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Oscillatory models of speech processing have proposed that rhythmic cortical oscillations
in sensory and motor regions modulate speech sound processing from the bottom-up
via phase reset at low frequencies (3–10 Hz) and from the top-down via the disinhibition
of alpha/beta rhythms (8–30 Hz). To investigate how the proposed rhythms mediate
perceptual performance, electroencephalographic (EEG) was recorded while participants
passively listened to or actively identified speech and tone-sweeps in a two-force choice in
noise discrimination task presented at high and low signal-to-noise ratios. EEG data were
decomposed using independent component analysis and clustered across participants
using principle component methods in EEGLAB. Left and right hemisphere sensorimotor
and posterior temporal lobe clusters were identified. Alpha and beta suppression was
associated with active tasks only in sensorimotor and temporal clusters. In posterior
temporal clusters, increases in phase reset at low frequencies were driven by the quality of
bottom-up acoustic information for speech and non-speech stimuli, whereas phase reset in
sensorimotor clusters was associated with top-down active task demands. A comparison
of correct discrimination trials to those identified at chance showed an earlier performance
related effect for the left sensorimotor cluster relative to the left-temporal lobe cluster during
the syllable discrimination task only. The right sensorimotor cluster was associated with
performance related differences for tone–sweep stimuli only. Findings are consistent with
internal model accounts suggesting that early efferent sensorimotor models transmitted
along alpha and beta channels reflect a release from inhibition related to active attention to
auditory discrimination. Results are discussed in the broader context of dynamic, oscillatory
models of cognition proposing that top-down internally generated states interact with
bottom-up sensory processing to enhance task performance.
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INTRODUCTION
A growing number of neurophysiological models have proposed
that processes critical to receptive speech processing involve rhyth-
mic cortical oscillations tuned to temporal regularities of speech
(Arnal and Giraud, 2012; Giraud and Poeppel, 2012; Peelle and
Davis, 2012; Ghitza, 2013). On the production side, theories (e.g.,
frame/content theory) propose that the auditory system has been
tuned to the quasi-periodic constraints imposed by articulator
movements (MacNeilage, 1998). On the receptive side, oscillatory
frameworks posit that the articulatory-motor system structures its
output to match rhythms best captured by the auditory system at
multiple timescales (Giraud and Poeppel, 2012; Peelle and Davis,
2012). A fundamental link between the speech production mech-
anism giving rise to the acoustic signal and rhythmic sampling of
the same signal in sensorimotor networks would be advantageous
for a neural system tasked with resolving highly variable acous-
tic cues (Callan et al., 2010). However, it is as yet unknown how
rhythmic processes in motor and sensory regions are integrated on

a millisecond time scale and it remains unclear under what condi-
tions sensorimotor integration is adapted to improve perceptual
outcomes (Gallese et al., 2011).

According to internal model theories of speech production,
neural connections between perception and production are tuned
as infants learn to produce auditory targets (Callan et al., 2000).
Neurophysiological dual-stream models suggest that this audi-
tory to articulatory link is accomplished via a network of regions
known as the dorsal stream, including primary auditory and
auditory association areas, inferior parietal regions, and areas
of the premotor and sensorimotor cortex (Hickok and Poeppel,
2007; Rauschecker and Scott, 2009; Specht, 2014). In accor-
dance with this proposal, models of cortical rhythm generation
have suggested that neural oscillations in overlapping frequency
bands in auditory regions are tuned over time to the natural
rhythms of speech production (Poeppel, 2003; Giraud et al., 2007;
Morillon et al., 2010; Giraud and Poeppel, 2012). More specifi-
cally, over the course of development the motor and premotor
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cortex may tune the response of sensory regions to natural
low-frequency rhythms associated with jaw and lip movements
corresponding to syllabic rate (∼4 Hz). Thus, motor regions
involved in initiating speech movements and auditory areas
involved in parsing speech are thought to share common temporal
framework.

On the receptive side, it has long been suggested that the syl-
lable unit may represent an integrative time window in which
phonemes occurring at higher rates (∼20–50 ms) are processed
as part of a longer temporal unit (∼100–250 ms) occurring at
slower rates (Massaro, 1974). In support of that notion, psy-
chophysical data suggest that categorization of speech stimuli
along a continuum occurs in an integration window between
110 and 150 ms consistent with one cycle of oscillation in the
theta band (Chang et al., 2010). Higher-order auditory associa-
tion areas (e.g., BA 22) also show the property of theta–gamma
nesting in which the phase of fast gamma rhythms (50–70 Hz) is
locked to the phase of slower theta rhythms (4–8 Hz), suggest-
ing that phonemic categorization is integrated in a time window
consistent with the syllable unit (Giraud and Poeppel, 2012). Low-
frequency rhythms (∼3–10 Hz) have also been implicated more
generally in sensorimotor integration (Bland and Oddie, 2001),
indicating they may provide a common mechanism by which sen-
sory and motor systems share information for a range of sensory
signals associated with previous sensorimotor experience (Poep-
pel, 2003; Giraud et al., 2007; Morillon et al., 2010; Giraud and
Poeppel, 2012). As such, during receptive speech processing, it
has been proposed that sensory and motor oscillatory assemblies
tuned to the expected temporal structure of speech reset to aid
in the organization of continuous, stimulus driven neural spike
trains into abstract units for further analysis (Giraud and Poep-
pel, 2012). Importantly, while delta–theta phase reset consistent
with the syllable unit has been demonstrated in a studies using
continuous, phrase and sentence level auditory stimuli (Luo and
Poeppel, 2007; Doelling et al., 2013), it has not been demon-
strated to play a role in sensorimotor integration during speech
perception.

In addition to the potential role of low-frequency rhythms
in sensorimotor integration, recent theoretical frameworks have
implicated a functional role for beta rhythms both in motor con-
trol and perception (13–30 Hz; Engel and Fries, 2010; Arnal
and Giraud, 2012). On the motor side, beta band activity is
associated with the rolandic sensorimotor rhythm. The senso-
rimotor rhythm is thought to reflect processing downstream from
premotor regions and is associated with source estimates clus-
tering near the central sulcus. In particular, suppression of the
beta band (∼20 Hz) over the sensorimotor cortex is associated
with the observation, imagination, and execution of movements
in a somatotopic manner (see Hari, 2006 for review). It has
been proposed that efferent copies of a motor goal transmit-
ted along beta channels suppress responses in sensory regions
to the expected event, freeing the sensory system to respond to
external sensory stimuli (Engel and Fries, 2010). Efferent copies
of expected sensory events have also been shown to have a sig-
nificant effect on the interpretation of upcoming sensory cues
(Driver and Frith, 2000; Frith et al., 2000). As such, a common
function for beta band oscillations in both motor control and

perceptual contexts may be to generate top-down influences func-
tioning to override unexpected sensory events or conversely to
enhance activity focused on expected sensory features (Engel and
Fries, 2010).

More recently, Arnal and Giraud (2012) proposed that beta
rhythms interact with low frequency rhythms to enhance pro-
cessing focused on anticipated sensory events. According to
their framework, attention to behaviorally relevant task goals
and temporal predictions about expected sensory events mod-
ulate oscillatory processing in two ways. When sensory events
can be predicted in time (e.g., in connected speech) delta–theta
oscillations reset prior to stimulus onset in anticipation of the
forthcoming event, reflecting a predicting “when” scheme. How-
ever, when a sensory event cannot be predicted in time, delta–theta
phase reset is commensurate with stimulus onset. In that case, a
predicting “what” scheme may apply in which top-down, con-
tent related sensory predictions transmitted along beta channels
interact with low-frequency phase reset during the sensory event.
The functional effect of the two complementary mechanisms is
to boost the gain of neural responses to sensory signals within
the attended or temporal focus. Given the proposed role of beta
rhythms in both sensory prediction and motor control, the sen-
sorimotor cortex appears to be in a good position to process
incoming information from the bottom-up at delta–theta frequen-
cies and to be involved in top-down content related predictions at
beta frequencies (i.e., prior to the event).

Along with low-frequency rhythms and beta band activity,
some recent accounts have also emphasized the potential role
of alpha (8–12 Hz) rhythms in speech processing. Obleser et al.
(2012) suggested that disinhibition along alpha channels may
function to enhance sensory processing to attended auditory
events. According to general models of alpha function, high
power in the ongoing alpha band is viewed as an active inhibitory
mechanism functioning to gate irrelevant information, permit-
ting increased processing focused on events relevant to task goals
when disinhibited (Klimesch et al., 1998). In addition, alpha dis-
inhibition (i.e., decrease in band power) prior to sensory input
has been shown to predict accurate task performance in visual
perception tasks, suggesting a top-down modulatory role in per-
ceptual performance (Fellinger et al., 2011). In accordance with
these proposals, a growing body of evidence implicates an audi-
tory alpha generator in the temporal lobes that may suppress
during active attention to auditory stimuli. Suppression within
the traditional alpha band has been recorded near the auditory
cortex and auditory association areas using electrocorticographic
(ECoG) recordings (Crone et al., 2001). Alpha suppression local-
ized to the primary and auditory association areas has also been
demonstrated during auditory attention to contralateral acous-
tic stimuli and noise-vocoded word comprehension prior to and
following the auditory signal (Weisz et al., 2011; Obleser et al.,
2012). Scalp-recorded electroencephalographic (EEG) recordings
have shown that upper alpha rhythms (10–12 Hz) suppress dur-
ing effortful, sublexical speech processing (Cuellar et al., 2012).
Thus, much like beta suppression, alpha disinhibition may play
a functional role in auditory attention, functioning to facilitate
processing focused on expected sensory events (Callan et al., 2010;
Weisz et al., 2011).
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Although it is still unclear how local neuronal assemblies in
the dorsal stream share information globally, Giraud and Poeppel
(2012) propose that motor and sensory regions process informa-
tion across a broad spectral range consistent with processing at
multiple time scales. According to that model, an intrinsically left
hemisphere dominant region in the lip and tongue area motor
cortex (1–72 Hz) and hand area motor cortex (2–6 Hz) is con-
nected to the somatosensory and auditory regions (1–72 Hz).
The proposed functional role of input from the lip area is to
contribute to the parsing of speech at syllabic rates in sensory
regions, suggesting that the lip region is involved in the modu-
lation of low frequency rhythms (Morillon et al., 2010; Giraud
and Poeppel, 2012). While the model does not specify a role for
the motor system in sensory prediction, current internal model
frameworks suggest that early sensorimotor models in the same
region may function to constrain sensory analysis when sensory
cues are ambiguous (Skipper et al., 2006; Callan et al., 2010) or to
boost the gain of assemblies tuned to expected sensory features
similarly to the proposed role of selective attention in visual per-
ception (Hickok et al., 2011). Given proposals that auditory and
sensorimotor regions are tuned over the course of development
along shared oscillatory channels, it is reasonable to hypothesize
that the two regions would show activity in the same oscillatory
bands relevant to sensory processing at delta–theta, alpha, and
beta frequencies.

In light of oscillatory frameworks, potential differences in
activity along shared oscillatory bands within locally synchro-
nized regions would be predicted to vary depending on internal
states of expectancy and bottom-up sensory input. The available
neuroimaging evidence in sublexical speech discrimination tasks
supports the notion that dorsal stream sensorimotor activation
does indeed vary with internal state, task goals, and bottom-up
input (Binder et al., 2004; Callan et al., 2010; Osnes et al., 2011).
In a passive task, Osnes et al. (2011) demonstrated that, as white
noise is parametrically morphed into the acoustic structure of
speech syllables, an area within the dorsal premotor cortex is active
only at an intermediate step related to perceptual ambiguity. That
finding suggests that when attention is not directly allocated to
phoneme discrimination, the premotor cortex is only active when
acoustic cues are ambiguous. However, another study using the
same sound morphing procedure also demonstrated that when
participants told to expect vowels or musical notes prior to stimu-
lus presentation, ventral and dorsal aspects of the premotor cortex
extending into sensorimotor regions were active, suggesting that
top-down anticipatory processes are associated with motor acti-
vation even in the absence of a task (Osnes et al., 2012). Other
studies using passive tasks have also reported activity in the pre-
motor and somatomotor areas when participants listened to trains
of repeated syllables (Wilson et al., 2004; Pulvermüller et al., 2006).
Importantly, while activity in motor regions clearly occurs in pas-
sive tasks, a wide range of explanations have been proposed to
explain why it occurs and how it functions. It has been sug-
gested that motor activity may be related to resolving perceptual
ambiguity (Osnes et al., 2011), in some cases covert rehearsal of
repeated syllable trains (Hickok et al., 2011), or more recently may
be modulated by states of expectancy even in the absence of task
goals (Osnes et al., 2012). However, as perceptual performance

cannot be assessed in passive listening it is unclear in such condi-
tions whether motor activity plays a functional role in perceptual
performance (Adank, 2012).

Whereas performance related brain activity cannot be assessed
in passive tasks, it may be investigated using active tasks in which
participants register a response. Using a two-forced choice dis-
crimination task in which attention was directed to phoneme
discrimination, Binder et al. (2004) demonstrated that blood-
oxygen level dependent (BOLD) signals in auditory association
areas decrease as background noise increases, suggesting that
bottom-up acoustic cues are critical to activation of auditory
regions. However, as auditory signal degradation increased, greater
activity was observed in the posterior portion of Broca’s area, sug-
gesting that premotor regions play a compensatory role when
acoustic cues are degraded. Employing a similar experimental
paradigm, Callan et al. (2010) demonstrated that BOLD and
constrained time–frequency measures using MEG in posterior
temporal lobe regions were not associated perceptual performance
in in noise (i.e., correct relative to incorrect trials). However, dorsal
and more ventral regions of the left hemisphere premotor system
were related to perceptual performance. MEG analysis indicated
alpha and beta suppression both prior to and following correct
discrimination trials in the more ventral region of the PMC. The
findings were interpreted within internal model frameworks sug-
gesting that efferent articulatory models initiated in motor regions
function to constrain sensory analysis in noisy listening conditions
and mediate perceptual performance. Consistent with that study,
Alho et al. (2012) demonstrated an early (∼100 ms) potential fol-
lowing stimulus input in a region of interest within the precentral
gyrus that was greater for passive relative to active discrimina-
tion in noise, supporting proposed explanations for observed
differences in motor activity during passive relative to active tasks.

Studies using transracial magnetic stimulation (TMS) dur-
ing active speech discrimination/identification tasks have largely
corroborated functional imaging findings. Stimulation to dorsal
stream premotor regions results in increased reaction times follow-
ing tasks requiring speech segmentation without noise (Sato et al.,
2009) and enhanced adaptation to speech stimuli (Grabski et al.,
2013). TMS stimulation to the primary motor cortex (M1) during
active tasks has also been shown to facilitate speech identification
for the effector involved, suggesting an effector specific function in
perceptual constraints at the level of anticipated spectro-temporal
features (D’Ausilio et al., 2009). In addition, studies using pas-
sive tasks have shown impaired categorical perception (Möttönen
and Watkins, 2009) and reduced auditory event-related potentials
(ERPs) with stimulation to the lip region of M1 (Möttönen et al.,
2013), suggesting that stimulation to motor regions may modu-
late auditory processing even in the absence of a task. Although
it is unclear why some studies have shown more ventral activity
along the precentral gyrus and others have shown activity or per-
formance related differences with stimulation in the more dorsal
premotor cortex and adjacent somatomotor regions (Möttönen
and Watkins, 2012), it is clear that both regions play some role in
speech perception tasks.

Further insight into what drives differences in regional activa-
tion across internal states, task goals, and levels of bottom-up input
might be derived from a “dynamicist” model of cognition (Engel
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et al., 2001; Fries, 2005; Siegel et al., 2012; and see Callan et al., 2010
for application to speech perception). According to the this view,
top-down influences may be defined as endogenously generated
sources of contextual modulation supporting large-scale thalamo-
cortical and cortico-cortical interactions in goal-definition, action
planning, working memory, and selective attention (Engel et al.,
2001; Fries, 2005). Neural synchrony in the millisecond range
is taken to be critical for processing incoming sensory signals,
not only in higher order sensory association areas, but as a result
of synchrony between regions involved in previous experience,
including the procedural knowledge stored in sensorimotor net-
works (Driver and Frith, 2000; Frith et al., 2000). According to
this model, during sensory perception top-down influences carry
predictions about feature constellations that are then matched
with bottom-up sensory input in a manner similar to analysis-by-
synthesis (Stevens and Halle, 1967; Poeppel and Monahan, 2011).
These shared modulatory influences are also thought to compete
for stable resonant states reflecting a best match between inter-
nal states of expectancy and bottom-up sensory features. As such,
degenerate neural mappings between regions may function flexi-
bly in different oscillatory patterns depending on internal states,
perceptual context, and bottom-up sensory cues to achieve the
same perpetual outcomes (i.e., invariant categorization; Engel
et al., 2001).

From a dynamic perspective, active and passive perceptual
tasks may involve different mechanisms within the same sen-
sorimotor network. In passive tasks, bottom-up sensory cues
processed in temporal lobe regions may drive enhanced activity
in motor regions when spectro-temporal cues are ambiguous. In
that case, enhanced activity in motor regions might function to
produce a more stable match between ambiguous sensory cues
and corresponding representations in the motor cortex (Osnes
et al., 2011) or in some cases to aid working memory for more
complex tasks (Sato et al., 2009). However, when attention is
directed to a discrimination task, motor regions closely linked
to expected sensory features may function to monitor internal
states related to attention task goals, with greater activity in motor
or auditory regions when bottom-up sensory cues match with
expected sensory features. In that case, the sensorimotor cortex
could be characterized as one component of an entrained net-
work involved in phonological or articulatory selective attention
prior to and throughout sensory processing (Skipper et al., 2006;
Callan et al., 2010; Hickok et al., 2011). From a dynamacist view-
point, whether higher order auditory regions or sensorimotor
regions are selectively enhanced would depend on which local
region provides the best match between predicted feature con-
stellations and bottom-up input (Engel et al., 2001; Fries, 2005).
Thus, if the sensorimotor cortex plays a specific role in articulatory
selective attention, early sensorimotor activity prior to stimulus
presentation with subsequent response amplification following
sensory input would only be expected for acoustic stimuli closely
associated with articulatory production (i.e., syllables). Further,
speech specific enhancement would be expected to occur only
when bottom-up spectro-temporal cues are sufficient to support
successful discrimination.

Initial evidence consistent with a role for the motor system
in articulatory selective attention was reported in a recent study

(Bowers et al., 2013). In that study, to address the role of the sen-
sorimotor cortex in passive and active contexts, event-related EEG
was used to measure oscillatory activity of the rolandic sensori-
motor μ rhythm prior to, during, and following a speech and
non-speech discrimination task in varying levels of white noise.
A blind source separation approach (BSS) known as independent
component analysis (ICA) was used to isolate the sensorimotor
rhythm from other volume-conducted components of the EEG
signal (Delorme et al., 2012). Although no changes in power
relative to baseline were observed in passive tasks, early left-
hemisphere beta (15–25 Hz) suppression localized to the lateral
central sulcus was observed prior to stimulus onset, with peak
suppression just following auditory stimuli for syllables only. Peak
suppression just following acoustic events for correct trials in high
SNR (+4 dB) conditions was also greater than for the same sylla-
ble discrimination task at a low SNR (–6 dB) in which participants
performed at chance. Due to the time-course of beta activation and
speech selective responses, the findings could not be attributed to
covert rehearsal or simple sensory-decision mechanisms (Bowers
et al., 2013). Early sensorimotor beta suppression prior to stimu-
lus onset was interpreted as an articulatory model functioning to
constrain sensory analysis, with decreases in activity when ini-
tial hypotheses were at odds with bottom-up input. However,
as the analysis was confined to the sensorimotor rhythm and a
measure of power only, it was unclear how bilateral posterior audi-
tory components also submitted by ICA functioned in those tasks.
Given the predictions of current oscillatory frameworks, the sen-
sorimotor and auditory association regions would be expected
to share cortical rhythms at delta–theta, alpha, and beta fre-
quencies varying as a function of task and bottom-up sensory
input.

To address how proposed sensory and sensorimotor rhythms
function in the performance of a speech and non-speech dis-
crimination task, the aims of the current analysis are: (1) to
investigate whether alpha-like posterior temporal lobe clusters
are also associated spectral suppression along shared at beta and
alpha frequencies surrounding and during stimulus events; and
(2) to investigate how cortical rhythms shared between sensori-
motor and temporal lobe clusters vary depending on task and
the quality of bottom-up acoustic input (i.e., correct relative to
chance trials). Within the context of current frameworks, a num-
ber of predictions can be made about how cortical rhythms vary in
time, frequency, and space during passive listening and an antic-
ipatory speech and non-speech discrimination task. First, ICA
is expected to reveal an independent alpha-like generator with
scalp-topographies over the posterior temporal lobes and source
estimates in auditory association areas. Second, consistent with
previous findings, alpha suppression in posterior temporal lobe
regions would be expected prior to, during, following auditory
stimuli in active tasks in which attention is directed to discrimi-
nation. However, if as current oscillatory frameworks posit (e.g.,
analysis by synthesis), sensorimotor regions associated with speech
articulation participate in top-down predictions along beta chan-
nels, auditory regions would be expected to suppress along in the
same oscillatory band during active tasks. Third, if low frequency
phase reset (3–10 Hz) is associated with bottom-up mechanisms
only, it would be expected in auditory regions regardless of the
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task or type of stimulus input, with a decrease when bottom-up
sensory cues are insufficient for discrimination (i.e., chance trials)
relative to trials in which spectro-temporal cues are clear (i.e., cor-
rect trials). However, given the predictions of dynamic oscillatory
frameworks, another possibility is that performance related selec-
tive responses along delta–theta channels compete during sensory
input, reflecting the influence of both top-down and bottom-up
mechanisms. In that case, during active processing, if the sensori-
motor cortex plays a specific role in articulatory selective attention,
it would be expected to increase in active tasks generally with fur-
ther enhancement when bottom-up sensory input matches with
expected sensory features (i.e., correct trials) and to decrease when
such expectations were not fulfilled (i.e., chance trials). Further, a
pattern consistent with efferent motor models would be expected
for speech stimuli but not tone-sweep stimuli.

MATERIALS AND METHODS
PARTICIPANTS
Sixteen right-handed English-speaking adults (15 female and 1
male) with a mean age of 25 (range 20–42) participated in this
study. Participants were recruited from the general population at
the University of Tennessee. Participants reported no diagnosed
history of communicative, cognitive, or attentional disorders.
Degree of handedness was assessed using the Edinburg Hand-
edness inventory (Oldfield, 1971). This study was approved by
the Institutional Review Board of the University of Tennessee
Health Science Center. Prior to the experiment, all participants
were provided with an informed consent document approved by
the Institutional Review Board and all participants gave written
informed consent prior to inclusion.

STIMULI
Speech stimuli consisted of /ba/ and /da/ syllable generated using
AT&T naturally speaking text-to-speech software. The software
generates syllables from text using speech synthesized from a
human male speaker. Half of the stimuli were composed of differ-
ent initial sounds (e.g., /ba/ and /da/) and the other half were the
same (e.g., /ba/ and /ba/). The stimuli were normalized to have the
same root-mean-square (RMS) amplitude and low-pass filtered
with a cutoff at 5 kHz. Each stimulus syllable was 200 ms in dura-
tion with an interstimulus interval of equal length (i.e., 200 ms).
Thus, the total time required to present a stimulus pair was 600 ms.
For the tone discrimination task, sine-wave tone sweeps were gen-
erated using a procedure adapted from a previous neuroimaging
study (Joanisse and Gati, 2003). Tone-sweep stimuli were com-
posed with an 80 ms modulated tone onset and a 120 ms steady
state 1000 Hz sine-wave.

As with the speech stimuli, tone-sweeps were generated, low-
pass filtered with a cut-off at 5 kHz, and normalized to have the
same RMS amplitude as the speech stimuli. Tone pairs differed
only in whether the pitch onset was lower at 750 Hz than the steady
state tone or higher at 1250 Hz. For both speech and tones the
intertrial interval was 3000 ms. White noise for the tone and speech
stimuli was generated and processed using the same procedure as
for the speech sounds, with a low-pass filter cut-off at 5 kHz. All
auditory stimuli were processed using Soundtrack Pro academic
software on an iMac (2 GHz Intel core duo) computer and were

sampled at 44 kHz. Conditions were placed in random order prior
to presentation. All stimuli were presented at an absolute intensity
of ∼70 dB.

Previous investigations have shown better than chance perfor-
mance on a forced choice syllable discrimination task using a +4 dB
SNR and chance performance using a –6 dB SNR (Binder et al.,
2004; Callan et al., 2010). However, pure tones may be detected
with noise intensities as high as 18 dB above pure tone intensity
(i.e., –18 dB SNR; Ernst et al., 2008). To account for differences in
perceived loudness between tone and speech stimuli, preliminary
behavioral data were collected from 10 participants using Stim2
presentation software presented through Etyomotic ER1-14A tube
phone inserts in a sound-treated booth. Syllable and tone stimuli
were embedded in white noise and presented in 20 trials at the
following SNRs –18, –12, –6, +4 dB. Syllable stimuli were iden-
tified above chance in the +4 dB condition only. Accuracy for
tone-sweep conditions were not above chance in -18 dB SNR, with
60% in –12 dB SNR, 78% in the –6 dB condition, and 76% in
+4 dB condition. Paired t-tests revealed no significant difference
(p > 0.05) between the +4 and –6 dB tone-sweep conditions. As
such, the SNRs for the syllables were set at +4 and –6 dB and for
tone-sweeps at +4 and –18 dB.

PROCEDURE
Stimuli were presented using Stim 2 4.3.3 stimulus presentation
software on a PC computer. The experiment was conducted in an
electronically and magnetically shielded, double-walled, sound-
treated booth. Participants were seated in a comfortable reclining
armchair with their heads and necks well supported. Participants
were told that they would be listening to white noise, syllables, and
tones. They were instructed that the onset of one trial would com-
mence when white noise was audible, followed by either syllable
or tone stimuli. Participants were asked to indicate whether the
syllables or tone-sweeps sounded the same or different by pressing
a button using the left thumb only. To further control for the pos-
sibility that preparation for the response might confound motor
activity related to stimulus processing, participants were signaled
to respond via a 100 ms, 1000 Hz sine wave tone 1400 ms after
stimulus onset. To control for stimulus–response bias in the but-
ton press task, the order of the button press was counterbalanced
(Callan et al., 2010).

All conditions were randomized prior to presentation and pre-
sented in two randomized blocks consisting of 40 trials each.
Performance was evaluated as a percentage of correct trials
(%CT) and response time (RT). Participants were asked to lis-
ten under the following conditions: (1) passively listening to noise
(PasN); (2) passively listening to speech syllables in +4 dB noise
(PasSp + 4 dB); (3) passively listening to tone-sweeps in +4 dB
noise (PasTn + 4 dB); (4) active syllable discrimination-in +4 dB
noise (ActSp + 4 dB); (5) active tone-sweep discrimination-in
+4 dB noise (ActTn + 4 dB); (6) active syllable discrimination in
–6 dB noise (ActSp – 6 dB); (7) active tone-sweep discrimination
in –18 dB noise (ActTn – 18 dB).

EEG ACQUISITION
Thirty-two channels were used to acquire EEG data based on
the extended international 10–20 method of electrode placement
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using an unlinked, sintered NeuroScan Quik Cap (Jasper, 1958).
Recording electrodes included FP1, FP2, F7, F3, FZ, F4, F8, FT7,
FC3, FCZ, FC4, FT8, T7, C3, CZ, C4, T8, TP7, CP3, CPZ, CP4,
TP8, P7, P3, PZ, P4, P8, O1, OZ, O2 with two electrodes on the left
(M1) and right mastoids (M2). The reference electrode was placed
on the nasion and the ground electrode was at FPZ. The electro-
oculogram (EOG) was recorded by electrodes placed on the left
superior orbit and the left inferior orbit (VEOG) and on the lat-
eral and medial canthi of the left eye (HEOG) to monitor vertical
and horizontal eye movements, respectively. The impedances of
all electrodes were measured at 30 Hz before, during, and after
testing and were never greater than 5 k�.

EEG data were collected using Compumedics NeuroScan Scan
4.3.3 software and the Synamps 2 system. The raw EEG data was
filtered (0.15–100 Hz), and digitized via a 24-bit analog-to-digital
converter at a sampling rate of 500 Hz. Data was time-locked to the
onset of individual speech perception trials. After data collection,
the recorded EEG signal and EOG data was segmented into single
trials lasting approximately 5000 ms each, spanning from –3000
to +2000 ms with reference to stimulus onset (i.e., zero time).
To examine pre- and post-stimulus activity, the EEG data were
epoched into 5000 ms segments. EEG data were visually inspected
and trials contaminated by gross artifacts greater than 200 μV
were removed. A minimum contribution of 40 epochs for each
participant in each condition was required for inclusion in the
experiment. Due to a contribution of only 20 trials in several
conditions, one participant was omitted from analysis.

ICA PREPROCESSING
To decrease computational requirements for ICA processing, data
were downsampled to 256 Hz. Prior to ICA training, EEG data
were concatenated for each participant across conditions. Subse-
quent ICA training was implemented using the extended runica
algorithm implemented in EEGLABv12. The initial learning rate
was set to 0.001 with a stopping weight of 10–7. Linear decom-
position using the extended Infomax algorithm (Lee et al., 1999)
was conducted for each participant across experimental condi-
tions. The algorithm spheres the data matrix prior to ICA rotation
and computes the variance of IC projection weights on to the
original EEG channel data (Delorme and Makeig, 2004). The
resulting square weight matrix (30 × 30) is thus applied to each
participant, yielding a single set of weights for each experimen-
tal condition expressing independence in the data. The inverse
weight matrix (W−1) can then be projected onto the original EEG
channel configuration, providing a spatial scalp topography for
the components.

Independent components (ICs) were evaluated for each par-
ticipant across experimental conditions using three criteria. First,
an automated algorithm (ADJUST) shown in a previous study to
have good inter-rater reliability with researchers experienced in IC
noise removal, was used to tag non-brain artifact components in
the EEGLAB module (Mognon et al., 2010). Scalp-maps and log
spectra were also visually inspected for indicators of non-brain
artifact including abnormal spectral slope, and scalp-topographic
distributions known to be associated with eye-movement and tem-
poral muscle contraction (Onton and Makeig, 2006). Second, ICs
with 20 trials having outlier values (μV SD set to 10) over the

electrode with maximum power were eliminated (Callan et al.,
2010). Finally, equivalent current dipole (ECD) models for each
component were computed using a standard template boundary
element model (BEM) in the DIPFIT toolbox, freely available
at sccn.ucsd.edu/eeglab/dipfit.html (Oostenveld and Oostendorp,
2002). As individual magnetic resonance (MR) structural models
were not available, 10–20 electrode coordinates assuming a com-
mon head shape were warped to the standard template head model
followed by automated coarse and fine-fitting, yielding dipole
models for each of 480 ICs. The procedure involves hypothesiz-
ing a dipole source that could have generated the scalp potential
distribution for a given IC and then computing the model that
explains the highest percentage of the variance in the scalp map
(Delorme et al., 2012).

sLORETA SOURCE ESTIMATIONS
sLORETA is a functional imaging technique that provides stan-
dardized linear solutions for modeling 3D distributions of the
likely cortical generators of EEG activity (Pascual-Marqui, 2002).
The software uses a 3D spherical head model separated into com-
partments including, the scalp, skull, and brain. sLORETA analysis
operates under the assumption that scalp-recorded signals origi-
nate primarily in the cortical gray matter/hippocampi and that
neighboring neurons are synchronously activated, giving rise to
a signal that is distinct from surrounding noise. The head model
is standardized with respect to the Talairach cortical probabil-
ity brain atlas, digitized at the Montreal Neurological Institute
(MNI) and uses EEG electrode coordinates derived from cross-
registrations between spherical and realistic head geometry (Towle
et al., 1993). The brain compartment includes 6239 voxels (5 mm
resolution). Electrode coordinates were exported to sLORETA
from the EEGLAB module. For each IC, inverse ICA weight pro-
jections onto the original EEG channels were exported to the
sLORETA data processing module for each participant. Cross-
spectra were computed and mapped to the standard Taliarach
brain atlas cross-registered with the MNI coordinates, yielding
sLORETA estimates of current source density (CSD) for each of
480 ICs.

INDEPENDENT COMPONENT CLUSTERING
To identify similar ICs across participants, 480 (30 × 16) compo-
nents were then clustered using measure product methods in the
K-means toolbox implemented in EEGLAB (Delorme and Makeig,
2004). The toolbox uses principle component clustering methods
to reduce data dimensions and yields similar component clusters
across participants. Here, 28 possible component clusters were
considered. The data dimensions were reduced to 10 with the
standard deviation set to 3. As such, ICs more than 3 SDs from
any cluster mean were excluded as an outlying cluster. As both
the auditory alpha and sensorimotor components are thought to
have distinct spectral signatures, scalp-topographies, and source
estimates were precomputed and used in the clustering analysis.
Component power spectra for each subject were calculated by aver-
aging fast Fourier transform (FFT) spectra for each epoch using a
window length of 256 points. Scalp topographies were computed
as 30 channel (x,y) map gradients. ECD models and sLORETA
CSD distributions for each participant were precomputed in the
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manner described in a previous section. Only components with a
single dipole model within the head volume accounting for 80% or
greater of the variance in the IC scalp distribution were included in
component clusters. Pre-identified noise components tagged prior
to the analysis were used to identify clusters accounting for non-
brain sources. Given the initial hypotheses of a posterior temporal
lobe alpha rhythm and well-known spectral signatures for the sen-
sorimotor rhythm (see Bowers et al., 2013), only components with
distinct spectral peaks near 10 Hz for components with a temporal
distribution and those with peaks at ∼10 and ∼20 Hz for those
with a sensorimotor distribution were included in temporal and
sensorimotor clusters, respectively.

To examine stimulus induced changes in the EEG, time–
frequency transforms were precomputed in the EEGLAB module
using the STUDY command structure. A measure of power (event-
related spectral perturbations ERSPs) and a measure of phase
(intertrial coherence ITCs) were used to investigate ICA activa-
tion. ERSPs are changes scaled in normalized decibel units over
a broad spectral range (here 3–40 Hz) and ITCs are a measure
of the strength of phase alignment across trials (Delorme and
Makeig, 2004) and have been used to measure stimulus phase
alignment in previous studies of sentence level speech process-
ing (e.g., Luo and Poeppel, 2007). For ICs, ERSPs are scaled
in RMS decibel units on the same scale as the component and
ITCs are represented via a magnitude scale from 0 (weakest) to 1
(strongest). In this study, time–frequency transforms were com-
puted using a Morlet sinusoidal wavelet set at three cycles at 3 Hz
rising linearly to 20 cycles at 40 Hz. A 1000 ms pre-stimulus base-
line was selected from the silent intertrial interval. This baseline
served as a time period during which a surrogate distribution
was generated. The surrogate data distribution is constructed by
selecting spectral estimates for each trial from randomly selected
latency windows in the specified epoch baseline. In this study, the
baseline data was sampled 200 times, producing a baseline dis-
tribution whose percentiles were taken as significance thresholds
(Makeig et al., 2004). Significant changes in ERSPs or ITC magni-
tude (i.e., increases or decreases from the silent recording interval)
were then tested using a bootstrap resampling method. Significant
differences from baseline (p < 0.05 uncorrected) were consid-
ered in the subsequent within subjects analysis of both ERSPs and
ITCs.

Analysis of condition effects was carried out using the STUDY
command structure in EEGLAB. The single trial current for all
seven experimental conditions for frequencies between 3 and
40 Hz and times from –600 to 1500 ms post-stimulus onset were
entered into a time–frequency analysis. For the two conditions in
which performance was better than chance (ActSp + 4 dB and
ActTn + 4 dB) only trials discriminated correctly were consid-
ered in the ERSP analysis. A mean of 64 trials across conditions
were entered into the ERSP and ITC analysis. Wavelet estimates
across trials for each time and frequency were then converted
to a time–frequency matrix (69 × 105) from 3.4 to 39.9 Hz
to –589 to 1441 ms. To test the significance of condition effects,
non-parametric random permutation statistics adopting a 1 × 7
repeated measures ANOVA design were computed. The random
distribution represents the null hypothesis that no condition dif-
ferences exist. In the current study, 2000 random permutations

were computed and compared to F-values for the mean condi-
tion differences. To control for the inflation of type I error rates
associated with multiple comparisons, a correction for false dis-
covery rate (pFDR) was applied, allowing for a conservative test of
condition effects (Benjamini and Hochberg, 1995).

RESULTS
PERCENTAGE CORRECT TRIALS
Prior to the analysis, trials with RTs greater than three standard
deviations from the mean RT (i.e., trials greater than 1996 ms)
were removed and were not considered in any subsequent analy-
sis. Performance on the active perceptual identification tasks (i.e.,
tasks in which a response was required) was assessed as a per-
centage of correct trials. However, as it has been demonstrated
that premotor and sensorimotor regions are sensitive to response
bias in a speech discrimination task as opposed to perceptual
sensitivity (Venezia et al., 2012), d’-values are also reported. For
the active conditions, a repeated measures analysis of variance
(ANOVA) with the factor condition (1 × 4) revealed a significant
main effect [F(3,45) = 131.65, p = 0.00]. A series of paired compar-
isons with a Bonferroni correction for the number of comparisons
was employed to determine condition differences. A comparison
between ActSp + 4 dB and ActSp – 6 dB [F(1,15) = 207, p = 0.000,
η2 = 0.96] and between ActTn + 4 dB and ActTN – 18 dB
[F(1,15) = 113, p = 0.00, η2 = 0.88] indicated greater %CT in
the two high SNR conditions. A significant difference was found
for a comparison between %CT in the ActSp + 4 dB condition and
the ActTn + 4 dB condition [(F(1,15) = 39, p = 0.00, η2 = 0.72,
� = 1]. No significant difference was found for a comparison of
the Actsp – 6 dB and Actn – 18 dB conditions [F(1,15) = 1.79,
p = 0.20]. The ActSp – 6 dB and ActTn – 18 dB were also not
significantly different from chance (t = 0.98, p = 0.20). Thus,
performance in the ActSp + 4 dB condition [96% (SE = 0.01);
d’ = 3.25 (SE = 0.14)], was higher than performance in the
ActTn + 4 dB condition [83% (SE = 0.02); d’ = 1.61 (SE = 0.22)].
The means for the ActSp – 6 dB and ActTn – 18 dB were not
significantly greater than chance at [52% (SE = 0.01); d’ = 0.13
(SE = 0.11)] and [51% (SE = 0.01); d’ = 0.07 (SE = 0.11)],
respectively. Thus, as expected, only the speech and tone-sweep
conditions with a relatively high SNR were associated with better
than chance performance.

RESPONSE TIME
RTs for each subject in the four active conditions were entered
into a repeated measures ANOVA with the factor condition
(1 × 4). The analysis revealed a significant main effect for con-
dition [F(3,45) = 3.71, p = 0.010, η2 = 0.19, � = 0.77]. Planned
comparisons with Bonferroni adjustments revealed no significant
difference between the Actsp + 4 dB and ActTn + 4 dB con-
ditions [F(1,15) = 0.00 p = 0.96] or between the ActSp − 6 dB
and ActTn − 18 dB [F(1,15) = 0.24 p = 0.62]. A comparison of
correct trials in the ActSp + 4 dB and ActTn + 4 dB compared
to chance trials in the ActSp − 6 dB and ActTn − 18 dB condi-
tions, respectively, revealed a significant difference [F(1,15) = 7.23,
p = 0.016, η2 = 0.32, � = 0.71], indicating that correct trials were
associated with a lower mean RT than chance trials. The mean
RT for the two conditions in which performance (ActSp + 4 dB
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and ActTn + 4 dB) was above chance were 642 ms (SE = 58) and
641 ms (SE = 47), respectively. The mean RT for the two condi-
tions in which performance was at chance levels was 767 (SE = 68)
and 743 ms (SE = 55), respectively. Taken together, the analysis
of behavioral responses revealed an inverse relationship between
perceptual performance in the active conditions and button
press RT.

INDEPENDENT COMPONENT CLUSTERING
Independent component clustering revealed eight distinct com-
ponent clusters with neural as opposed to non-brain (i.e., artifact)
sources. Six component clusters accounted for eye-blinks, verti-
cal eye-movements, horizontal eye-movements, temporal muscle
noise, and non-specific noise (electromagnetic noise). Compo-
nent clusters with similar scalp-topographies, spectra, ECD, and
sLORETA CSD locations were found for a left hemisphere frontal,
frontal midline cluster, central midline cluster, left and right sen-
sorimotor clusters, and left and right posterior temporal clusters.
A less consistent (10 ICs) left-hemisphere parietal cluster was also
identified. However, as the focus of the current investigation is
on the sensorimotor and posterior temporal clusters, only these
clusters are discussed further.

For the posterior temporal clusters, thirteen participants sub-
mitted ICs with topographic distributions over the left temporal
lobes and thirteen participants submitted ICs with right hemi-
sphere temporal distributions. Mean scalp-topographies were
centered over the left posterior temporal lobe (Figure 1A) with
a similar topography over the right hemisphere (Figure 2A). For
both clusters, log spectra collapsed across cluster ICs revealed
distinct spectral peaks at ∼10 Hz (Figures 1B and 2B) and
ECD locations within the left and right posterior temporal lobes
with an average dipole location at Taliarach coordinates [(x,y,z)
−58,−36,8] in the left hemisphere and [(x,y,z) 61,−34,5] in the
right hemisphere (Figures 1C and 2C). The residual variance
not explained by the single dipole model was 8.33% for the left
hemisphere and 9.97% in the right hemisphere, indicating that a
single dipole model accounted for ∼90% of the variance in the
scalp distribution. To evaluate the statistical significance of clus-
ter source estimates, statistical comparisons relative to zero (i.e.,
no activation) were computed for all sensorimotor and posterior
temporal scalp topographies in the sLORETA statistical module
(Grin-Yatsenko et al., 2010). A paired t-test was carried out for fre-
quencies between 0.5 and 40 Hz (159 frames) with the smoothing
parameter set to 1 (single common variance for all variables), using

FIGURE 1 | Cluster results for the left-hemisphere α component.

(A) Mean scalp potential distribution (W−1) scaled to RMS microvolts
and individual scalp distributions for each participant. (B) Mean spectra
of the component across cluster ICs. (C) Average equivalent current

dipole location, and (D) maximum current source density voxels
(t -values) with greater values in darker colors and smaller values in
lighter colors (NIH Micro template; at p < 0.01 corrected for multiple
comparisons).

Frontiers in Psychology | Language Sciences May 2014 | Volume 5 | Article 366 | 8

http://www.frontiersin.org/Language_Sciences/
http://www.frontiersin.org/Language_Sciences/archive


Bowers et al. Sensorimotor rhythms in auditory discrimination

FIGURE 2 | Cluster results for the right-hemisphere α component.

(A) Mean scalp potential distribution (W−1) scaled to RMS microvolts
and individual scalp distributions for each participant; (B) mean spectra
of spectra of the component across cluster ICs. (C) Average equivalent

current dipole location, and (D) maximum current source density voxels
(t-values) with greater values in darker colors and smaller values in
lighter colors (NIH Micro template; at p < 0.01 corrected for multiple
comparisons).

5000 random permutations yielding corrected t-value threshold
for all 6235 voxels in the sLORETA solution space. For temporal
lobe clusters, a paired test revealed significant voxels at p < 0.01 in a
region extending from the middle temporal gyrus to the parietal-
temporal boundary with maximum CSD estimates at Taliarach
[t = 1.57(x,y,z) −64,−45,18] in the left hemisphere and Taliarach
[t = 2.07 (x,y,z)−55,−41,16] in the right (Figures 1D and 2D).

The characteristics of sensorimotor clusters are discussed in
Bowers et al. (2013) and are consistent with well-known spectral
and spatial features of the sensorimotor μ rhythm (Hari, 2006).
The only difference between this analysis and that for the previous
study is the head model used. The current study used a more real-
istic BEM whereas the previous study used a less realistic spherical
model. Use of the BEM model resulted in a slightly more anterior
mean dipole location in the left and right hemispheres at Tal-
iarach coordinates [(x,y,z) −50,−11,33 ] for the left and [(x,y,z)
45,−16,43] for the right. The distributed solution (sLORETA)
showed that the highest CSD estimates were distributed over the
central sulcus in both the left Taliarach [(x,y,z −45,−18,42)] and
right hemispheres Taliarach [(x,y,z) 40,−16,61].

TEMPORAL LOBE CLUSTERS (α): ERSPs AND ITCs
Mean ERSP (Figure 3) ITC values (Figure 5) across subjects and
conditions are shown in a time–frequency map with corrected sig-
nificance values for condition in a separate map. Non-significant
values are depicted in green and significant values are depicted
in color from orange for weaker values to red for stronger values
(pFDR < 0.10 to pFDR < 0.001). A repeated measures ANOVA
design with the factor condition (1 × 7) revealed no significant
differences for the number of trials submitted between conditions
(F = 0.92, p = 0.48). The initial permutation analysis (1 × 7)
revealed significant ERSPs in the 8–30 Hz range (alpha/beta) in the
left α cluster and in the same range for the right hemisphere cluster
corrected across the entire time–frequency matrix (pFDR < 0.05;
35 × 105; see Figure 3). Significant time–frequency values were
found in the time-periods prior to, during, and after stimulus
onset with peak event-related decreases in spectral power (i.e.,
ERD) in the time period after stimulus offset. The same statistical
procedure (1 × 7; 32 × 105) was applied to the ITC dependent
measure and showed significant ITCs commensurate with stimu-
lus onset, with the strongest values extending to 800 ms following
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FIGURE 3 | Mean left and right hemisphere α time–frequency ERSPs

(event-related spectral perturbations). ERSPs in root-mean-square decibel
units as a function of condition (1 × 7) in the left (A) and right hemispheres
(B). FDR corrected p-values indicating significant effects in the beta

(13–30Hz) and alpha ranges (8–13Hz) in the left (A) and right hemispheres (B).
Non-significant values are colored green, with significant values shown in
orange and red. Event-related decreases in spectral power are indicated in
blue (2.5) and increases are indicated in red (2.5).

stimulus onset in both left and right hemisphere component
clusters.

To determine the sources of condition effects, first paired t-
tests were used to compare each condition to the passive noise
baseline (PasN). To test the initial hypotheses regarding ERSPs,
the time periods before, during, and after stimulus onset were
of interest and thus all subsequent analyses were restricted to the
equal 600 ms time intervals prior to, during, and following stimu-
lus onset (i.e., –600 to 1200 ms) prior to the cued response. First,
for the ERSP dependent, paired comparisons to PasN revealed
that only active conditions were associated with significant alpha
suppression relative to PasN (pFDR < 0.05; 35 × 92). Planned
comparisons designed to investigate task performance related
effects showed no significant differences between correct trials in
the ActSp + 4 dB condition and chance trials in the ActSp − 6 dB
condition (pFDR > 0.05; 35 × 92) in either the left or right
hemisphere cluster. The same comparison for ActTn + 4 dB and
ActTn − 18 dB showed no significant difference in either hemi-
sphere. As such, suppression in the alpha and beta frequencies
was generally associated with active tasks demands but not with
behavioral performance.

Second, for analysis of the ITC dependent all conditions were
first compared with the PasN baseline in the left and right hemi-
spheres in the time period from stimulus onset to 800 ms following
stimulus onset in the 3–9 Hz range. Paired comparisons showed
that passive conditions in both hemispheres were associated with
phase reset relative to PasN (pFDR < 0.05; 28 × 41). A compar-
ison of active conditions to baseline revealed at significant effect
for the ActSp + 4 dB and ActTn + 4 dB conditions. A compar-
ison of correct trials in the ActSp + 4 dB condition with chance
trials in the ActSp − 6 dB condition showed a brief significant
difference from 400 to 600 ms following stimulus onset in the
left hemisphere. The same comparison in the right hemisphere
showed no significant difference for speech trials or for correct tri-
als in the ActTn + 4 dB condition compared to the ActTn − 18 dB
condition.

Given that both active correct and passive conditions were asso-
ciated with higher ITC magnitude relative to the passive noise
baseline (PasN), it was unclear whether phase reset in the active
conditions was due to active task performance or the quality of
bottom-up acoustic information. In other words, as both stimu-
lus types were presented at the same SNR, to determine whether
active task demands or bottom-up acoustic information accounted
for increases in ITC magnitude, the active and passive conditions
were compared. No significant differences at pFDR > 0.05 were
observed, suggesting that active task performance was not asso-
ciated with increases in ITC magnitude in the left temporal lobe
cluster.

SENSORIMOTOR CLUSTERS (μ): ERSPs AND ITCs
Mean ERSP values for correct and chance trials for the left hemi-
sphere clusters are shown in Figure 4. Mean ITC values across
conditions are shown in a time–frequency map with FDR cor-
rected significance values for significant condition effects in a
separate map (Figure 5). ERSPs in the sensorimotor clusters as
reported in Bowers et al. (2013) were associated with significant
suppression in the traditional beta range prior to, during and
following stimulus onset. The only performance related effect
was just following stimulus offset in the left hemisphere cluster
for the active syllable discrimination task only (shaded region in
Figure 4). For the analysis of sensorimotor ITCs, the initial per-
mutation analysis adopting a repeated measures ANOVA design
(1 × 7) revealed significant ITCs (pFDR < 0.05; 32 × 105) in the
3–9 Hz range. Paired comparisons to PasN revealed significant dif-
ferences in both hemispheres in the ActSp + 4 dB, ActSp − 6 dB,
and ActTn + 4 dB conditions only (pFDR < 0.05; 28 × 41). No
significant differences in either hemisphere were associated with
passive conditions. As such, unlike the temporal lobe clusters,
the sensorimotor clusters were associated with increases in ITC
magnitude related to active task performance only. However, it is
worth noting that passive conditions were associated with indi-
vidual variability relative to the silent recording interval (p < 0.05
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FIGURE 4 | Mean left hemisphere μ and α time-frequency ERSPs

(event-related spectral perturbations) for correct and chance trials.

(A) sLORETA images showing significant values in the sensorimotor and
the temporal lobe regions, (B) ERSPs showing significant alpha and beta

suppression in the active conditions for correct and chance trials. As
reported in Bowers et al. (2013), the only performance related difference is
in the time period following stimulus offset over the sensorimotor cortex
(shaded region).

FIGURE 5 | Mean left and right hemisphere sensorimotor (μ) and

temporal (α) ITCs. (A) Mean ITCs for the left and right sensorimotor
component clusters as a function of condition with p-values corrected for
false discovery rate in a separate map (non-significant values indicated in

green). (B) Mean ITCs for the left and right posterior temporal
component clusters as a function of condition with p-values corrected for
false discovery rate in a separate map (non-significant values indicated in
green).
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uncorrected), suggesting that some participants presented with
phase reset in passive conditions but the overall results did not
survive the conservative correction for false discovery. For the left
hemisphere cluster, performance related tests showed that correct
trials in the ActSp + 4 dB conditions were significantly differ-
ent from chance trials in the ActSp − 6 dB condition in the time
period from 200 to 400 ms following stimulus onset ∼200 ms prior
to the difference observed in the temporal lobe cluster (Figures 6
and 7). A comparison of correct ActTn + 4 dB trials with chance
ActTn − 18 dB showed significant differences throughout stimulus
presentation in both the left and right hemispheres.

DISCUSSION
The current analysis of event-related EEG in speech and non-
speech discrimination investigated how hypothesized oscillatory

mechanisms over the posterior temporal lobes function in time
relative to those recorded over the sensorimotor cortex in a
speech and non-speech discrimination task. The first aim was
to demonstrate that alpha-like component clusters over the pos-
terior temporal lobes are associated spectral suppression along
shared at beta and alpha frequencies surrounding and during
stimulus events. The second aim of the analysis was to investi-
gate how oscillatory rhythms shared between sensorimotor and
temporal lobe clusters vary depending on task and the qual-
ity of bottom-up acoustic input (i.e., correct relative to chance
trials).

First, in accordance with our initial hypotheses, an IC cluster
was found with a topography over the posterior temporal lobe
characterized by mean peak spectra at ∼10 Hz and source esti-
mates ranging from the posterior superior temporal sulcus to

FIGURE 6 | Mean ITCS for correct and chance trials as a function of

stimulus type and performance level for left and right sensorimotor

and temporal clusters in the syllable discrimination condition.

(A) Mean ITC values for left and right clusters in the syllable
discrimination condition with significant differences between correct and

chance trials depicted in a separate map (non-significant values in
green). (B) Mean ITC values for left and right hemisphere clusters in the
tone-sweep discrimination condition with significant differences between
correct and chance trials depicted in a separate map (non-significant
values in green).
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FIGURE 7 | Line chart depicting earlier peak responses in the left-

sensorimotor clusters relative to temporal lobe clusters for correct

syllable discrimination trials. Sensiromotor cluster shown in red with the
temporal cluster shown in blue. Significance for the contrast correct >

chance are marked in the red column for the sensorimotor cluster and blue
for the temporal lobe cluster.

the parietotemporal boundary. sLORETA analysis showed that
the greatest area of overlap between the posterior temporal scalp
maps was in the posterior superior temporal gyrus (pSTG) near
the parietal–temporal boundary. Second, alpha suppression was
not different from baseline during passive tasks, yet active tasks
were associated with alpha and beta suppression from the time
period prior to stimulus onset to the time following stimulus
offset. Third, activity in neither band was significantly related
to correct relative to chance identification trials, suggesting a
more general role in auditory attention not specifically related
to perceptual performance. In accordance with initial hypothe-
ses, the posterior temporal cluster was associated with phase
reset predominantly in the delta–theta band reaching up into
the low alpha band (here 3–9 Hz) that was also significantly
related to perceptual performance for both control tone-sweep
and syllable stimuli. Left lateralized performance related effects
were found for syllables with a temporal integration window
of ∼200 ms, while a left and right-hemisphere network was
related to tone-sweep discrimination performance in the same
time window. These findings are consistent with a class of oscilla-
tory models that may be referred to collectively as “entrainment”
theories predicting low frequency phase reset across the senso-
rimotor network thought be critical for parsing speech units
(Schroeder and Lakatos, 2009; Giraud and Poeppel, 2012; Ghitza,
2013).

Critically, during active conditions power suppression in the
beta range and phase reset in the in the delta–theta range
occurred in sensorimotor components consistent with that in the
posterior temporal lobe clusters, implicating entrained oscilla-
tory mechanisms supporting task-related performance. Passive
processing in the sensorimotor clusters was not found to be
different from the PasN baseline, suggesting that robust phase
reset in motor regions, unlike that in sensory regions, was
not required during passive listening. However, during active
processing, significant differences between active correct and

chance trials were found earlier in the left sensorimotor cluster
compared to those over the left posterior temporal lobe. As pro-
posed by neurophysiological accounts of active processing (e.g.,
active sensing; analysis-by-synthesis; internal models), early effer-
ent copies during active attention to syllable categorization may
function to modulate processing focused on sensory events, result-
ing in increases in ITC magnitude consistent with the syllable
unit in sensorimotor regions. Consistent with recent propos-
als (e.g., Arnal and Giraud, 2012), these findings suggest that
shared mechanisms evident in locally synchronized rhythms con-
tribute bidirectional information along oscillatory channels both
from the top-down at higher frequencies and from the bottom-
up at lower frequencies to mediate perceptual performance. In
the discussion following, findings will first be framed within a
synthesis of the literature regarding the accumulating evidence
for an auditory cortical alpha rhythm and neuroimaging evi-
dence for posterior temporal lobe activation in similar tasks.
Second, dynamic time–frequency measures (i.e., ITCs and ERSPs)
will be discussed relative to the functional role of sensorimotor
integration in speech discrimination tasks. An overall interpre-
tation of the findings will be discussed from a dynamic systems
perspective.

POSTERIOR TEMPORAL ALPHA RHYTHMS
Despite the wide acceptance of well-established somatosensory
and visual alpha rhythms, the presence of an independent audi-
tory alpha rhythm has been met with skepticism (Weisz et al.,
2011). However, an accumulating body of evidence implicates
such a rhythm in auditory processing. The current finding of an
IC cluster with an alpha-like signature over the posterior tempo-
ral lobes is consistent with an independent alpha rhythm in the
auditory association areas and contributes to evidence support-
ing its role in speech processing. Two other studies using ICA
of event-related EEG have detected an independent physiological
process localized to the posterior temporal lobes related to audi-
tory event-related potentials (Marco-Pallarés et al., 2005) and for
a single subject showing alpha/beta suppression in audio-visual
speech processing (Callan et al., 2001). Further, the existence of
an independent auditory alpha rhythm with source estimates in
the posterior temporal lobes is also broadly consistent with pre-
vious neuroimaging findings employing speech and non-speech
discrimination tasks. Binder et al. (2004) found voxels in 13 of
18 subjects correlated with syllable identification accuracy were
located in the left pSTG and right STS. The sources estimates
reported here are also consistent with ECoG recordings over the
pSTG (Chang et al., 2010) and are consistent with alpha sup-
pression in the same region (Crone et al., 2001). A study using
tone-sweeps characterized by a rapid transition similar to those
used in the current study, also reported left lateralized effects in
auditory association areas for both speech and non-speech signals
containing a rapid temporal cue, further suggesting that auditory
object identification generally relies on overlapping left and right
hemisphere mechanisms for processing rapid acoustic transitions
(Joanisse and Gati, 2003). Consistent with the asymmetric sam-
pling in time hypothesis (AST), left and right hemisphere networks
appear to share acoustic information at overlapping sampling
rates, with a preference in left-hemisphere regions for integrating
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rapidly transitioning cues (Poeppel, 2003). Future analyses using
the current methodology might focus on how information at rapid
(e.g., low gamma) and slow (delta–theta) rhythms are integrated
in temporal lobe components.

SENSORIMOTOR INTEGRATION
The relative role of motor and auditory subsystems in resolving the
inherent variability of the speech signal is controversial (Gallese
et al., 2011). The current findings contribute to this debate by
providing high-temporal resolution measures prior to, during,
and following sensory events along oscillatory channels proposed
to play an important functional role in perception and sensori-
motor integration (Callan et al., 2010; Arnal and Giraud, 2012;
Giraud and Poeppel, 2012; Obleser et al., 2012). First, the current
findings support the conclusion that motor and higher order sen-
sory subsystems function in different rhythmic modes for active
relative to passive tasks. For measures of power, passive tasks
were not significantly different from the PasN baseline in either
sensorimotor or temporal clusters, while active tasks were associ-
ated with suppression at alpha and beta frequencies. Bottom-up
phase responsive mechanisms in higher-order auditory regions
were driven by stimulus input, were phase responsive to acoustic
stimulation generally, and were reduced to baseline levels when
acoustic cues were severely degraded. Phase reset in sensorimo-
tor regions was not robustly active during passive listening, was
responsive to the task regardless of acoustic degradation level,
and was differentially enhanced for speech relative to non-speech
stimuli when sensory input supported task goals (i.e., correct tri-
als). These findings suggest that active top-down mechanisms
reflecting release from inhibition were recruited primarily due to
active attention to task demands and were selective to expected
input, whereas bottom-up sensory mechanisms were active dur-
ing acoustic stimulation regardless of task or the auditory stimulus
employed.

One caveat to the preceding conclusions is that it remains pos-
sible that greater degradation or ambiguity of acoustic cues might
activate automatic phase reset in sensorimotor regions in a pas-
sive task (Osnes et al., 2011). A recent TMS study demonstrated
automatic motor influences on auditory processing in during the
presentation of acoustic cues in which speech stimuli were manip-
ulated along an F1–F2 continuum (Möttönen et al., 2013). In
both the Osnes et al. (2011) and Möttönen et al. (2013) studies,
the ambiguity of acoustic cues for stimulus perception appears
to have induced automatic activity in motor regions, a process
that might be characterized as a feedforward mechanism connect-
ing early sensory hypotheses with articulatory representations in
motor regions to aid in resolving perceptual ambiguity. This mech-
anism may be contrasted with the role of the motor system when
participants anticipate expected features of the auditory stimulus
in the service of task goals, which are thought to be propagated
backward in the cortical hierarchy via articulatory models (Callan
et al., 2010; Hickok et al., 2011; Arnal and Giraud, 2012). Thus,
taken in the context of evidence from a range of active and pas-
sive tasks, the current results implicate more than one function
for sensory and motor subsystems in speech discrimination vary-
ing with attention to auditory stimuli and the quality of acoustic
information conveyed by the stimulus.

Second, the current analysis suggests that, during tasks requir-
ing active discrimination, left hemisphere sensorimotor systems
have an earlier performance related effect on delta–theta phase
reset relative to left-hemisphere temporal lobe clusters. Although
non-speech rapid-auditory processing activated the same left-
hemisphere sensorimotor network, no performance related time
differential between sensorimotor and temporal activity was
observed. This finding is consistent with explanations proposed
by a number of research groups to account for how sensorimotor
experience (i.e., procedural knowledge) with speech production
could have a modulatory influence on speech discrimination.
According to these proposals, early articulatory models prior to
acoustic onset provide general predictions about the most likely
upcoming spectro-temporal features. Early beta suppression prior
to sensory input can be explained as an early internal model
related to active attention to task demands. During sensory input,
bottom-up information induced by stimulus onset and shared
along delta–theta channels is modulated so that earlier activity
consistent with a speech specific internal model occurs in sensori-
motor regions with later activity in temporal lobe regions critical
for categorization. This explanation is consistent with another
recent study employing a duplex perception paradigm. In that
study, ICA of both hemodynamic and EEG signals demonstrated
early activity in the left lateralized somatomotor regions 250 ms
prior to those the in the pSTG during active phonological pro-
cessing (Liebenthal et al., 2013). However, in the current study,
given that performance related effects were driven by the qual-
ity of bottom-up input and differences in phase reset occurred
only during active tasks in sensorimotor clusters, somatomotor
processing represents an adaptation to task requirements in the
active condition. Consistent with lesion evidence suggesting that
the motor system plays a secondary role in speech processing, these
findings support a model weighted toward bottom-up sensory
analysis with top-down modulatory influence from sensorimo-
tor regions (Hickok et al., 2011; Schwartz et al., 2012; Bowers et al.,
2013; Möttönen et al., 2013) similar to recent revivals of the theory
of analysis-by-synthesis (Poeppel and Monahan, 2011).

DYNAMIC OSCILLATORY MODELS
A wide range of explanations have been proposed to account for
the activation of sensorimotor networks in the context of active
and passive listening, including a role in attention/working mem-
ory (LoCasto et al., 2004; Szenkovits et al., 2012), covert rehearsal
(Hickok and Poeppel, 2007; Hickok et al., 2011), a role in stimu-
lus expectancy (Osnes et al., 2012), the resolution of ambiguous
acoustic cues (Callan et al., 2010; Osnes et al., 2011), and articula-
tory selective attention implemented via efferent internal models
associated with speech production (Callan et al., 2010; Hickok
et al., 2011). An explanation compatible with multiple roles for
sensorimotor networks in different contexts can be derived from
dynamic theories of cognition (Engel et al., 2001; Engel and
Fries, 2010). According to dynamic oscillatory theories, degen-
erate mappings between local neuronal populations may function
flexibly in different global oscillatory patterns to achieve the same
perceptual outcomes (Engel et al., 2001). In general, dynamic the-
ories predict that internally generated states of anticipation or
expectancy result in large-scale coherence across regions known

Frontiers in Psychology | Language Sciences May 2014 | Volume 5 | Article 366 | 14

http://www.frontiersin.org/Language_Sciences/
http://www.frontiersin.org/Language_Sciences/archive


Bowers et al. Sensorimotor rhythms in auditory discrimination

as dynamic resonance. At the same time, local cell populations
with specified receptive fields compete for stable resonant states
reflecting a best match between bottom-up sensory input and
internally generated predictions about upcoming sensory feature
constellations.

A dynamic explanation suggests two distinct processing strate-
gies may emerge for passive and active listening tasks. During
passive listening, oscillatory dynamics appear to exist in a self-
organized, coordinative state reflected primarily in low frequency
oscillations in the sensorimotor network thought to be critical
for categorical perception (Schroeder and Lakatos, 2009; Giraud
and Poeppel, 2012). As would be expected for a passive task in
which acoustic cues are clear, significant delta–theta enhancement
was apparent only in higher order auditory cortices known to
be involved in the categorization of bottom-up input. Given the
behavioral results in the current study, it is unlikely that partici-
pants had difficulty discriminating between syllables in the passive
condition, yet during the active condition a different processing
strategy consistent with internal models emerged. In other words,
an internally generated state related to attention to task demands
induced a different pattern of oscillatory activity for what is most
likely the same perceptual outcome. During goal-directed discrim-
ination, oscillatory channels linked to auditory association areas
via previous sensorimotor experience are simultaneously disin-
hibited prior to sensory input, with peak activity occurring in
the sensorimotor cortex when bottom-up cues are sufficient to
specify speech units for discrimination. A decrease in the left sen-
sorimotor cortex occurs when bottom-up cues are not sufficient
to support task goals, reflecting a mismatch between somatomotor
predictions and spectro-temporal processing. As such, oscillatory
activity in the left sensorimotor cortex may be characterized as
speech selective component of goal-directed selective attention
within the auditory dorsal auditory stream (Skipper et al., 2006;
Callan et al., 2010; Hickok et al., 2011).

Although the current study suggests a role for sensorimotor
representations during the performance of a syllable discrimi-
nation task, it remains unclear how sensorimotor predictions
might function in real-world contexts. One possibility is that goal-
directed attention to various features of the communicative signal
might stabilize patterns of neural activity that would otherwise
be unstable via shared mechanisms in global networks (Kelso,
2012). This notion might tentatively suggest that top-down influ-
ences in sensorimotor networks aid in generating stable percepts
by modulating oscillatory phase dynamics at time-constants con-
sistent with the syllable unit (Ghitza, 2013) with greater weight
on auditory association or motor regions depending upon con-
text (Skipper et al., 2006). This conjecture is defensible as recent
evidence supports the conclusion that segmental properties of
speech predict word recognition, suggesting that each segment is
involved in computing the next segment (Gagnepain et al., 2012).
However, it is an open question whether or not motor systems
involved in a speech discrimination task also play a functional
role in, for example, a conversation in a crowded room. It is
likely that the same mechanism would be in selective competi-
tion with other entrained top-down mechanisms (e.g., the ventral
stream) involved in linguistic and gestural analysis (Skipper et al.,
2006, 2009). In more naturalistic contexts, speech units occur at

predictable temporal intervals and are accompanied by a host of
linguistic features and gestures known to influence perception and
comprehension (Skipper et al., 2009; Morillon et al., 2010; Arnal
and Giraud, 2012). As such, a better understanding of how the
motor system functions in speech processing in relation to the
ventral and dorsal streams might be achieved by manipulating
predictive mechanisms in more naturalistic contexts.

LIMITATIONS AND CONCLUSIONS
An important limitation of the spatial estimates in the current
study is the inability to determine the responses of subregions
within the temporal lobe or sensorimotor distribution due to
the inherent low resolution of sLORETA estimates. The left-
hemisphere region implicated in the current study suggests greater
CSD estimates in a heteromodal region known to be involved
in mediating sensorimotor transformations during speech pro-
duction (Hickok and Poeppel, 2007), suggesting that the current
distribution may have been pulled toward this region due to the
activation of sensorimotor integration processes. Although pre-
liminary evidence would suggest that conventional random effects
analysis of hemodynamic measures is associated with dipole mod-
els of IC scalp topographies, few studies have investigated such
a relationship (Debener et al., 2005). Given the reported inverse
relationship between BOLD measures and alpha/beta suppression
(Yuan et al., 2010), conceivably the signal processing approach
used in this study may be used with simultaneous high-density
EEG, individual participant MR head models, and more spatially
precise hemodynamic methods to investigate subregions within
the sensorimotor networks and how they are related to alpha and
beta suppression.

A second limitation is that while sensorimotor and temporal
lobe clusters were associated with activity along shared oscilla-
tory channels and condition differences implicate competition
in the sensorimotor network, high spatial, and time–frequency
resolution dynamic causal models (DCM) would be required to
explicitly test how sensorimotor networks directionally vary their
connection weights (Chen et al., 2008). Potentially, connectivity
models using regions of interest indicated by source models of
ICA topographies could be used to test the hypothesis that corti-
cal patches vary their connection weights in time along relevant
frequency channels (Chen et al., 2012). A third limitation is that,
for the sake of simplicity, the role of gamma rhythms was not
explored here. A specific role has been proposed for gamma oscil-
lations in propagating feedforward error when bottom-up features
are at odds with predictive internal models, suggesting that they
may play an important functional role via interaction with alpha,
beta, and delta–theta oscillations (Arnal and Giraud, 2012). Future
studies should also explore the role of low gamma rhythms in
perceptual tasks along with lower frequency components of the
signal.

To our knowledge, the current study is the first to impli-
cate simultaneously measured phase reset and power suppression
of sensory and sensorimotor rhythms in a discrimination task
commonly employed in neuroimaging experiments. The study
suggests that sensorimotor and auditory rhythms are shared when
participants are engaged in goal-directed listening and are distinct
from those involved in passive listening. The study provides further
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evidence for a speech selective role of the left sensorimotor cortex
along beta and delta–theta channels consistent with a role in artic-
ulatory selective attention (Callan et al., 2010; Hickok et al., 2011).
The study provides initial support for the predictions of recent
oscillatory frameworks in which beta and delta–theta channels are
proposed to play a role in perception depending on context (Arnal
and Giraud, 2012). Further, consistent with dynamic oscillatory
accounts, this study suggests that while auditory and sensorimo-
tor regions share processing along the same oscillatory channels,
selective enhancement in the two respective regions is dependent
on the task and quality of sensory input, implicating competition
between locally synchronized regions along the same oscillatory
channels. We suggest that the importance of using EEG to pro-
vide evidence for these mechanisms is that the recording method
has potential for use in speech and hearing clinics where other
neuroimaging methods are often unavailable. As a number of com-
munication disorders are also associated with spectro-temporal
processing deficits, an understanding of how dynamic oscillatory
systems compensate for changing informational demands on a
millisecond timescale may be critical to an understanding of how
perceptual processes succeed or fail in individuals with speech,
hearing, and language deficits.
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