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For the last four decades, semantic priming—the facilitation in recognition of a target
word when it follows the presentation of a semantically related prime word—has been a
central topic in research of human cognitive processing. Studies have drawn a complex
picture of findings which demonstrated the sensitivity of this priming effect to a unique
combination of variables, including, but not limited to, the type of relatedness between
primes and targets, the prime-target Stimulus Onset Asynchrony (SOA), the relatedness
proportion (RP) in the stimuli list and the specific task subjects are required to perform.
Automatic processes depending on the activation patterns of semantic representations in
memory and controlled strategies adapted by individuals when attempting to maximize
their recognition performance have both been implicated in contributing to the results.
Lately, we have published a new model of semantic priming that addresses the majority
of these findings within one conceptual framework. In our model, semantic memory is
depicted as an attractor neural network in which stochastic transitions from one stored
pattern to another are continually taking place due to synaptic depression mechanisms.
We have shown how such transitions, in combination with a reinforcement-learning rule
that adjusts their pace, resemble the classic automatic and controlled processes involved
in semantic priming and account for a great number of the findings in the literature.
Here, we review the core findings of our model and present new simulations that show
how similar principles of parameter-adjustments could account for additional data not
addressed in our previous studies, such as the relation between expectancy and inhibition
in priming, target frequency and target degradation effects. Finally, we describe two
human experiments that validate several key predictions of the model.
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INTRODUCTION
One of the most widely investigated phenomena in cognitive psy-
chology is semantic priming. In its essence, semantic priming
refers to a simple effect, expressed as the facilitation in recog-
nition of a target word when it is presented in the context of
a semantically related cue word (the “prime”) compared to a
control condition in which the prime is semantically unrelated
(Meyer and Schvaneveldt, 1971). However, more than 40 years of
research have shown that this simple effect can be manipulated
in various ways to tap a large—and sometimes independent—
number of cognitive processes, ranging from semantic activation
in memory to encoding of representations, automaticity, word
recognition and decision-making (for a review, see Neely, 1991;
McNamara, 2005).

Due to the wide range of cognitive processes involved, it
is hardly surprising that very different models have been sug-
gested over the years to account for semantic priming, models
which have typically referred to only subsets of the whole spec-
trum of findings in the literature and quite often could not
be reconciled with one another. Worse yet, the multiplicity of

variables that control the priming effect also tend to interact
with each other, leading to a situation in which partial models,
successful in accounting for the findings under certain condi-
tions, fail completely under different ones. Consider, for exam-
ple, the finding that the magnitude of the semantic priming
effect is often influenced by the interval between the prime and
the target presentation—the Stimulus Onset Asynchrony (SOA).
Certain models ascertain that this effect stems from the tempo-
ral propagation of semantic activation in memory. These models
predict a quick increase in the priming effect, followed by a
decrease (Collins and Loftus, 1975; den Heyer and Briand, 1986).
Other models assume that strategic processes take place during
a priming experiment, either before or after access to the tar-
get representation has completed. These models assume priming
should mostly increase at long SOAs (Neely, 1977; Becker, 1980;
Neely and Keefe, 1989). And yet other models attribute the SOA
effect to neuronal properties of the brain structures involved
in storing semantic memory, predicting either an increase or
decrease, depending on the type of relation between prime and
target (Plaut, 1995). As it turns out, all models are right—and
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wrong—to some degree. The way semantic priming is modulated
by SOA depends, in fact, on a specific combination of conditions
governing the experiment, from the type of prime-target relation
to the type of task used to measure facilitation. Without refer-
ring to all of these variables, a coherent picture cannot be drawn.
Indeed, one of the most popular models of semantic priming, the
3-process hybrid-model (Neely and Keefe, 1989), quite literally
combined together three previous theories, each referring to dif-
ferent aspects of the typical findings, and suggested this hybrid
as a “full” account of the phenomenon. Nevertheless, this model,
too, had trouble accounting for results indicating the existence
of interactions between the various cognitive processes involved
(e.g., Balota et al., 1992; Neely et al., 2010).

Recently, we have published a series of computational studies
attempting to integrate various results in the semantic priming
literature within one, coherent framework (Lerner et al., 2010,
2012a, in press). Basing itself on previous neural-network mod-
els of semantic priming, our approach aimed at showing how the
addition of several assumptions to the dynamics of a semantic
network and the way it is controlled by task-dependent strate-
gies allows fitting a substantial amount of the semantic-priming
results in a natural way, and, no less important, demonstrate how
various aspects of the relevant cognitive processes interact with
each other. Here, we review the main results of these earlier inves-
tigations, extend them with two new simulations to entail several
findings not addressed before, and present experimental results
that are broadly consistent with our approach. Due to limitations
of space, we focus on our model; coverage of how it compares to
previous accounts of semantic priming can be found elsewhere
(e.g., Lerner et al., 2012a).

CORE DISTINCTIONS RELEVANT TO THE SCOPE OF THE MODEL
The literature on semantic priming is vast. Although our model
attempts to capture a substantial part of the findings, some
aspects are left outside. To begin our review, we first highlight
several important distinctions in the priming literature that are
relevant to the scope of the model. We focus on distinctions rele-
vant to the most standard version of the task: in each trial, a prime
word is visually presented, and, after a certain delay, is followed
by a target word. Subjects are instructed to read the prime silently
and respond to the target (saying it out loud or deciding if it is a
real word or not by pressing one of two buttons) as quickly and
accurately as possible while their response-time is measured.

The first distinction relevant to the semantic priming task is
the one between automatic and controlled processes. Semantic
priming is known to be affected by both. On the one hand, tar-
gets are facilitated (i.e., responded to quicker) by their related
primes even under conditions that minimize the ability of sub-
jects to carry out complex processing, including when the prime
is not consciously conceived (Holander, 1986; Greenwald et al.,
1996). Such facilitation is typically taken to reflect interactions
between concepts stored in semantic memory that occur beyond
the willful intervention of the subject (and thus automatic). On
the other hand, priming can also rise or decline as a function
of the general task design—for example, when subjects are led
to expect, explicitly or though statistical manipulations, that a
certain type of targets are about to appear (e.g., Neely, 1977).

Target facilitation that is sensitive to such conditions is thought
to reflect controlled strategies, employed by subjects attempting
to optimize their performance during the experimental session.
Our model addresses both types of processing.

A second distinction is between facilitation and inhibition in
priming. The fact that related targets are processed faster than
unrelated targets could reflect either an actual facilitation of
related targets or inhibition (i.e., slowing of response time) of
unrelated targets. This is examined by including primes that are
considered “neutral” (e.g., instead of a word, a row of X’s, see
Neely, 1991). If related targets yield shorter Reaction Times (RTs)
than neutral targets, facilitation is said to occur. If unrelated tar-
gets yield longer RTs than neutral targets, inhibition is exhibited.
These effects are not mutually exclusive and can occur in paral-
lel. In practice, semantic priming is known to be composed of,
first and foremost, a facilitatory component, whereas inhibition
occurs only under certain conditions, usually as a result of con-
trolled processes (McNamara, 2005). Our model is consequently
focused on accounting for facilitation, although certain types of
inhibition will also be addressed.

Third, there is the issue of which task is utilized to indicate
that the target has been recognized. Two tasks have often been
used: pronunciation, in which subjects are required to simply say
the target word aloud; and Lexical Decision Task (LDT), which
requires subjects to decide whether the target is a real word or not
and press one of two buttons accordingly (and thus half of the
trials consist of pseudo-words as targets). Our model addresses
both tasks.

Fourth, there is the issue of pre-lexical and post-lexical pro-
cesses. Whereas priming can result from cognitive events occur-
ring before the target is recognized, it can also emerge due to
processes occurring after the target is recognized but before a
response was given. The later processes are sometimes interpreted
in terms of controlled decision-making mechanisms and are said
to occur only in LDT, in which a decision is needed (e.g., Ratcliff
and McKoon, 1988; Neely and Keefe, 1989). Since our model does
not contain a decision-making module, only pre-lexical processes
are presently addressed.

Finally, there are the various experimental variables that mod-
ulate the priming effect: the SOA, the type of prime-target rela-
tions, the properties of the stimuli-list used in the experiment,
and so on. These are the bread and butter of our model and
constitute a large portion of its focus.

In the following, we first present a general description of the
model, and then turn to explain how it accounts for various
semantic priming effects (more details can be found in Lerner
et al., 2012a, in press).

A LATCHING-DYNAMICS NETWORK MODEL OF SEMANTIC
PRIMING
Our account of semantic priming is based on former models that
depict semantic memory as a recurrent neural network in which
concepts are stored as distributed patterns and form attractors
in the network dynamics (e.g., Moss et al., 1994; Masson, 1995;
Plaut, 1995; Plaut and Booth, 2000). However, in our model, the
network is constantly dynamic: it does not necessarily stay con-
verged on a certain concept for long and tends to jump between
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attractors due to synaptic depression mechanisms. Moreover, the
dynamics is regulated by several parameters that are sensitive
to information accumulated during the task and can therefore
change the macroscopic behavior of the network throughout the
experimental session.

In the core of the model are two interconnected computa-
tional layers (Figure 1A), representing semantic memory and lex-
ical/phonological memory. Other layers, performing additional
processes in word recognition, can be added to this basic struc-
ture (see later). Visual input representing a word is assumed to

be orthographically analyzed and fed as external input into the
lexical/phonologic layer where the word is recognized. The activ-
ity elicited in the lexical layer is fed forward to the semantic layer
where the word’s meaning is stored. Importantly, these processes
are bi-directional so that in addition to the feed forward transmis-
sion from the lexical to the semantic layer, the semantic layer can
influence the lexical layer by feedback (lexical-to-orthographic
feedback is addressed at a later stage).

The lexical and semantic layers are modeled as attractor neu-
ral networks with sparse representations and continuous-time

FIGURE 1 | (A) Architecture of the network model. Patterns representing
related concepts are correlated in the semantic network but uncorrelated in
the lexical network. Active units of two toy example patterns representing
“dog” and “cat” are marked. Connections between networks are from
active units of a pattern in one network to all the corresponding active
units in the other network. For simplicity, only some of these connections
are drawn. (B) Correlation of the semantic network state with its stored
memory patterns (representing concepts) as a function of time, showing
the differences in typical transitions under various noise values. Each
pattern is indicated by a curve with a different color (not all correlation
curves are visible at all times, as often they coincide). Convergence to a
concept is achieved when a correlation reaches a value of 0.95 or above.
The network is presented with an external stimulus corresponding to

pattern 1 for 100 ms and then allowed to run freely. Moment of
convergence to a specific pattern is indicated by the corresponding pattern
number above the appropriate line. Mode I demonstrates dynamics
governed by a constant high level of noise. In Mode II, noise is high until
the first transition, and then abruptly decreases. Mode III depicts the
dynamics when the noise is low throughout the trial. (C) Structure of the
semantic memory used in some of the simulations. Width of the
connecting lines represents the correlation strength between the
corresponding concepts. (D) First-transition probabilities of the five main
concepts in the network from (C). Probabilities are indicated by colors
ranging from 0 (dark blue) to 1 (red). Columns represent the presented
words and rows represent their associations. (Source: Lerner et al., 2012a;
reproduced by permission of Wiley).
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dynamics (Hopfield, 1982, 1984; Tsodyks, 1990). See Section
Materials and Methods for the Neural Network Simulations for
full details of the equations and parameters governing the net-
work dynamics. Each network is a fully connected recurrent
network composed of 500 units. While the units themselves are
analog in the range [0, 1], memory patterns encoded to each net-
work are sparse binary vectors consisting of either fully active
(“1”) or inactive (“0”) units. When an external input is fed into
units that are part of a specific memory pattern, the activity of the
entire network is driven by the internal connectivity to gradually
converge to this pattern. The connectivity between the units of
each layer is set according to the Hopfield weight matrix for sparse
representations, which assures the stability of the patterns. The
connectivity between layers and from external sources is always
excitatory. Gaussian noise with temporal correlations is added to
the local input, inserting some degree of stochasticity to the sys-
tem. This noise is assumed to reflect, at least partially, signals from
interfering brain structures (Zador, 1998; Mato, 1999), and can
therefore be attenuated if encouraged to by task conditions.

In the semantic layer, memory patterns represent concepts. As
in previous models of semantic memory (e.g., Moss et al., 1994;
Masson, 1995), relatedness between concepts is implemented as
correlations between memory patterns (reflecting the degree of
overlap between them). For example, in Figure 1A, the concepts
“dog” and “cat” are sharing one active unit, making them cor-
related. The more two concepts are related, the stronger their
correlation is; unrelated patterns have a correlation near 0.

In addition to the typical stable-state dynamics, the seman-
tic network is also influenced by synaptic depression mecha-
nisms, which prevent units from maintaining a steady firing rate
and make it impossible for the network to sustain its stability
infinitely. Such mechanism was previously shown to operate in
neocortical synapses (Tsodyks and Markram, 1997) and was also
used in connectionist models to account for several experimental
findings regarding semantic memory (e.g., Huber and O’Reilly,
2003). In our model, the immediate consequence of synaptic
depression is that with time, the network autonomously leaves
the present attractor and converges to a different one. The process
may repeat again and again, with the network “jumping” from
one attractor to another, reflecting what might be seen as a free-
association process. This behavior, termed by Treves as “Latching
Dynamics” (2005), is characterized by two crucial features: first,
there is a higher probability of network transitions between cor-
related patterns rather than between uncorrelated ones, since the
former require fewer changes in the overall activity (Herrmann
et al., 1993). Second, transitions depend on the degree of noise in
the system: if the noise is very low, the destabilization caused by
the depression mechanism would be weak and latching dynam-
ics would not occur; if, however, the noise is sufficiently high,
latching dynamics would appear as described (see Figure 1B for
examples of the dynamics under different noise values).

In the lexical layer, encoded memory patterns represent words.
The dynamics are similar to those governing the semantic net-
work, with two important differences: there are no correlations
between the word patterns in the lexical network (indicating
no lexical relations between the words, such as “bat”-“rat” and
“cable”-“table,” mimicking the lack of such relations in typical

stimuli of semantic priming experiments) and there are no
depression mechanisms which cause latching dynamics (resulting
in simple steady-state behavior with no associative transitions).
The links between the lexical and semantic networks are based
on connections between active units in corresponding patterns
(See Figure 1A). An activated unit in a certain word pattern in the
lexical network sends excitatory connections to all active units in
the corresponding concept-pattern of the semantic network and
vice-versa. Therefore, the activation of one word pattern in the
lexical network activates to different extents all related concept
patterns in the semantic network, and vice-versa. One exception
exists: there is a particular pattern encoded in the semantic net-
work and another encoded in the lexical networks that are not
connected to each other (nor are they correlated to any other pat-
tern in their corresponding layer). These patterns, which do not
reflect any word or concept, are used as the initial attractors that
the networks are converged to at the beginning of each trial in a
simulated experiment. Their role is especially important in neu-
tral trials, in which no word pattern is presented as prime; as a
consequence, both the lexical and the semantic networks remain
converged on these two initial patterns without affecting each
other until the target appears (for a thorough discussion of neu-
tral trials and the way to implement them in network models, see
Lerner et al., 2012a). Finally, the bottom-up input to the lexical
network is also excitatory and activates only the units that are
included in a corresponding word pattern.

Lexical-to-semantic connections are strong but are also subject
to synaptic depression with slow recovery time. This allows the
lexical network to have a fast, short-lived influence on the seman-
tic network, allowing it to quickly converge to the appropriate
concept pattern and engage in latching dynamics with no further
interference (until a new bottom-up external input arrives and
the lexical network converges to a new word pattern). Semantic-
to-lexical connections are weak and are not suppressed, allowing
the semantic network to have a slow and enduring effect on the
lexical network. The asymmetry in the strength of top-down and
bottom-up connectivity represents the idea that during seman-
tic priming experiments, subjects’ task is to recognize words (a
bottom-up process) rather than produce them (see also Stolz and
Neely, 1995; Robidoux et al., 2010). This tendency, however, may
be reversed if encouraged by task conditions, as discussed later.

CONTROL OVER THE AUTOMATIC DYNAMICS
An important assumption in our model is that some global
parameters of the network are subject to modulation based on
task demands. These modulations represent the neural corre-
lates of controlled processing in semantic priming. One such core
parameter is the level of noise in the semantic network, which,
as explained earlier, controls the rate of transitions. As discussed
by Lerner et al. (in press), the level of noise can be thought of
as reflecting the degree of attention given by subjects to the con-
cept that is currently active in memory. Low noise terminates
semantic transitions, causing the network to remain converged on
(and therefore attending to) the current concept pattern, whereas
higher noise levels allow and even accelerate the transitions rate,
paralleling a situation in which the subject’s thought “flies” from
one concept to another without attending long to any particular
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one. By controlling when transitions are occurring and when they
are prevented, the system can decide whether a certain concept
is “expected” (i.e., is activated and maintained before the target
word appears) or not.

Optimal control of noise is achieved in our network by sim-
ple reinforcement learning (see methods in Section Materials and
Methods for the Neural Network Simulations; more details can
be found in Lerner et al., in press). At the start of an experiment,
the noise in the system randomly varies from trial to trial, indi-
cating a “searching mode” of how much attention needs to be
given to a stimulus. At some trials, the noise is sufficiently high
to allow semantic transitions; at other trials, it is low and does not
allow them. The level of noise is also assumed to be modifiable
in the middle of a trial, after a transition occurs; in other words,
after subjects’ thought “wanders,” attention can be re-gathered by
reducing noise. Irrespective of the choice of noise, each trial yields
an RT to the target, taken to be the convergence time of the lexical
network to the corresponding word pattern (see Section How the
Model Accounts for Various Findings in Semantic Priming). At
the end of each trial, the system compares the current RT to the
average RT over all trials experienced so far in the experiment (it
is assumed that an approximation of the average RT is accessible
to the system, perhaps by using a neural integrator that adds up
RTs from the first trial and on as a raw self-evaluation of perfor-
mance). If the current RT is better (quicker) than the average RT,
the particular noise level that was used in this last trial is favored
in the next trial. If the current RT was worse (slower) than the
average RT, the noise level in next trial tends to change. This way,
the system adjusts its level of noise to the level yielding best RTs
on average over trials. The result of this process is dependent on
the particular type of prime-target relations that are abundant in
the stimuli list. For example, sometimes the network is better off
avoiding transitions altogether (implemented by keeping a low
noise value from the beginning of the trial. This is indicated as
“mode III” in Figure 1B). At other times, it is more beneficial for
the network to allow a single transition and only then reduce the
noise level to cease further transitions (“mode II” in Figure 1B).

Another global network parameter that can be controlled is the
magnitude of feedback between the semantic and lexical network
(see Brown et al., 2006, for a similar assumption). As previ-
ously explained, by default, this feedback is low, emphasizing the
bottom-up information processing required in the task. Certain
conditions, however, can reverse this tendency and cause the feed-
back to be more influential. This feedback may be optimized by
the same reinforcement mechanism as the noise level.

A final method of control that subjects can establish over
the system is expressed as the acquisition of specific episodic
associations between concepts, leading to a change in the transi-
tion probabilities involving these concepts. For example, subjects
can learn that the target word “hand” will likely follow the
prime “bird,” adjusting their network transitions accordingly.
Such learning, however, does not correspond to the adjustment
of a single global parameter.

HOW THE MODEL ACCOUNTS FOR VARIOUS FINDINGS IN
SEMANTIC PRIMING
Consider the basic semantic priming task: a prime word is visu-
ally presented, followed (after a certain delay) by a target word.

The subject then recognizes the target and his/her response time
is measured. In our model, this scenario is reflected by present-
ing the lexical network with an external input corresponding to
the lexical representation of the prime word, and then, following
a delay, presenting it with another external input correspond-
ing to the target word. The time it takes the lexical network to
converge to the representation of the target word is taken as the
response time (neglecting, for simplicity, any decision making
processes and motor actions occurring after lexical access). Why
does semantic priming emerge in this simple scenario?

When the prime word is presented, the lexical network con-
verges to its corresponding representation and, consequently,
sends feed-forward input to the semantic network signaling it
to converge to the corresponding semantic representation. The
semantic network is then sending feedback to the lexical network.
This feedback is weak and does not influence the lexical network
immediately. However, when the target word arrives and the lex-
ical network responds by leaving the prime-word attractor and
starting to converge to the new target-word representation, the
semantic feedback adds up to the bottom-up input and becomes
influential. If the prime word was semantically related (i.e., had
a correlated semantic representation) to the target word, there is
partial congruency between the two (bottom-up and top-down)
inputs and this accelerates convergence (see the shared unit in
the dog/cat representations in Figure 1A and its feedback con-
nections to the lexical layer). If, however, the prime and target
are not related, the bottom-up and feedback inputs are incon-
gruent and no facilitation occurs. The accelerated convergence in
related trials compared to unrelated trials constitutes the semantic
priming effect in our model (see Stolz and Besner, 1996, for a sim-
ilar mechanism in an interactive-activation model). This effect is
purely facilitatory: if neutral trials are used (trials in which no
word patterns are presented as primes to the lexical network), the
resulting RTs are similar to unrelated trials, confirming the lack of
inhibition (in fact, had the feedback been strong, inhibition could
emerge in the incongruent case. This scenario is discussed later.
Nevertheless, under the default assumption of a weak feedback,
no inhibition occurs).

While the basic priming effect is easily achieved in the model,
the more subtle effects characterizing semantic priming depend
on the full dynamics of the model. Specifically, the degree of facil-
itation that the lexical network will experience depends on the
specific concept activated in the semantic network at the time of
target onset; and since the semantic network is not static, the tran-
sitions it goes through will directly affect this process. The various
effects resulting from these dynamics are described below.

DEGREE OF SEMANTIC RELATEDNESS AND THE ASSOCIATIVE BOOST
EFFECT
One finding in the semantic priming literature is that the stronger
the semantic relatedness between two concepts, the larger the
priming effect they will produce (Lucas, 2000). In addition, it is
known that targets that are not only semantically related to their
primes but also associatively related to them (i.e., are often raised
as a response to the prime word in a free association test) produce
larger priming effects compared to targets that are only semanti-
cally related (the so called “associative boost” effect; Moss et al.,
1994). Both of these effects are easily achieved in our model.
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Stronger priming due to stronger semantic relatedness is read-
ily explained by the fact that semantic relatedness is reflected in
our model (as in many former models) as correlations between
concept patterns: the stronger the relatedness—the stronger are
the correlations. Stronger correlations, in turn, indicate that more
shared units are participating in the feedback from the semantic
to lexical network, leading to increased facilitation during lexical
convergence to the target pattern, hence to more priming.

The associative boost effect is accounted for in our model
due to the latching dynamics. Associations between concepts are
naturally defined in our network as transitions between concept
patterns in the semantic network. A high probability of transi-
tion from pattern A to B (e.g., from a pattern representing the
concept dog to a pattern representing cat) thus reflects a strong
associative value between the corresponding concepts, mirroring
its definition based on free associations. From this definition, two
mechanisms give rise to the associative boost effect. The first is
straightforward: often, concept patterns that are strongly corre-
lated also yield high probability of transitions between them 1.
Therefore, on average, concepts that are both semantically and
associatively related are those that have larger correlations, lead-
ing to a larger priming effect. The second mechanism is more
directly dependent on the actual transitions: when strongly asso-
ciated primes and targets are presented to the network in a
priming experiment, there is a high probability that the semantic
network would jump from the prime’s representation to the tar-
get’s representation even before the visual target actually appears
(this can be conceptualized as seeing dog and “thinking” about cat
before the word cat is presented). Consequently, when the target is
presented, convergence of the lexical network to the correspond-
ing attractor will be strongly facilitated by the feedback from the
semantic network due to it being already converged to the target
concept. This facilitation is much stronger compared to the case
where the semantic network remains converged on the prime or
jumps to a concept other than the target, since in the former case
all active units will participate in sending feedback; if no such
transition occurs, only the units shared by the prime and target
will participate in the facilitation. The result is a stronger average
priming effect when primes and targets are both semantically and
associatively related compared to pairs that are only semantically
related2.

Figures 1C,D, 2A present the results of a simulation aimed at
inquiring how the relations between semantic relatedness, asso-
ciative strength and SOA are expressed in our model. Sixteen
patterns were encoded in the network, each portraying different

1Note, however, that this is true only on average. In fact, the exact transition
probability between two concepts is a function of the whole semantic structure
and is not purely determined by the degree of correlation between the pair. For
a thorough discussion of this issue, see (Lerner et al., 2012a).
2It is important to emphasize that priming effects between associated primes
and targets do not strictly depend on a transition between them; rather, they
exists first and foremost because associated primes and targets often have cor-
related semantic representations; moreover, even when “wrong” transitions
occur (that is, from the prime to a related concept other than the target)
priming effects are still usually preserved because often associated primes and
targets share similar related concepts. For details, please see (Lerner et al.,
2012a).

FIGURE 2 | Mean facilitation effects as a function of SOA for various

prime-target pairs using the semantic structure in Figure 1C. Error bars
represent ±1 standard error of the mean. (A) SOA effects at short and
medium SOAs, under default automatic conditions. (B) Long SOA priming
effects for the associative pairs from (A), separated to automatic conditions
(dotted lines) and controlled-processes conditions in which reinforcement
learning of the noise was applied (solid lines).

semantic and associative properties. Figure 1C presents their
semantic structure (labeled as words for easier conceptualiza-
tion), with the strength of the relatedness (i.e., the correlation)
between two concepts depicted by the thickness of the line con-
necting them. Figure 1D describes the associative strength (i.e.,
the probability of transition) between five of these patterns, based
on a free-run of the simulation over 100 repetitions. Figure 2A
presents the priming effects for various choices of these pat-
terns as prime-target pairs in a priming simulation. Averaged over
SOAs, pairs which are strongly correlated yield stronger priming
than pairs which are less correlated (e.g., compare dog-cat, kitten-
cat, and mouse-kitten); and pairs which are both semantically and
associatively related (e.g., kitten-cat) yield stronger priming than
pairs which are semantically related to the same degree but are
not associatively related (e.g., cat-kitten).

SOA EFFECTS
Another classic result in the literature is that semantic priming
effects for associated targets increase as the SOA between primes
and targets increases, whereas the priming effect of unassociated
targets remains roughly the same or even decreases (Plaut, 1995;
Lucas, 2000). This finding is replicated in our network due to the
latching dynamics. As noted in the previous section, associative
prime-target pairs are those for which the network is likely to
jump from the prime representation to the target representation.
These transitions occur due to synaptic depression mechanisms
and their exact time of occurrence is stochastic; however, the
probability of a transition increases with time as the depression
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mechanisms become more and more influential and destabilize
the current attractor. In other words, the more time the net-
work stays converged on the prime’s concept pattern, the more
likely it is to jump out of it. As a consequence, as prime-target
SOA increases, it becomes more and more likely that the network
would make the transition from the prime to its associated tar-
get pattern. The result is an increase in priming with SOA for
associatively related targets. The opposite occurs with primes and
targets that are not strongly associated. In this case, by defini-
tion, the semantic transition is not likely to be to the upcoming
target representation. Instead, it is more likely to be to a con-
cept that is either relatively equally related to the target as the
prime, or less (e.g., dog→cat; dog→animal, etc., when the tar-
get is friend). Consequently, the priming effect would stay the
same or decrease with SOA. Returning to Figures 1D, 2A, now
addressing the SOA effect, it is evident that priming of pairs that
are strongly associated (e.g., dog–cat, cat–dog, kitten–cat) tends
to increase with SOA, whereas priming for unassociated pairs
(e.g., cat–kitten, mouse–kitten, dog-beware) does not significantly
increase, and sometime decreases.

Although the above mechanism neatly accounts for the basic
priming dependency on SOA, the actual experimental results are
somewhat more complicated and are qualified by additional con-
straints. Typical findings examining SOA effects under regular
conditions have often contrasted priming using associative pairs
and priming using category-exemplar pairs (e.g., fruit—apple).
When associative pairs are used, priming increases with SOAs
of up to 1000 ms or more. When category-exemplar pairs are
used, priming remains roughly the same across SOAs (Neely,
1991) 3. These priming effects usually endure for at least several
seconds, presumingly expressing subjects’ attempts to optimize
their performance such that semantic activation of the target
does not dissipate with time (McNamara, 2005). If, however, the
experimental design is carefully shaped to express pure auto-
matic processes, priming may decrease or and even disappear
at long SOAs even for associated pairs, expressing dissipation of
activation (Neely et al., 2010).

Our model captures this pattern of results by contrasting auto-
matic and controlled processes. Automatic dynamics does not
involve any attempt to modulate the noise in the semantic net-
work. At long SOAs, this often leads to the network performing
multiple transitions, taking it away from the target representation
and reflecting dissipation of target activation. When the noise is
optimally modulated, however, the dynamics change significantly.
Recall that when reinforcement learning is applied, the network
adjusts itself to find noise values that minimize the average RTs
to the experimental stimuli. When the stimuli list contains mostly
associative pairs, it turns out that RT minimization occurs when a
trial begins with a noise value that is sufficiently high to allow one
transition, and then decreases to stop further transitions (mode
II in Figure 2). This mechanism causes the network to “stay” on
the representation it has jumped to (which often corresponds
to the upcoming target) and thus allows the priming effect to
remain high even at long SOAs such as 1000 ms. Conversely, when

3In fact, this is true only for facilitation. Inhibition in category-exemplar pairs
increases with SOA; however, we only refer to facilitation at this point.

the stimuli list contains mostly category-exemplar pairs, RT min-
imization is achieved when the noise remains low throughout
the trial (mode III in Figure 2). This is the case because most
category-exemplar pairs are not strongly associated (e.g., tiger,
mouse and squirrel are rarely an associate of animal) and thus do
not benefit from transitions on average. As a result, the network,
facing category-exemplar pairs, learns to avoid transitions alto-
gether and remain converged on the prime, yielding a priming
effect that is not affected by SOA.

Figure 2B demonstrates some of these dynamics for the
strongly associated prime-target pairs of Figure 2A. When the
network is allowed to run freely (dotted lines), there are signs
of reduction in the priming effect for some of the associated
pairs, reversing the increase from short to medium SOAs (longer
SOAs reduce the effect even further; see Lerner et al., 2012a).
If, however, the reinforcement-learning algorithm is allowed to
adjust the noise in the network (solid lines), associated priming
effects continue to increase up to the longest SOA without evi-
dence for dissipation of target activation (see similar results for
category-exemplar pairs in Lerner et al., in press).

THE RELATEDNESS PROPORTION EFFECT
The Relatedness Proportion (RP) refers to the ratio between the
number of semantically related trials and unrelated trials within
the stimuli list of a semantic priming experiment. A common
finding is that a high RP increases priming compared to low RP,
but only when the SOA is long (Neely, 1991). Our model accounts
for this effect based on how noise modulations are learned to
achieve optimal transitions rate.

As was shown in the previous section, the prime-target rela-
tionship often determines a “best transitions-strategy” from RT-
minimization perspective. For example, when related primes and
targets are strongly associated, it is generally favorable for the sys-
tem, at each trial, to make a transition and remain converged on
the concept it has reached. Remaining converged on the prime,
in contrast, would not be optimal. Moreover, making more than
one transition is also not optimal because it will lead the semantic
network to “overshoot” rather than being converged on the most
probable target concept (e.g., in a trial where the prime is dog and
the target is cat, it would not be beneficial for the network if two
transitions occur during the SOA, such as from dog to cat and
then from cat to milk). Conversely, if primes and targets are not
associated, RT minimization is often achieved by avoiding tran-
sitions altogether. The reinforcement-learning algorithm would
recognize such tendencies, and, after sufficient amount of tri-
als, push the network to the optimal behavior. However, in order
for this learning to occur, the network needs to encounter suffi-
cient amount of related trials consisting of pairs with the relevant
relationship. Unrelated trials, in which primes do not hold any
predictive information regarding the target, are of no use for the
learning mechanism. Therefore, a high RP is required for efficient
learning—leading to an increase in the priming effect—whereas a
low RP would typically supply the system with insufficient oppor-
tunities to extract the regularity. By the same token, short SOAs
do not allow sufficient time for transitions to occur frequently,
even with high values of noise. Therefore, the system would not
be able to learn whether transitions are beneficial simply because
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it would not experience enough transitions. The result is that at
short SOAs, the system would produce the same (suboptimal) RTs
whether the RP is high or not. Only when both the RP is suf-
ficiently high and the SOAs are sufficiently long is the optimal
transition strategy learned well and priming increases, equivalent
to the typical experimental findings.

MEDIATED AND BACKWARD PRIMING
Another well-known finding in the priming literature addresses
two specific types of prime-target relations. One, mediated (or
“indirect”) relatedness, refers to the case where primes and targets
are related only indirectly through a mediating word (e.g., prime:
lion; target: stripes, mediated by tiger). The other, backward relat-
edness, refers to the case where the pairs are associatively related
in the opposite direction of presentation, that is, from target to
prime but not from prime to target (e.g., prime: baby; target:
stork). Basic findings using these types of pairs show that: (a)
Mediated priming can be achieved in pronunciation tasks at var-
ious SOAs (and might even slightly rise with SOA), and is always
smaller than the direct priming effect (e.g., Balota and Lorch,
1986). (b) Mediated priming does not appear in LDT under typ-
ical conditions in which the stimuli list contains both mediated
and directly related pairs (“mixed list”); it is, however, evident
in LDT if the stimuli list does not contain directly related pairs
(“unmixed list”; de Groot, 1983). (c) Backward priming is evident
in both LDT and pronunciation using short SOAs and is approx-
imately equivalent in magnitude to forward priming using the
same pairs in reverse order (that is, an order which parallels the
association, for example: prime: stork; target: baby; Thompson-
Schill et al., 1998). (d) Using longer SOAs, backward priming
tends to decrease or even disappear altogether in pronunciation
tasks (Peterson and Simpson, 1989; Kahan et al., 1999)—in sharp
contrast to forward priming, which increases (e.g., de Groot,
1985). In LDT, however, backward priming is insensitive to SOA
(Kahan et al., 1999).

Our model accounts for these results as follows: mediated
priming occurs in our network due to transitions from the prime
word to the mediating word (e.g., from lion to tiger). Although the
prime in this case is not correlated to the target (corresponding to
the lack of direct relations between the concepts), it is strongly
correlated to the mediating word, which, in turn, is correlated to
the target. When a transition occurs, it is often to the mediating
word. Consequently, when the target is presented, the semantic
network is converged on a concept that is correlated to that target
although the original prime was not. The result is a priming effect
which, nevertheless, is smaller on average than direct semantic
priming effects due to the fact that the “correct” transition (that
is, from prime to the mediating concept) does not always occur,
and when it doesn’t—the concept that the semantic network ends
up converging to is usually not related to the target at all (e.g.,
lion→mane, which is not related to stripes).

Backward priming occurs in our network based on the
assumption that backward related primes and targets have repre-
sentations which are correlated to each other just like semantically
related pairs (a hypothesis shared with former network models of
semantic priming, e.g., Plaut and Booth, 2000). Therefore, back-
ward priming occurs at short SOAs from exactly the same reasons

as simple semantic priming. Moreover, since correlations are sym-
metric, it doesn’t matter which of the two words is used as prime
and which is used as target: both would yield the same priming
effect. However, this scenario is true only for short SOAs, where
the likelihood of a semantic transition is low. When SOAs are
sufficiently long, transitions become probable and therefore the
order of presentation becomes significant. By definition, transi-
tions do not occur from prime to target using backward-related
pairs. Therefore, as SOA increases, the semantic network would
tend to jump from the prime representation to concepts other
than the target. Since these concepts would likely be unrelated
to the target (e.g., stork→bird, which is unrelated to baby), this
mechanism would necessarily reduce or even eliminate the back-
ward priming effect at long SOAs (as an example, compare the
backward-related pair dog-beware in Figure 2A to the same pair
in the forward direction, beware-dog).

The explanation above portrays a relatively accurate picture
of mediated and backward priming in pronunciation tasks. In
order to account for the results in LDT, another assumption must
be made: whereas in pronunciation the default noise level at the
beginning of an experiment is high, allowing semantic transitions
to occur, the default noise in LDT is low, preventing transitions.
In other words, whereas subjects approach pronunciation tasks
in their usual “free association” mode, they approach LDT cau-
tiously, focusing on externally presented stimuli without letting
their attention drift (see Lerner et al., in press, for a discussion of
this assumption). These default tendencies, however, are simply
the initial state of the system and, like always, can be changed with
learning. Under this assumption, LDT would not initially permit
mediated priming to emerge since this effect depends on transi-
tions. Unmixed stimuli lists, in which all related pairs are in fact
mediated-related pairs, push the network to learn that transitions
are beneficial: if the network jumps to the right association in a
mediated trial, RT would decrease; therefore, the system learns to
lift up the noise and allow transitions, leading to the emergence
of mediated priming. Mixed lists, in contrast, contain, in addi-
tion to mediated pairs, many directly related pairs. Such lists do
not necessarily provide a consistent opportunity to learn the ben-
efits of transitions since directly related pairs are not necessarily
associated. RTs might increase rather than decrease if the network
makes a transition during related trials because the relatedness of
the original prime could be lost. Therefore, as a whole, transitions
are not necessarily optimal when using mixed lists. Consequently,
the system does not learn to increase the noise and no medi-
ated priming emerges. In a sharp contrast, backward priming
depends on the lack of transitions. Therefore, this effect typi-
cally benefits from the lack of transitions in LDT and would not
push the system to change its initial tendency. Backward priming
will thus remain stable across SOAs. Figure 3 presents simula-
tion results (taken from Lerner et al., in press, using a different
semantic structure than the ones presented earlier) portraying
the full spectrum of these priming effects, next to their corre-
sponding results from human studies, showing identical trends.
Note also that the explanation above suggests that if a “backward
only” unmixed list (containing only backward-related pairs) is to
be used in a pronunciation task, the system might learn to avoid
transitions (by lowering the noise at the beginning of each trial)
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FIGURE 3 | Mediated and backward priming effects in the model (solid

lines), alongside corresponding results from human studies (dashed

lines, and green X marks). Human results are taken from de Groot (1983),

Balota and Lorch (1986), Kahan et al. (1999), with significant priming effects (all
at the level of 0.05) marked by a star. Error bars represent ±1 standard error of
the mean. (Source: Lerner et al., in press; reproduced by permission of Wiley).

and backward priming should emerge even at long SOAs, just
like in LDT (Figure 3, right panel, red line). To the best of our
knowledge, this prediction has never been tested and remains to
be explored in future studies.

OTHER CONTROLLED EFFECTS IN THE MODEL
The results presented so far have focused on the role of seman-
tic transitions in the network and how they influence auto-
matic and controlled semantic priming. Several known priming
results, however, require additional mechanisms that modulate
the semantic system: one such mechanism is the influence of
subjects’ expectancies on the strength of the semantic feedback.
Another is the way episodic associations affect transitions in the
semantic network. Such mechanisms have already been explored
in former models of priming; however, the way they are integrated
into our framework provides some new noteworthy findings.
These are now presented in some detail.

MECHANISMS
Increased semantic feedback
As described above, the feedback from the semantic to the lexical
layer in our model was set to be weak compared to the feedfor-
ward connectivity. The rationale for this design is that semantic
priming experiments do not require, by default, top-down pro-
cessing. The outcome, however, is that the semantic feedback
could not influence the dynamics of the lexical network on its
own; only when combined with congruent feed-forward input (as
occurs when a related target word is presented as external stimuli)
could it make an effect. If, however, these feedback connections
were set to be stronger (specifically, above some external thresh-
old characterizing the lexical units), the lexical network could be
influenced by the semantic network even before target onset. In a
priming experiment, such influence can either accelerate or delay
the lexical network’s convergence to the target. The acceleration
stems from the same mechanisms as in the low-connectivity case:

units activated by the feedforward target input are also strength-
ened by feedback from the semantic layer. A strong feedback may
lead this acceleration to be even more pronounced compared to
previous cases. The delay, on the other hand, stems from the
fact that when feedback is above threshold, some lexical units
may receive contradicting inputs: excitation from the semantic
feedback and inhibition by the lateral connections coming from
other units in the same layer which become active due to the
feedforward input. This competition may slow the lexical conver-
gence considerably. When compared to neutral trials (which are
not influenced by a stronger feedback since the baseline states of
the lexical and semantic network are not connected), significant
inhibition may emerge, as opposed to the facilitation-dominant
priming of the previous simulations.

Whether the lexical network’s convergence to a target is facil-
itated or inhibited depends on the specific patterns involved in
the process and the strength of the connections. If the semantic
network is converged on the concept pattern that exactly corre-
sponds to the upcoming target, lexical convergence to the target
will always be facilitated since no contradicting inputs exist. If it
is converged on a different and unrelated pattern, lexical con-
vergence will always be inhibited since many units will receive
contradicting inputs and no units will receive congruent activa-
tion from both the feedforward and feedback inputs. If, however,
the semantic network is converged on a pattern that is related—
but not identical—to the upcoming target, some lexical units
will experience facilitation while others will experience inhibition,
with the net influence on convergence time depending on how
strong the semantic-to-lexical connectivity is. Figure 4 describes
the effective regions of facilitation and inhibition of this latter case
as a function of the feedback connectivity strength. Given that the
correlations in our network are not very high (due to the cod-
ing sparseness), the stronger the connectivity, the more prevalent
the inhibition would be. Low connectivity does not reach the lex-
ical units’ external threshold and only permits facilitation (as in
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FIGURE 4 | General regions of facilitation and inhibition as a function of

the semantic feedback strength. Regions are depicted under the
assumption that the semantic network is converged to a pattern correlated
(but not identical) to the incoming target. With a connection value below the

lexical network’s external threshold, only facilitation can emerge (as in
previous simulations). Connection strength above the “coupling threshold”
only allows inhibition. Intermediate connection values cause either facilitation
or inhibition, depending on the exact correlation strength. See text for details.

previous simulations). A level somewhat higher than the thresh-
old still yields facilitation, albeit reduced. With stronger feedback
connectivity, inhibition is dominant. The exact connectivity level
at which inhibition overcomes facilitation depends on the corre-
lation between the two patterns. Strengthening the connectivity
further can cause the lexical network to commit a transition to the
corresponding pattern of the semantic network before the exter-
nal target onset, thus making the lexical and semantic networks
coupled. In this case, very strong inhibition will be evident.

From our perspective, one special case of such feedback
strengthening is of specific interest: when it occurs as part of
an expectancy mechanism. Specifically, previous works have sug-
gested that subjects that expect a certain target to appear may
increase the influence of semantic information on lexical process-
ing (Stolz and Neely, 1995; Brown et al., 2006; Robidoux et al.,
2010). In our model, this can be manifested as an increase of the
semantic feedback gain in parallel to a decrease in the noise level.
For example, if a subject expects cat to follow dog, not only does
the noise in the semantic system decrease after a transition to cat
has occurred (reflecting the expectation for cat, as before), but
also the strength of the semantic feedback is increased to max-
imize its influence. This way, if the target is indeed cat, all the
semantic units active in the representation of the concept cat will
strongly facilitate the corresponding cat units in the lexical layer,
causing a great reduction in RT. If, however, the actual target ends
up being another word, for example bark, the increase in feedback
would “make things worse” by inhibiting lexical convergence and
elevating RTs. Whether the system will benefit from such feedback
increase or is better off without it depends on the specific stimuli
list and can be adjusted by reinforcement learning using similar
mechanisms to the noise adjustment.

Episodic connections
The semantic network’s transitions in our model are a prod-
uct of the correlation structure of the stored concept patterns.
This structure is assumed to be rigid and reflects the seman-
tic and associative connections between concepts that were
learned during lifetime. However, episodic connections from spe-
cific concepts to other concepts can easily be created during

day-to-day experiences, as well as in experimental procedures
(e.g., Silberman et al., 2005). Such connections do not neces-
sarily reflect the basic semantic relations between concepts and
can even be arbitrary. For our model to incorporate transitions
between such concepts, the default, correlation-based transition
probabilities should be modulated by introducing distinctive
connections between memory patterns. Such connections were
implemented in previous network models to express episodic
relations (cf. Sompolinsky and Kanter, 1986; Herrmann et al.,
1993). They require the insertion of additional, unidirectional
excitatory synaptic connections between the active units of two
concept patterns (see Section Materials and Methods for the
Neural Network Simulations). With such connections added, the
network, when converged to memory pattern μ, will now have
significant probabilities of jumping to memory pattern υ, even if
they are uncorrelated, and these probabilities will increase with
the strength of the connections. Other memories will not be
affected and the general behavior of the network remains the
same. If, in a priming experiment, these two memories are pre-
sented as prime and target, a significant priming effect may result.
This priming effect will be SOA-dependent because, like medi-
ated priming, it depends on a transition in the semantic network.
Many such connections can be added this way and they will all
influence the transition probabilities of the network.

SIMULATIONS
Facilitation and inhibition in semantic priming and their relation to
expectancy
One of the classical findings in the literature regarding expectancy
in semantic priming was reported by Neely (1977). In Neely’s
experiment, subjects’ expectations were manipulated such that
they expected either prime-related or prime-unrelated targets to
appear. When the prime word was the category name “BODY,”
subjects were instructed to think about building parts; when it
was “BUILDING,” subjects were instructed to think about body
parts. When the prime was the category name “BIRD,” sub-
jects were instructed to think about types of birds. Therefore,
whereas presenting one of the first two category names created
expectations that required a shift from one category to another,
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presenting the third category name did not require such shift.
During the experiment, the expectations were usually fulfilled,
which led to facilitation compared to neutral trials, and some-
times unfulfilled, which led to inhibition. However, the pattern
of facilitation- inhibition held at long SOAs only. At short SOAs,
only facilitation of semantically related targets appeared whereas
expectations were inconsequential. These findings were inter-
preted as supporting the dual effect of a fast semantic activation
process based on the structure of semantic memory, accompanied
by a slow expectation mechanism.

To simulate the strong expectancies produced in Neely’s exper-
iment, we assumed that the network learns both to cease latching
dynamics after one transition (as in previous simulations), as well
as to strengthen the connections between the semantic and lexical
network (indicating a strong reliance on expectancy, hypothe-
sized to occur due to the explicit instructions given to subjects).
In addition, the instructional manipulations of the experiment
that led subjects to expect unrelated targets were implemented
in the network by introducing episodic connections between
the relevant unrelated concept patterns. Specifically, the seman-
tic structure of the network consisted of three “neighborhoods,”
each containing four moderately correlated concepts (a fourth,
unused neighborhood was also encoded, in order to keep the total
number of memories similar to previous simulations). These rep-
resent the categories BUILDING, BODY, and BIRD, with each
concept in a neighborhood representing an exemplar of that cat-
egory (e.g., robin, sparrow, dove in the BIRD category). Each
concept of the first and second neighborhoods was episodically
connected to the concepts of the other neighborhood, thus mak-
ing transitions between these neighborhoods likely (as in the
BUILDING-BODY categories of the human experiment). The
third neighborhood, representing the category BIRDS, was left
untouched since transitions between patterns within this neigh-
borhood are already very likely due to the correlations between
them (adding episodic connections within this neighborhood
does not alter our results). In each trial, when a semantic tran-
sition occurred, the noise amplitude was reduced to prevent
further transitions and the semantic-lexical feedback connec-
tions were strengthened (the new connection value was set to
approximately the middle of the correlation-dependent region in
Figure 4. Since our aim in this simulation was to show how our
model implements Neely’s results, we did not attempt to fully
model a reinforcement-based procedure in which the network
learns to reduce the noise and increase feedback, but just assumed
that this is the end result of such learning). Trials mirrored Neely’s
conditions and consisted of either a prime-target pair coming
from the third neighborhood (“Non-Shift —Expected – Related”
condition), a prime from the third neighborhood and a target
from the first two (“Non-Shift—Unexpected—Unrelated” con-
dition), a prime from one of the first two neighborhoods and
a target from the other (“Shift—Expected—Unrelated” condi-
tion), a prime-target pair coming from within one of the first
two neighborhoods (“Shift—Unexpected—Related” condition)
or a prime from the first two neighborhoods and a target from
the third (“Shift—Unexpected—Unrelated” condition). In addi-
tion, neutral trials were carried with a baseline prime and a target
randomly coming from any of the three neighborhoods. Each

condition was run at 3 SOAs (150, 400, and 700 ms), mirroring
Neely’s design.4

The priming effect (computed relative to the neutral condi-
tion) as a function of SOA for each of the five conditions is
presented in Figure 5, next to Neely’s results. As can be seen,
the simulation closely resembled the trends in the human data.
Facilitation of related targets was evident at short SOAs, and was
maintained at longer SOAs when supported by congruent expec-
tations. When not expected, the recognition of related targets
was inhibited at long SOAs. Unrelated but expected targets pro-
duced facilitation that significantly increased with SOA. Finally,
unrelated and unexpected targets produced an increasing inhi-
bition. All in all, this simulation demonstrates how our model
can produce the correct interplay between facilitation and inhi-
bition when modulation of several global network parameters is
assumed.

Frequency, degradation, and context interactions
Another well-known finding in the priming literature is that the
magnitude of priming increases when the linguistic frequency of

FIGURE 5 | Priming effects as a function of SOA in a simulation

of Neely’s (1977) experiment, compared to the original human

results. Positive values indicate facilitation and negative values indicate
inhibition, relative to neutral trials. Conditions differentiated on the basis of
relatedness (related vs. unrelated targets—R/U), expectancy (expected vs.
unexpected targets—Ex/Ux), and whether the expected words required a
shift in semantic category (shift vs. non-shift—S/NS). Significant priming
effects in the human experiments are marked (†p < 0.05; ∗p < 0.01;
∗∗p < 0.001). Error bars represent ±1 standard error of the means. Data of
human subjects were taken from Neely (1977). See text for details.

4Neely’s short SOA was 250 ms, in contrast to our 150 ms. Neely’s purpose in
choosing this SOA was to prevent controlled processes to take part. However,
250 ms is usually considered to be on the edge of preventing such processes
(and indeed, though insignificant, some inhibition is nevertheless evident
in his short SOA results). In our simulations, a 250 ms SOA already per-
mits the occasional occurrence of a transition, equivalent to the operation
of expectancy. We therefore reduced this SOA to a lower value, which is
more accurate giving Neely’s intentions. Using an SOA of 250 ms instead
of 150 ms, we found that the difference in priming between the first two
SOAs is somewhat reduced, though the pattern of results remains the same
as reported here.
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the target words decreases (Borowsky and Besner, 1993). In addi-
tion, priming increases when targets are presented in a degraded
form (for example, by lowering the contrast between the let-
ters and the background; Becker and Killion, 1977). These two
results are often referred to as the context by frequency and con-
text by stimulus-quality interactions (with “context” referring to
the prime-target relations being either related or unrelated). It
is also known, however, that frequency and stimulus-quality do
not interact (Borowsky and Besner, 1993; Yap and Balota, 2007).
Within the interaction-activation framework, which postulates an
additional, orthographic layer of computation in which letters
are being processed and then sent to the lexical layer, Borowsky
and Besner (1993) accounted for these findings in the follow-
ing way: first, they assumed that high frequency targets have
stronger connections from the orthographic to the lexical layer
than low-frequency targets (representing the fact that they have
been encountered more often during lifetime), and, therefore,
their recognition is less influenced by top-down semantic prim-
ing. This causes the context by frequency interaction. Second,
they assumed that reducing the vividness of the target is equiv-
alent to reducing the external input to the orthographic layer,
which in turn delays the bottom-up information from reaching
the lexical network. Feedback from the semantic to lexical and
from lexical to the orthographic network makes related targets
less sensitive to this delay compared to unrelated targets, which
induces a context by stimulus-quality interaction. Finally, while
context influences both the lexical and the orthographic stages,
frequency and stimulus-quality operate at different stages and are
therefore additive.

While neatly explaining the results, Borowsky and Besner’s
account was later challenged by the discovery that the context by
stimulus-quality interaction was actually expectancy-dependent
(Stolz and Neely, 1995; Brown et al., 2006; Robidoux et al., 2010).
However, this dependency could be embedded in their model
by assuming that expectancy facilitates the flow of information
in the semantic-to-lexical pathway, and without it, this pathway
becomes less effective. In order for the context to influence stim-
ulus quality, semantic information must reach the orthographic
layer through the lexical layer. Expectancy, by this account, is nec-
essary for transferring the information effectively during the first
stage (semantic to lexical) of this route.

Our model, which bares structural resemblance to interaction-
activation models, can account for the influence of frequency and
degradation on priming along the lines of Borowsky and Besner’s,
providing it with a network-based mechanism. Since that model
separates between external visual input and orthographic pro-
cessing, it requires us to add a simple orthographic layer to our
model. In our simulations, this layer consisted of 500 additional
units that were simple mediators between the external input and
the lexical units, and were not laterally connected to each other
(see Figure 6). 5 When one of the patterns was presented to the

5This layer should not be taken as representing real orthographic information
(in which, for example, different units represent different letters). It is used
simply to separate between an initial processing level where stimulus degra-
dation makes an effect and the lexical level, which is not influenced directly
by degradation. The basic idea, however, could be implemented using more
realistic orthographic layers.

FIGURE 6 | Model architecture and information processing pathways

with the addition of a simple “orthographic” layer. Task-dependent
modulators of specific pathways are marked.

system, each orthographic unit received the corresponding activ-
ity as external input (now representing visual information per se)
and, after passing some threshold, transferred this information to
its corresponding unit in the lexical network through an excita-
tory connection. These connections were reciprocal and allowed
the lexical network to send feedback to the orthographic layer.

The visual input was assumed to rise to its maximal value
with some time delay. For clear, non-degraded targets, this delay
was extremely short, practically leading to instantaneous rise. For
degraded targets, it was significantly longer and postponed the
orthographic units’ reactions. In addition, the strength of the
orthographic-to-lexical connections was set to one of two values,
the lower representing low-frequency words and the higher rep-
resenting high-frequency words (following Borowsky and Besner,
1993). The network was encoded with four semantic neighbor-
hoods, each consisting of four correlated concepts. Prime-target
pairs were either related (using any of the correlated pairs, in any
order), or they could be unrelated (using concepts from different
neighborhoods). Trials were run for each relatedness condition,
each frequency value and each stimulus-quality value. Finally, the
experiment was run once with the expectancy mechanism active,
and once when it was inactive. When the expectancy mechanism
was active, noise values were lowered after one semantic transi-
tion and the semantic-to-lexical connections were strengthened
to a value from the middle of the correlation-dependent region of
Figure 4 (as in the previous simulation). When it was inactive, the
dynamics were run using the default automatic settings without
modulation of noise or feedback.

The priming results for active expectancy are shown in
Figure 7A, separated to the different frequency and stimulus-
quality conditions. Priming was significantly higher for low
frequency targets compared to high frequency targets, and for
degraded compared to clear targets. There was no interaction
of frequency by stimulus-quality. Figure 7C presents the mean
RTs of the unrelated condition compared to the results of an
unprimed LDT taken from Yap and Balota (2007) (Since the
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FIGURE 7 | Joint effects of frequency, stimulus-quality and context.

(A) Priming effect as a function of targets’ stimulus-quality (Clear, Degraded)
and frequency (Low, High), with expectancy active. (B) Effects of
stimulus-quality on priming with and without expectancy. Simulation results
are compared to human data taken from Stolz and Neely (1995). Data of the

simulation are taken from the high frequency condition only. (C) Raw reaction
times for the frequency and stimulus-quality conditions. Simulation results
are compared to human data taken from Yap and Balota (2007). Data of the
simulation are taken from the unrelated condition only, when expectancy was
active. Error bars represent ±1 standard error of the means.

human RTs include factors like response selection and motor-
related delays that are not part of our model, a 450 ms baseline
was added to all the simulated RTs to allow comparison). As
can be seen, the simulated results closely matched the human
findings, with RTs being slower for degraded and low-frequency
targets. Again, mirroring the experimental priming results, there
was no frequency by stimulus-quality interaction. We further
compared how expectancy in our simulation influenced prim-
ing of clear and degraded targets of the high frequency condition
to the priming of strongly associated pairs taken from Stolz and
Neely (1995), who manipulated expectancy through the use of
high/low RP. As demonstrated in Figure 7B, similar to the human
findings, whereas active expectancy led priming to be affected by
stimulus-quality, inactive expectancy eliminated this influence.

Our model is therefore able to replicate the human results con-
cerning the interactions between context, frequency, stimulus-
quality and expectancy. The context by frequency interaction
emerges, as per the Borowsky and Besner’s account, due to
the lexical convergence being more affected by semantic feed-
back when related targets have low frequency (i.e., have lower

orthographic-to-lexical connectivity) compared to when they
have high frequency. Expectancy is not a prerequisite for this
interaction because lexical convergence in the model is affected by
semantic feedback even when it is weak, that is, when expectancy
is not active. Expectancy, however, is required for the context
by stimulus-quality interaction. When expectancy is active, the
semantic-to-lexical feedback is increased, feeding the lexical layer
with input that passes the lexical units’ threshold even before the
target appears and thus raising the activity of the corresponding
lexical units to a non-zero level. This increase, in turn, raises the
local input of the corresponding orthographic units through the
lexical-to-orthographic feedback. When a related target appears,
this head start accelerates reactions of the orthographic units,
countering their delayed reactions to degraded targets. If, on the
other hand, an unrelated target appears, the head start cannot
assist reactions because different orthographic units are involved;
consequently, the degradation-induced delay remains strong.
Conversely, when there is no target degradation, both related and
unrelated targets are instantaneously recognized by the ortho-
graphic layer, making any head start inconsequential. This way,
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when expectancy is active, context interacts with stimulus-quality
(when expectancy is inactive, the feedback from semantic to lex-
ical is below threshold and therefore no lexical to orthographic
feedback is transmitted, preventing the context information to
affect degradation). Furthermore, once the orthographic units
reach their threshold and begin transferring information to the
lexical network, stimulus-quality can no longer influence the
dynamics, and only frequency (represented by the orthographic-
to-lexical connectivity strength) and context (represented by feed-
back from the semantic network) can have any effect. As a result,
stimulus-quality and frequency are additive.

EXPERIMENTAL SUPPORT OF THE MODEL
To conclude our review, we briefly describe two experiments con-
ducted to test some of our model’s predictions. The results were
largely supportive of the model, although clearly more studies
are warranted. Irrespective of our model, our findings pose some
serious challenges to former models of semantic priming.

One important prediction that comes out of our model is
that mediated priming should occur in LDT if expectancies
are manipulated to make semantic transitions highly beneficial.
Recall that in LDT, stimuli lists that contain both direct and
mediated pairs do not yield mediated priming effects whereas
when the stimuli list contains only mediated pairs (unmixed list),
mediated priming does appear. According to our model, this is
because unmixed lists allow the system to consistently experience
trials in which transitions are beneficial (mediated priming can
emerge only by transitions, in contrast to direct priming), thus

allowing it to overcome the initial tendency to avoid transitions.
Continuing with the same rationale, a natural prediction would
be that a mixed stimuli list in which related pairs are chosen such
that they will also consistently benefit from transitions, should
yield mediated priming as well. By the same token, the model
predicts that using such mixed lists in LDT should cause a reduc-
tion in backward priming with SOA (contrary to typical LDT
experiments in which backward priming is relatively insensitive
to SOA, e.g., Kahan et al., 1999). The reason is the same: if related
pairs strongly encourage transitions, the system would learn to
perform transitions in every trial. As a result, backward-related
primes, which depend on prime-target correlations, will lose their
impact when the SOA is sufficiently long. To sum up: the model
predicts emergence of mediated priming, and a decrease in back-
ward priming with SOA, in LDT using a mixed list which consists
of many directly-related primes that benefit from transitions (e.g.,
strongly-associated primes and targets). When the mixed list does
not contain many such related pairs, mediated priming should
not appear and backward priming should persist across SOA (see
Figure 8B for simulated results demonstrating these predictions).

A second prediction relates to the existence of mediated-
priming at extremely short SOAs. Since mediated priming
depends on transitions, and since transitions take time to occur,
using very short SOAs should abolish mediated priming even if
the stimuli list encourages it. This prediction was, in fact, explored
in the past (Ratcliff and McKoon, 1981) and results did not sup-
port it. However, there were several confounds in this past study
(for a discussion, see Lerner et al., 2012a), making it difficult to

FIGURE 8 | (A) Priming results in Experiment 1. Error bars represent ±1 standard error of the mean. † indicates significance level of 0.05 or better; ∗ indicates
significance level of 0.01 or better. (B) Simulated priming results corresponding to Experiment 1 under equivalent conditions.
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draw a definite conclusion. One example of a possible confound is
that very short SOAs by themselves might not be sufficient to limit
processing time of the prime before target recognition (den Heyer
and Briand, 1986). Subjects might simply delay target processing
even after it appears on screen, effectively lengthening the SOA.
One method commonly used to avoid such confound is using
forward masking of the primes (Perea and Rosa, 2002). Such pro-
cedure, combined with brief SOAs, typically prevents conscious
recognition of the prime and emphasizes automatic processing
over strategic ones. Our model therefore predicts that using brief
SOAs together with forward masking of the prime should pre-
vent mediated priming. In contrast, backward and direct priming
should persist under these conditions since both depend on direct
correlations between primes and target and do not require tran-
sitions (see Figure 9B for simulated results demonstrating these
predictions).

In the following, Experiment 1 tested our first prediction and
Experiment 2—the second prediction.

EXPERIMENT 1
Methods
Participants. One hundred and forty-four undergraduate stu-
dents at the Hebrew University of Jerusalem participated in the
experiment for credit or payment. All were native Hebrew speak-
ers. The 144 participants were randomly assigned to one of the
six experimental groups (see design), with 24 participants in each
group. There were no conspicuous differences between the groups
regarding the participants’ handedness, gender, age or education.

Design. Direct, mediated and backward-related priming effects
were tested in a 3 × 2 between-subjects design. The between-
subjects factors were SOA (250, 550, 1000 ms) and Expectancy
(induced, not induced). Although the direct, indirect (mediated)
and backward-related pairs were mixed within-subject and pre-
sented in random order in one block, these effects were not
directly compared to one another since we were not interested in
making a priori predictions regarding differences across priming
conditions, and different targets were used in each condition (see

FIGURE 9 | (A) Priming results in Experiment 2. Error bars represent ±1
standard error of the mean. † indicates significance level of 0.05 or better;
∗ indicates significance level of 0.01 or better. m indicates a marginally
significant result (p < 0.08). (B) Simulated priming results corresponding to
Experiment 2 under similar condition.

stimuli)6. The dependent variable for each analysis was the prim-
ing effect, calculated for each subject as: Median(RT)unrelated −
Median(RT)related, and all subsequent statistical analysis was com-
puted based on this variable.

Stimuli. The word-targets used in Experiment 1 (hereafter, the
“experimental” targets) were 80 different Hebrew words (with the
vast majority being nouns and adjectives in singular form), out
of which 26 words belonged to the directly-related condition, 30
to the mediated condition and 24 to the backward-related condi-
tion (the number of targets for each condition was determined
according to the availability of suitable primes in the Hebrew
norms). Each of these targets was paired with a related word
according to the relatedness condition it belonged to. Relatedness
in each group was based on published Hebrew association norms
(Rubinsten et al., 2005), and were determined as follows: the
primes in directly related pairs had a strong forward association
to their targets (mean association value = 0.38, range: 0.32–0.41.
The scale in these norms is 0–1, but association strengths of 0.3
and above are already considered very strong). The primes in
indirectly related pairs (the mediated priming condition) were
strongly associated with a word that has not been actually pre-
sented (the mediator), which, in turn, was strongly associated
with the target. Importantly, no direct forward or backward
association existed between the prime and the target in such
pairs (mean association value = 0). In addition, the absence
of direct semantic relatedness between these primes and tar-
gets was verified in a pilot experiment with participants who
were not tested in the main experiment. In the pilot, partici-
pants were instructed to rate the semantic relatedness of the 80
relevant prime-target pairs used in this study on a scale from
1 (not related) to 7 (highly related). The mean rating of the
pairs included in the mediated priming condition was a low 2.07
(range: 1.12–3). Finally, backward-related pairs were constructed
of words which had no forward association based on the norms
but had a medium-to-strong backward association (mean back-
ward association value: 0.33; range: 0.07–0.82), and received a low
semantic relatedness rating in the pilot test (mean: 2.76; range
2.17–3.46).

For each of the three related-pairs lists, a control list was
constructed in which the pairing between the primes and the tar-
gets in the same condition have been pseudo-randomly shuffled
such that the new pairs were semantically unrelated. This pro-
cedure yielded three unrelated lists corresponding to the three
related conditions. During the experiment, half of the experi-
mental targets in each relatedness condition were presented with
their related primes and half were presented with their unrelated
primes using a counterbalanced design, ensuring that although
no word was repeated within-subject, across participants all
targets appeared equally in the related and in the unrelated
condition.

In addition to the experimental words, 280 filler word-pairs
were assembled. Among these pairs, 140 were very strongly

6Different targets had to be used in each priming condition because the exis-
tent association norms in Hebrew are limited in scope and, consequently, it
was impossible to find all three types of primes for each target
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associated (based on association norms), 30 were related as
category-exemplars, and 110 were unrelated. All of these words
were different than the experimental words. The filler pairs were
used to manipulate the RP and the prevalent type of prime-
target relations in the experimental list, which are assumed
to affect expectancy. In the expectancy-induced condition, the
140 strongly associated filler pairs were added to the experi-
mental pairs. In the expectancy not-induced condition, the 30
categorically-related and 110 unrelated pairs were added to the
experimental pairs.

Finally, there were also 220 pseudoword-targets, all paired with
word-primes. The pseudowords were phonologically legal deriva-
tions of real words in which one syllable was changed to render
a meaningless item. The primes paired with the pseudowords
were unrelated to the original word from which the respective
targets have been constructed (and were also different than the
experimental and filler words).

Procedure. The experiment was run in a quiet testing-room on a
PC computer using the E-Prime software (version 1.1). All stim-
uli appeared on screen in black over a white background in David
font type size 40. Participants sat approximately 60 cm from the
screen with their right and left index fingers resting on the “L” and
“A” keyboard keys, respectively. At the beginning of the session,
subjects read written instructions on the screen describing the
LDT. The instructions informed the participant that in each trial,
the target stimulus is preceded by a briefly presented word that
should be read silently but to which no overt response is required.
Participants were instructed that the lexical decision to the tar-
get should be reported by clicking on the “A” key for a “word”
response and on the “L” key for a “nonword” response. Speed and
accuracy were equally emphasized.

After making sure the instructions were clear, subjects per-
formed a 22-trials practice session that was identical in structure
to the experimental session, but contained different word pairs.
If performance during training was not adequate (a rare event),
the experimenter could repeat the practice phase until it was clear
that the subject had mastered the task. After practice, the exper-
imenter left the room and the experimental phase initiated. The
440 trials were presented in 3 (nearly) equal blocks with two short

breaks in between (the duration of which was controlled by the
subject).

In each trial, a small cross-shaped fixation cue appeared on
screen for 700 ms and then replaced by the prime word, which
remained visible for a constant duration of 250 ms. After an Inter
Stimulus Interval (ISI) of 0, 300, or 750 ms (depending on the
SOA condition) the target appeared and remained on screen until
the subject’s response. Thus, the SOA was 250, 550, or 1000 ms.
During the ISI between the prime and the target, the screen was
blank. An inter-trial interval of 2000 ms followed the response. All
stimuli occurred randomly throughout the test list.

Results
The median RTs in each experimental condition are presented
in Table 1. As evident in that table, in most cases the RTs in the
related conditions were faster than in the unrelated conditions,
demonstrating priming effects of different magnitudes. The most
notable exception was in the mediated priming condition when
expectancy was not induced.

For statistical analysis, the priming effect was calculated for
each subject and each priming condition (direct, mediated and
backward) as the median RT to related targets subtracted from
the median RT to the corresponding unrelated targets. Only cor-
rect responses were used, thus excluding 3.18, 3.37, and 5.3%
of the responses in the direct, mediated and backward prim-
ing conditions, respectively. Each priming-type condition was
assessed separately using Analyses-of-Variance (ANVOA) with
Expectancy (induced, not induced) and SOA (250, 550, 1000)
as between-subjects, independent factors8. These priming effects
are presented in Figure 8, alongside corresponding simulated
results with equivalent conditions (the semantic structure used
in this simulation was taken from Lerner et al., in press, simi-
larly to the simulation results of Figure 3). As seen in the figure,

7Some small differences from the text may be evident, due to rounding
8Only subjects-analysis is reported. As noted by Raaijmakers et al. (1999) and
McNamara (2005), and in contrast to a common practice in the field, jointly
reporting subjects- and items-analysis is wrong, and, moreover, when a coun-
terbalanced design is used—such as in our experiments—subjects-analysis is
the only required statistics.

Table 1 | Mean reaction times across subjects (ms) in Experiment 17.

Direct Mediated Backward

Induced Not induced Induced Not induced Induced Not induced

250 Related 489 548 531 568 537 544

Unrelated 565 582 560 565 594 583

Priming 76 34 29 −3 57 39

550 Related 518 507 551 525 569 517

Unrelated 564 524 563 523 607 550

Priming 46 17 12 −2 38 33

1000 Related 467 533 519 564 542 560

Unrelated 555 564 539 560 552 560

Priming 88 31 20 −4 10 0
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the magnitude of priming was differently affected by SOA and
expectancy across the various types of relatedness.

In the direct priming condition, ANOVA showed that the
priming effect was larger in the expectancy induced than in
the non-induced condition [F(1, 138) = 18.8, MSE = 3417.2,
p < 0.001]. There was also a significant main effect of SOA
[F(2, 138) = 3.1, MSE = 3417.2, p < 0.05], but no interaction
between these two factors (F < 1). Pairwise comparisons
(Bonferroni-corrected) showed that the priming effect was
smaller in the 550 ms SOA condition than in the 1000 ms SOA
condition, an effect that was marginally significant (p = 0.064).
Priming was not significantly different, however, when compar-
ing the 250 ms SOA condition to either the 500 ms or the 1000 ms
SOA conditions. (both ps > 0.1). Individual t-tests of the priming
effect for each SOA separately (collapsed over the two expectancy
conditions) showed that for all three SOAs the direct priming
effect was significantly higher than zero [M = 55 ms, t(47) = 6.42,
p < 0.001 ; M = 31.7 ms, t(47) = 3.67, p < 0.002; M = 59.4 ms,
t(47) = 6.19, p < 0.001, for the 250, 550, and 1000 ms SOAs,
respectively; Bonferroni-corrected]. Similar T-tests of the prim-
ing effect for each expectancy condition separately (collapsed over
SOA) showed that under both expectancy conditions priming
was significant [M = 27.6 ms, t(71) = 4.21, for the expectancy
not-induced condition; M = 69.8 ms, t(71) = 9.45 for the
expectancy induced conditions. p < 0.001 for all comparisons,
Bonferroni-corrected].

In the mediated priming condition, only the main effect
of expectancy was significant [F(1, 138) = 6.3, MSE = 3090.3,
p < 0.02; all other ps > 0.7] indicating higher priming effect
in the expectancy induced than in the not-induced condition.
Collapsing over SOA, separate t-tests (Bonferroni corrected)
showed that mediated priming was significant when expectancy
was induced [M = 20.3 ms, t(71) = 3.03, p < 0.007] but not
when expectancy was not induced (M = −3.1 ms, p = 0.62).

In the backward priming condition, only the main effect of
SOA was significant [F(2, 138) = 6.7, MSE = 3428.9, p < 0.003].
Collapsing over expectancy conditions, Bonferroni-corrected
pairwise comparisons showed that backward priming was sig-
nificantly smaller for the 1000 ms SOA compared to either the
250 ms SOA condition (p < 0.002) or the 550 ms condition
(p < 0.05). There was no significant difference between the 250
and 550 ms SOAs. Separate Bonferroni-corrected t-tests for each
SOA condition showed that the priming effect was significantly
larger than zero for the 250 ms [M = 47.8 ms, t(47) = 6.78, p <

0.001] and 550 ms [M = 34.9 ms, t(47) = 3.65, p < 0.002] con-
ditions, but not for the 1000 ms SOA condition (M = 5.1 ms,
p = 0.55).

No error-analysis was attempted due to the small number of
errors (often zero) made by the majority of participants.

EXPERIMENT 2
Methods
Participants. Fifty-two native-Hebrew speakers, undergraduate
students at the Hebrew University of Jerusalem participated in the
experiment for credit or payment. They were randomly assigned
to two SOA groups with a total of 24 participants in the first group
and 28 in the second.

Stimuli and design. The same stimuli of the expectancy-induced
group from Experiment 1 were used, with Priming-type (Direct,
Mediated, Backward) as a within-subjects factor. The only
between-subjects factor was SOA (50, 150 ms; cf. Ratcliff and
McKoon, 1981).

Procedure. The procedure was similar to Experiment 1, with one
difference: instead of a small fixation cue in the middle of the
screen, the pattern “#######” was used, extended to cover the
whole space on which the prime and target words were to appear
and effectively inducing forward-masking on the prime. As pre-
viously explained, this change was made to minimize awareness
to the prime word, thus reducing the possibility that subjects are
holding back target-processing until the conclusion of prime pro-
cessing (a situation that diminishes the effectiveness of the SOA
manipulation; see Perea and Rosa, 2002).

Results
Median RTs in each experimental condition are presented in
Table 2. As in Experiment 1, the median RTs of the related pairs
in all but the short-SOA mediated-priming condition were faster
compared to the unrelated pairs.

Erroneous answers (constituting 5.1, 3.72, and 5.69% of
the total responses in the direct, mediated and backward
conditions, respectively) were removed from further analy-
sis. Repeated measures ANOVA with Priming-type (Direct,
Mediated, Backward) as within-subjects factor and SOA (50, 150)
as between-subjects factor revealed a main effect of Priming-
type [F(2, 100) = 6.1, MSE = 1722.7, p < 0.04], and, at a trend
level, main effect of SOA [F(1, 50) = 2.7, MSE = 807.9, p =
0.108]. The interaction between these factors was not significant
(F < 1).

Next, we analyzed how priming-type affected priming sep-
arately for the two SOAs. Repeated-measures ANOVA showed
that priming-type significantly modulated the priming effect
[F(2, 54) = 6.1, MSE = 1217.1, p < 0.005] at 50 ms SOA, but not
at 150 ms SOA (F = 1.6, p = 0.221). Planned comparisons at the
50 ms SOA condition showed that mediated priming was sig-
nificantly smaller than direct priming (p < 0.003) and was also
smaller than backward priming, although the latter effect was
only marginally significant (p = 0.073).

We then analyzed each priming type separately, as in
Experiment 1. ANOVA revealed that SOA did not modulate either
direct or backward priming (both Fs < 1). Therefore, for both
priming types, the data was collapsed over SOA. Separate t-tests

Table 2 | Mean reaction times across subjects (ms) in Experiment 2.

Direct Mediated Backward

50 Related 550 560 574

Unrelated 582 559 590

Priming 32 −1 16

150 Related 533 537 561

Unrelated 575 555 588

Priming 42 18 27
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showed that both effects were significantly above zero [M =
21.9 ms, t(51) = 3.1, p < 0.007; M = 36.4 ms, t(51) = 5.4, p <

0.001, for direct and backward priming, respectively; Bonferroni-
corrected), indicating the existence of both direct and backward
priming at these short SOAs. ANOVA revealed, however, that
SOA did modulate the mediated priming effect [F(1, 50) = 5.3,
MSE = 777.6, p < 0.03]. The significance of this effect was
therefore examined separately at each SOA. Individual t-tests
showed that mediated priming was significant for the 150 ms SOA
condition [M = 17.2 ms, t(49) = 2.9, p < 0.02] but not for the
50 ms condition (M = −0.7 ms, p = 0.9). These results are plot-
ted in Figure 9, alongside corresponding simulated results with
equivalent conditions9.

DISCUSSION
The two experiments confirmed most of our model’s novel pre-
dictions: using a stimuli list with a high proportion of strongly
associated pairs, assumingly encouraging transitions, we have
found mediated priming at all SOAs; in contrast, a low proportion
of category-exemplar pairs (assumingly discouraging transitions)
did not result in a significant mediated priming effect in any
SOA. Moreover, using a high proportion of associated pairs did
not yield mediated priming when the SOA was very brief and
forward masking was employed. Also as predicted, when using
the associative-pairs list, backward priming decreased as SOA
increased from 250 to 1000 ms and, furthermore, was evident
even at very brief SOAs, exactly as direct priming. These results
support the crucial conjectures made by our model regarding the
involvement of semantic transitions in the elicitation and tempo-
ral development of the semantic priming effect in general, and of
mediated and backward priming effects in particular.

Contrary to our prediction, backward priming decreased with
SOA even when using the category-exemplar list. This last result
stands in contrast not only to our model, but also to typical
findings using backward priming in LDT (Kahan et al., 1999;
McNamara, 2005). More experiments should therefore be per-
formed in order to clarify this issue. Similarly, there was also some
discrepancy between current and previous human results (and
the simulation) concerning direct priming effects: whereas direct
priming usually tends to either increase or maintain its magnitude
with SOA (Lucas, 2000), our results yielded an unexpected
decrease in direct priming at the 550 ms SOA compared to the
250 and 1000 ms SOAs. Given its uncharacteristic nature, it is not
clear how to interpret this finding; however, since our main focus
in the current experiments was mediated and backward priming
rather than direct priming, we do not see this result as posing
a crucial challenge to our model. Finally, another small discrep-
ancy appeared in the backward priming results of Experiment
2: whereas there was no statistical difference in backward prim-
ing between 50 and 150 ms, the corresponding simulation results

9In the simulation, however, we used SOAs of 100 and 200 ms instead of the
50 and 150 ms SOAs of the human experiment, to ensure correct convergence
of the network to the prime, as such convergence is not always achieved for
50 ms. Nevertheless, the principle mechanism that we demonstrate in this
simulation—namely, the lack of semantic transitions at very short SOAs—is
not affected by this small modification.

showed backward priming has already started decreasing at the
longer (200 ms) SOA. However, this may be explained by small
differences in the timing of transitions; taking Experiments 1 and
2 together, it is clear that the human results also show a decrease
in backward priming with SOA; therefore, the decrease shown in
the second simulation is also evident in the human results but at
a slightly longer SOA.

Our experimental results are consequential not only in rela-
tion to our model, but also to previous models of semantic
priming. First, to the best of our knowledge, they constitute the
first evidence that mediated priming is influenced by expectancy-
modulators such as RP. Traditional views have treated mediated
priming as resulting from pure automatic mechanisms and, in
fact, assumed that controlled processes abolish this effect (Neely,
1991). Given our results, this is clearly not the case (see Jones,
2010, 2012, for related results). Second, two prominent studies
in the past (Ratcliff and McKoon, 1981; Lorch, 1982) have deter-
mined that the onset of mediated priming parallels that of direct
priming. Their findings have been influential in shaping sev-
eral models of semantic activation (e.g., ACT-R. Anderson, 1983;
Jones et al., 2006). Our results cast doubt on this claim, proposing
instead that the former studies did not control for several impor-
tant factors related to mediated priming (see discussion in Lerner
et al., 2012a). We view this issue as central to models of seman-
tic memory, and one that requires more investigation in future
studies. In addition, some predictions of our model are yet to be
tested: for example, our model predicts that using an unmixed list
of backward-priming pairs in a pronunciation task should elimi-
nate the SOA dependency of this effect (see Lerner et al., in press,
for details). Future studies may test this prediction as well.

CONCLUDING REMARKS
In this review we attempted to give a general and concise descrip-
tion of our recent neural network model of semantic memory,
which was designed to account for various findings in the seman-
tic priming literature within a unified framework. We have shown
how the model can account for some of the core results in the
literature, and also provided some experimental support to sev-
eral of its main conjectures. Although the model is based on one
central claim, namely, that semantic activation is a result of an
interplay between correlations of encoded concept representa-
tions and transitions between these representations, some of the
model’s explanatory power derives from additional assumptions:
we assumed that the rate and type of transitions can be modu-
lated by attentional (“noise”) shifts, episodic learning and task
type, and that the feedback from the semantic to lexical layer
is subject to expectancies. These additional assumptions reflect
the many levels of processing that contribute to the semantic
priming phenomenon. Nevertheless, many of our assumptions
have already been raised in previous models based on experimen-
tal evidence, and the way they are combined in our model gives
them additional explanatory strength.

It is important to acknowledge some of the limitations of our
model in its current form (see also Lerner et al., 2012a). One
limitation is that the model, which is based on Hopfield-like
connectivity, does not constitute a working-memory system; con-
sequently, the network cannot fully activate more than one stored
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item at each moment in time (although partial activation of sev-
eral items in parallel does occur due to the correlations between
patterns). This limits the model’s ability to yield concurrent prim-
ing effects of multiple targets (e.g., Balota and Paul, 1996; Lavigne
et al., 2011). In addition, although Hopfield connectivity asserts
that memory patterns are encoded using a Hebbian learning
mechanism, the exact way by which concepts are learned and
stored is not addressed, and some of the biological assumptions of
Hopfield networks are unrealistic; it is therefore an open question
to what degree our ideal semantic neighborhoods can represent
the real structure of semantic memory. Nevertheless, the core
principles of the model, emphasizing the contribution of synap-
tic depression to dynamical changes in activation of concepts over
time, are independent of the particular network implementation;
therefore they can serve as explanatory mechanisms in future net-
work models of semantic priming based on different connectivity
principles which are more biologically realistic (e.g., Brunel and
Lavigne, 2009).

One element in semantic priming that our model did not
address is post-lexical decision-making processes. Indeed, adding
a decision-making module to our network may be a well-desired
expansion to its core structure due to the substantial effects of
decision processes in LDT (see Neely, 1991, for review). In prin-
ciple, several such mechanisms could be employed (e.g., the dif-
fusion model; Ratcliff et al., 2004). Assuming such a mechanism
is operating at a late stage in processing after lexical convergence
has occurred may be justified due to recent experimental evi-
dence showing an additive effect of semantic relatedness on RT
distributions (Balota et al., 2008).

In our previous studies (Lerner et al., 2012a, in press) we
have shown how the dynamics in our model, beyond their
contribution to sematic priming, can also form a mechanistic
interpretation of previous influential models of semantic pro-
cesses, such as spreading activation (Collins and Loftus, 1975) and
expectancy (Becker, 1980), as well as to simulate free association
norms (Nelson et al., 2004). In addition, the same model could
account for the full spectrum of semantic priming findings in
schizophrenic patients (Lerner et al., 2012b). Importantly, these
studies have also showed how the model can be seen as advocat-
ing a new computational view regarding the distinction between
automatic and controlled processes (Lerner et al., in press):
whereas any processes that require transitions between represen-
tations are not automatic per se and can be influenced by task
demands, genuinely automatic processing is based on correlations
between representations. For instance, people can think of the
concept dog while avoiding many other cognitive processes (e.g.,
saying “dog”; thinking of the concept sky; attending to the noise
in the street); but they cannot think of dog without also partially
thinking—even subconsciously—of the concept cat, simply due
to the correlation between the representations of these concepts.
Whether this definition of automatic processing can be usefully
applied to other domains remains to be seen in future studies.

MATERIALS AND METHODS FOR THE NEURAL NETWORK
SIMULATIONS
In this section we provide the main equations governing the net-
work dynamics and the specific parameter values that were used

in the numerical simulations of the model. Units are indicated in
brackets whenever relevant. In all numeric simulations the time
step represented �t = 0.66 ms.

The activity of the i-th neuron of each network at time t, xi(t),
was a logistic function of its local input hi(t):

xi(t) = g (hi(t)), g(z) = 1

1 + e− z
T

The local input obeyed the following dynamical equation:

τnhi(t) = −hi(t) +
N∑

j = 1

Jijxj(t) − λ(x̄(t) − p) − θ

+ [
Iext
i (t) − θ ext]

+ + ηi

Here, τn is the time constant of the neuron, xj is the activity of
the j-th neuron (with x̄ indicating average over all neurons), Jij is
the connectivity weight from neuron j to i, N is the number of
neurons, p is the sparseness of the representations, λ a regulation
parameter which maintains stability of mean activation, and θ is
a constant neuron-activation threshold, which can also be seen
as global inhibition. The threshold linear function [. . .]+ allows
the external input to the neuron, Iext

i (t), to influence the net-
work activity only if it surpasses some constant external threshold
θ ext . Finally, ηi is a noise term drawn from a Gaussian distri-
bution with standard-deviation ηamp and temporal correlations
τcorr . The temporal correlations in the noise were generated by
filtering white noise using a low-pass filter, which, for two time
points separated by τ ms, took the form:

f (τ ) = ηamp · e− τ
τcorr

The synaptic depression of the connection weight between the i-
th and j-th neuron obeyed (following (Tsodyks et al., 1998)):

Jij(t) =
J max
ij − Jij(t)

τr
− Ux maxxi(t)Jij(t)

with τr being the time constant of recovery of the synaptic effi-
cacy, U the utilization of the available synaptic resources, and
xmax the maximum firing rate of a neuron. Jmax is the Hopfield
connectivity matrix for sparse patterns (Tsodyks, 1990):

J max
ij =

P∑
μ = 1

(
ξ

μ

i − p
) (

ξ
μ

j − p
)

Np(1 − p)

with P being the total number of memories encoded into the net-
work, and �ξμ being the μ-th memory pattern. When episodic
connections are added between memory �ξμ and �ξυ , an additional
term is introduced to the connectivity weights (Herrmann et al.,
1993) such that: JNEW

ij (t) = JOLD
ij (t) + κξυ

i ξ
μ

j , with κ being the
salience of the episodic connections compared to the semantic
ones.

Reinforcement learning of the noise was implemented in the
following way: at the beginning of a simulation, the noise ampli-
tude, ηamp, is initialized as a 2-dimensional vector; its first term
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Table 3 | The semantic and lexical network parameters.

Parameter Semantic network Lexical network

Number of neurons, N 500 500
Sparseness, p 0.06 0.04
Correlation strength (% of overlapping active neurons
out of total active neurons in a pattern)

0.1 (Strong) 0.066
(Moderate) 0.033 (Weak)

0

Neuronal gain, T 0.05 0.05
Neuron’s time constant, τn 7 [ms] 13 [ms]
Neuronal activation threshold, θ 0.02 0.17
Regulation parameter, λ 14.75 27.75
Maximal firing rate, xmax 100 [spks/s] 100 [spks/s]
Utilization of synapses within each network, U [within] 0.206 [1/spks] 0 [1/spks]
Utilization of synapses between networks, U [between] Lexical to semantic:

0.087 [1/spks]
Semantic to lexical: 0 [1/spks]

Synaptic recovery time within each network, τr [within] 93 [ms] –
Synaptic recovery time between networks, τr [between] Lexical to semantic: 1333

[ms]
Semantic to lexical: –

Input gain between networks (Raw values. Actual values
were normalized by the number of pre-synaptic active
neurons in a pattern)

Lexical to semantic: 2 Semantic to lexical: 0.21 (default) 0.5145 (section
facilitation and inhibition in semantic priming and their
relation to expectancy) 0.4977 (section frequency,
degradation and context interactions)

External input gain – 0.56
Input threshold, θext 1 0.25
Default noise amplitude, ηamp(0) (For both initial and late
noise)

Pronunciation-like: 0.05
LDT-like: 0.01

0.025

Noise temporal correlations, τcorr 17 [ms] 17 [ms]
Multiplication factor of the exploration parameter, A 0.06 –
Exponential coefficient of the exploration parameter, β 0.0125 –
Reinforcement-learning rate, α 0.002 –
Convergence threshold 0.95 0.95
Episodic-connections salience κ 0.0336 –

corresponds to the noise in the semantic network at the beginning
of a trial, and its second term to the noise in the semantic net-
work after a transition has occurred (modulations after additional
transitions in a trial are neglected in the current simulations;
see Lerner et al., in press, for details). The actual noise ampli-
tudes that the network “uses” during trial n are randomized
around these base amplitude values such that each of them equals
ηamp(n) + ε(n), with ε(n) being an exploration parameter drawn
from a Gaussian distribution with mean zero. The trial is then
run using these two random noise amplitude values. At the end
of each trial, each value of the noise amplitude vector is updated
as follows:

ηamp(n + 1) = ηamp(n) + α
(

RTn − 1 − RT(n)
)

· ε(n)

Here, RT(n) is the Reaction Time of the lexical network to the
target at the last trial, RTn − 1 the average reaction time of the
previous trials (trials 1 to n − 1) and α the reinforcement learn-
ing rate. At the next trial, the system randomly chooses a new
noise-amplitude vector centered around the two new values, and
the process repeats. In order to simulate an “exploration” phase
at the beginning of an experiment that decays as the experiment
progresses, the variance of the exploration parameter decays with
trials: ε(n) ∼ N(0, Ae−βn).

The network parameters for the semantic and lexical net-
works that were used in all of the reported simulations can be
found in Table 3. Parameters of the orthographic network used
in Section Frequency, Degradation and Context Interactions are
given here: the orthographic network contained 500 neurons with
T = 0.01, τn = 7 ms, θ = 1.0. Raw connection gains (as defined
in Table 3) were: Lexical-to-orthographic: 0.75; orthographic-
to-lexical: 0.56/0.543 for high/low frequency. Gain of external
visual input was 1.5. The Input time-delay was controlled by a
time constant, τext , which received values of 0.66 ms/134 ms for
clear/degraded targets.
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