is that the Q function cannot be evaluated analytically
due to the integral over the posterior distribution p(θ |y; �(m)).

The variational MM algorithm replaces the posterior distri-
bution p(θ |y; �(m)) by a tractable alternative probability density

function g(θ), which is called a variational density. The varia-
tional density function g(θ) is found by minimizing the Kullback-
Leibler (KL) divergence (Shorack and Wellner, 1986, p.159) from
g(θ) to p(θ |y; �(m)). It can be shown that minimizing the KL
is equivalent to maximizing a lower bound of the log-likelihood
(Bishop, 2006).

The MM algorithm involves two maximizations: The first M-
step that maximizes the lower bound l (y; �(m)) with respect to
g(θ) given the current parameter estimates �(m) and the sec-
ond M-step that maximizes l (y; �) with respect to � given the
current variational approximation g(θ).

In the variational MM-algorithm, the variational density func-
tion g(θ) should be chosen close to the true model-based
posterior distribution p (θ |y; �) and make the integrals com-
putationally tractable. The mean-field approximation has been
adopted to approximate g(θ) (Rijmen and Jeon, 2013; Jeon et al.,
under revision), which assumes complete factorizability (or inde-
pendence) of the latent variables θ under the posterior (Hall and
Tao, 2002; Bishop, 2006); that is, g(θ) = ∏

i gi(θi), where θi is the
ith element of θ and gi(θi) is the corresponding marginal density.

The variational technique was introduced to psychometrics by
Humphreys and Titterington (2003), but first applied by Rijmen
and Jeon (2013) to estimate a complex IRT model for random
item parameters across countries using discrete random effects.
The variational MM algorithm was later extended by Jeon et al.
(under revision) for continuous random effects and included
adaptive quadrature. Jeon et al. (under revision) and Rijmen
et al. (in press) successfully applied the algorithm to estimate IRT
models with random item difficulty parameters.

It has been shown that the variational MM algorithm gener-
ally performs as well as the Laplace approximation (Tierney and
Kadane, 1986; Lindstrom and Bates, 1988; Wolfinger, 1993) which
works well in most situations (Joe, 2008). With small cluster sizes
and large variance components, where the Laplace approxima-
tion is known to perform poorly, the variational MM algorithm
performed better than the Laplace approximation (Jeon et al.,
under revision). The variational algorithm can be applied to esti-
mate MTMM models with correlated traits and/or correlated
method factors when the factor loadings are fixed to known
values. However, this algorithm has not yet been applied to
estimate models with loading parameters. In addition, the vari-
ational approximation based on the full factorization of latent
variables may not be applicable for MTMM models with corre-
lated trait-method factors. Therefore, further research is required
for applying the variational MM algorithm to estimate various
MTMM models.

3.2. ALTERNATING IMPUTATION POSTERIOR (AIP)
The key goal of the alternating imputation posterior (AIP) algo-
rithm is to lower computational costs by splitting the ‘random
part’ of the model (that involves latent variables) into several
pieces that involve a small number of latent variables, which cor-
respond to wings in the algorithm. For instance, the random
part (αT

it θ
T
pt(i) + αM

imθM
pm(i)) in model (1) can be divided into two

wings, the trait wing that includes αT
it θ

T
pt(i) and the method wing

that includes αM
imθM

pm(i). The algorithm alternates the multiple
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wings where estimation is carried out by holding the other latent
variables constant (Cho and Rabe-Hesketh, 2011). Specifically,
computation within a wing consists of two steps: imputation (I)
and posterior (P) steps. In the I-step, latent variables (or miss-
ing data) are imputed by sampling from the posterior distribution
given the observed data. The P-step updates the approximation of
the posterior distribution.

Clayton and Rasbash (1999) first presented the AIP algorithm
using marginal quasi-likelihood (MQL; Goldstein, 1991) and
penalized quasi-likelihood (PQL; Breslow and Clayton, 1993) for
computation within a wing. However, MQL and PQL are known
to underestimate variance parameters (Cho and Rabe-Hesketh,
2011). Cho and Rabe-Hesketh (2011) proposed an improved
AIP algorithm by replacing MQL/PQL with adaptive quadrature
(Pinheiro and Bates, 1995; Rabe-Hesketh et al., 2005).

For simplicity, here the AIP algorithm is illustrated using a
simpler version of model (1) that assumes independent trait and
method factors. First, we define the trait and method wings that
include the trait and method factors, respectively. By assuming
the other factor and its factor loadings as known, each wing esti-
mates a two parameter logistic (2PL) IRT model. For example,

in the trait factor wing at the kth iteration, given α
M(k − 1)
im and

θ
M(k − 1)
pm(i) fixed to the values from (k − 1) iteration, the following

2PL model is estimated

g
(
πpi
) = αT

it θ
T
pt(i) + α

M(k − 1)
im θ

M(k − 1)
pm(i) + βi,

where the item parameters are �(k) =
(
α

M(k)
im , β

(k)
i

)
, i = 1, . . . I

and their covariance is �
(k)
� . Then, the item parameters �̂ are

sampled from the normal distribution

�(k)|θM(k − 1)

pm(i) , θT(k − 1)

pt(i) ∼ N
(
�̂(k), �̂

(k)
�

)
.

Finally, person random effects θT
1t(i), . . . , θ

T
Nt(i) are sampled from

a normal approximation to its conditional posterior distribu-
tion (using posterior means and variances). Given the estimates

α
T(k − 1)
it , θ

T(k − 1)
pt(i) , the algorithm moves to the method wing that

estimates α
M(k)
im and β

(k)
i . This sequence alternates until conver-

gence.
An important advantage of the AIP algorithm is that it can

be easily adapted to estimate other complex random effects mod-
els with minimal programming. Any software can be used which
provides an option for specifying a variable to be added to the
linear predictor without estimating a corresponding regression
coefficient. For instance, Cho and Rabe-Hesketh (2011) and Cho
et al. (2014) implemented the AIP algorithm using xtmelogit
and gllamm in Stata (StataCorp, 2009) and applied it to esti-
mate IRT models with random item difficulty and with random
item difficulty and discrimination parameters.

However, the AIP algorithm may not be beneficial for mod-
els whose random parts are not readily decomposed into smaller
pieces. For example, the MTMM model with correlated trait fac-
tors requires the trait wing to estimate a multidimensional 2PL
IRT model, which may be computationally demanding with a

large number of trait factors. With correlated method-trait fac-
tors, it is impossible to split the latent variables into smaller parts;
therefore, the AIP algorithm provides no additional benefits.

3.3. MONTE CARLO LOCAL LIKELIHOOD (MCLL)
Monte Carlo local likelihood (MCLL) (Jeon et al., under revision)
is an approximate ML method using Monte Carlo samples of
model parameters. MCLL approximates the likelihood function
as the local likelihood estimate of the posterior density divided
by the prior density where the local likelihood estimate of the
posterior density is obtained by approximating the log-posterior
density with a polynomial function. Specifically, MCLL begins
with generating Markov chain Monte Carlo (MCMC) samples
of model parameters from the posterior for a particular prior
distribution

p
(
θ |y) = L

(
y|θ) p (θ)

Cs
,

where p(θ |y) is the posterior, L(y|θ) is the likelihood, p(θ) is the
prior, and Cs is the normalizing constant, Cs = ∫

L(y|θ)p(θ)dθ .
The likelihood function is approximated up to a constant by

fitting a density to the MCMC samples and dividing it by the prior

L̂
(

y|θ) = 1

p (θ)
Psp

(
θ |y) , (5)

where Psp(θ |y) is the local likelihood estimate of the posterior
density, which is obtained for a given value of θ , by assuming that
the log-posterior density can be locally approximated by a poly-
nomial function. Specifically, a localized log-likelihood for p(θ |y)

is defined as

l̂ (θ) =
m∑

j = 1

Kh

(
θ (j) − θ

)
log p

(
θ (j)|y

)
− m

∫
Kh (u − θ)

p
(

u|y) du, (6)

where Kh(·) represents a symmetric unimodal density (or ker-
nel function) whose argument is divided by the corresponding
element of h, a vector of bandwidths. Here a local polynomial
approximation is obtained by assuming log p(θ (j)|y) can be well
approximated by a low-degree polynomial in a neighborhood of
the fitting point θ as

log p
(
θ (j)|y

)
≈ Pa

(
θ (j) − θ

)
,

where a are the parameters of the local polynomial function and
estimated for a particular θ by maximizing a localized version of
the log-likelihood in Equation (6).

In principle, the MCLL algorithm can estimate any complex
random effects model that is feasible with MCMC but not pos-
sible with ML. However, computational costs of the algorithm
increase with the total number of model parameters, rather than
with the number of latent variables (which is the case for most
ML methods). That is, the MCLL estimation can be hindered
by a large number of fixed effects model parameters rather than
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complex random effects structures. For example, the MTMM
models with correlated trait-method factors may be feasible with
the MCLL algorithm, whereas simple unidimensional IRT models
but with a large number of items may not be.

4. ILLUSTRATION
In this section, we apply the MCLL algorithm to estimate the
CT-UM model presented in (1). As explained in Section 3.1 and
3.2, the variational MM algorithm and the AIP algorithm are
not applicable to estimate model (1) due to the presence of free
factor loading parameters and correlations between trait factors,
respectively.

The empirical illustration is based on the verbal aggression
dataset from De Boeck and Wilson (2004); Vansteelandt (2000).
The data come from 316 first-year psychology students (243
females and 73 males), presented with a verbal aggression inven-
tory with 24 items. The inventory concerns the source of verbal
aggression (type of situation), the kind of verbally aggressive
behavior, and its possible inhibition. Specifically, each item
consists of one of four frustrating situations (bus, train, store,
and operator), two of which are other-to-blame and two of which
are self-to- blame, followed by one of three verbally aggressive
behaviors (cursing, scolding, and shouting), and phrased in one
of two behavioral modes (wanting and doing). An example item
is “A bus fails to stop for me. I would want to curse.”, which
corresponds to the “other-to-blame” situation related to “bus,”
“cursing” aggressive behavior, and “wanting” behavior mode.
“A bus fails to stop for me. I would actually curse” corresponds
to the same “other-to-blame” situation related to “bus” and
“cursing” aggressive behavior, but “doing” behavior mode. The
items include three response categories: No, Perhaps, and Yes.
The responses were dichotomized by combining Perhaps with
Yes categories.

For simplicity, we used the 12 items that correspond to the
“wanting” behavior mode, under four frustrating situation types
(bus, train, store, and operator) and three aggressive behavior
types (cursing, scolding, and shouting) The situation types and
behavior types can be treated as two types of latent variables
(or factors). In addition, these two types of factors are crossed
with each other because the items under the same frustrating
situation types are used to measure different aggressive behav-
ior types. Therefore, the CT-UM model discussed in Section 2
can be applied to analyze this dataset by treating one of the fac-
tors (e.g., aggressive behavior types) as trait factors and the other
(e.g., frustrating situation types) as method factors. Note that the
choice of trait and method factors is arbitrary in this example. We
then assume that the trait factors are correlated with each other
whereas the method factors are uncorrelated with each other and
with trait factors. Figure 1 illustrates the model for person p.

In the figure, the frame represents person p, circles represent
latent variables, and arrows represent connecting latent and/or
observed variables represent regression relations. There are three
factors for aggressive behavior types (as trait factors) and four fac-
tors for situation types (as method factors). The trait factors and
method factors are crossed with each other as shown.

The MCLL algorithm was applied to estimate the CT-UM
model as follows: First MCMC samples of the model parameters

Bus Train Store

Curse Scold Shout

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

Operator

Person p

FIGURE 1 | A multitrait-multimethod model. y1 to y12 are the binary
responses for person p. Curse, Scold, and Shout are the three factors in the
behavior type. Bus, Train, Store, and Operator are the four factors in the
situation type.

were obtained using the freely available Bayesian software,
WinBUGS 1.4 (Lunn et al., 2000). Slightly informative priors were
used based on three chains that were obtained from 4000 itera-
tions after 3000 burn-in. An R package mcll (Jeon et al., 2013a)
was then used to obtain the MCLL estimates.

Table 1 lists the parameter estimates of the MTMM model.
The estimated item intercepts represent the easiness of the items
(or minus the difficulties). The results showed that the item dif-
ficulties depend both on the situation type and behavior type.
Specifically, the Curse items tended to be more difficult than the
other behavior type items. The Scold items were more difficult
than the Shout items.

The estimated factor loadings tended to be larger for the situa-
tion type than for the behavior type for all items except for Scold
(item 5) and Shout (item 6) in the Train situation. Specifically,
for the Bus situation, the Scold items showed a larger loading
than the Curse and Shout items, and for the Train situation, Shout
and Scold items showed larger loadings than the Curse item. For
the Store and Operator situations, the Scold item showed a larger
loading than the Curse and Shout items. For the Curse items, the
Bus item showed the largest loading, followed by the Train, Store,
and Operator situation items in order. For the Scold and Shout
items, the Train and Bus items showed larger loadings than the
Operator and Store items. The correlations between the behavior
types were estimated as 0.21 between Curse and Scold (Cor12),
0.12 between Curse and Shout (Cor13), and 0.86 between Scold
and Shout modes (Cor23).

We computed the proportion of the variance for each item,
determined by the behavior type and the situation type as
described in Equations (2) and (3), which correspond to the
consistency coefficients (γ T

pi ) and the method-specificity (γ M
pi )

coefficients, respectively. The result is presented in Table 2.
Table 2 shows that the responses to Curse items tended to be

largely determined by the situation type rather than the behavior
type. Shout items tended to be more influenced by the behavior
type than by the situation type. For Scold items, both the situation
type and behavior type appeared to make similar impacts. For
the Bus and Train scenarios, the behavior type had slightly larger
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Table 1 | Parameter estimates of the MTMM model for the verbal

aggression data.

Situation Behavior

Item Intercept Bus Train Store Operator Curse Scold Shout

i1 −1.89 1.62 1.31
i2 −1.02 1.97 1.45
i3 −0.18 1.55 1.43
i4 −2.52 1.33 1.13
i5 −1.36 1.51 1.70
i6 −0.06 1.56 1.93
i7 −0.67 1.59 0.91
i8 1.06 2.13 0.70
i9 2.03 1.56 0.83
i10 −1.40 1.54 0.84
i11 0.57 1.99 0.85
i12 1.37 1.31 0.96

Cor12 0.21
Cor13 0.12
Cor23 0.86

Table 2 | Coefficients γ T
pi

and γ M
pi

, where T represents the behavior

type and M represents the situation type.

Situation Behavior

Item Bus Train Store Operator Curse Scold Shout

i1 0.898 0.102
i2 0.449 0.551
i3 0.318 0.682
i4 0.894 0.106
i5 0.348 0.652
i6 0.258 0.742
i7 0.926 0.074
i8 0.646 0.354
i9 0.447 0.553
i10 0.929 0.071
i11 0.584 0.416
i12 0.370 0.630

effects and for the Store and Operator scenarios, the situation type
had somewhat larger effects.

5. CONCLUDING REMARKS
Applications of MTMM models for categorical indicators have
been limited due to the estimation difficulties and thus a lack of
available software. The challenges arise from the crossed struc-
ture of the latent variables or random effects (i.e., method and
trait factors) whose ML estimation requires high-dimensional
numerical integration to evaluate the likelihood function.

This study introduced three novel ML methods, variational
ML, AIP, and MCLL algorithms that have recently been devel-
oped to estimate crossed random effects models. The key idea
of the variational algorithm is to lower the computational bur-
den by factorizing the complex joint posterior distribution of
latent variables into a product of low dimensional distributions.
Similarly, the AIP algorithm lowers the computational costs by
decomposing the latent variables into several smaller pieces so

that the actual computation involves only lower-dimensional
problems. These methods can be a promising solution for some
complex SEM models, but for other models whose decompo-
sition of latent variables is infeasible, such as MTMM models
with correlated method and trait factors, the benefits using these
algorithms may not be substantial.

The MCLL algorithm has an advantage compared to these
two methods given that its computational efficiency does not rely
on the factorization of latent variables. Instead, the computa-
tional costs increase with the total number of model parameters.
Therefore, the algorithm may be applied to estimate complex
MTMM models with correlated method and traits but with few
items.

This review suggests that these methods could be useful
alternatives to the limited information techniques under some
circumstances. Therefore, further studies are needed to evalu-
ate the performance of these methods under various modeling
specifications and data conditions. This will provide important
information for applied researchers in choosing proper com-
putational tools for estimating MTMM models with categorical
data.
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