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Stress causes or contributes to a huge variety of diseases and disorders. Recent evidence
suggests obesity and other eating-related disorders may be among these. Immediately
after a stressful event is experienced, there is a corticotropin-releasing-hormone (CRH)-
mediated suppression of food intake.This diverts the body’s resources away from the less
pressing need to find and consume food, prioritizing fight, flight, or withdrawal behaviors
so the stressful event can be dealt with. In the hours following this, however, there is
a glucocorticoid-mediated stimulation of hunger and eating behavior. In the case of an
acute stress that requires a physical response, such as a predator-prey interaction, this
hypothalamic-pituitary-adrenal (HPA) axis modulation of food intake allows the stressful
event to be dealt with and the energy used to be replaced afterward. In the case of ongoing
psychological stress, however, chronically elevated glucocorticoids can lead to chronically
stimulated eating behavior and excessive weight gain. In particular, stress can enhance
the propensity to eat high calorie “palatable” food via its interaction with central reward
pathways. Activation of this circuitry can also interact with the HPA axis to suppress its
further activation, meaning not only can stress encourage eating behavior, but eating can
suppress the HPA axis and the feeling of stress. In this review we will explore the theme of
eating behavior and stress and how these can modulate one another. We will address the
interactions between the HPA axis and eating, introducing a potential integrative role for
the orexigenic hormone, ghrelin. We will also examine early life and epigenetic modulation
of the HPA axis and how this can influence eating behavior. Finally, we will investigate the
clinical implications of changes to HPA axis function and how this may be contributing to
obesity in our society.
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INTRODUCTION
The body’s stress response is a highly adaptive phenomenon
allowing an organism to divert resources to cope with actual or
anticipated danger and to restore expended energy that it may
fight another day. However, if the stressor is excessive or chronic,
responses can become maladaptive. Excessive or chronic stress
can trigger or exacerbate a huge variety of diseases and disorders,
including mood disorders such as post traumatic stress disorder,
anxiety, and depression (McEwen, 2008). Stress, either acute mild
stress or prolonged chronic stress, can also influence our appetite,
including our drive to eat and the types of food we are likely to
select. In this review we will discuss the effects of stress on appetite
regulation and how stress may influence our propensity to become
obese.

THE ACUTE EFFECTS OF STRESS ON APPETITE
When an organism encounters a stressful event, a number
of steps occur to divert resources appropriately and to assist
coping mechanisms (reviewed in, Sapolsky et al., 2000; Papadim-
itriou and Priftis, 2009). In terms of acute appetite regula-
tion, corticotropin-releasing hormone (CRH) is released from
the medial parvocellular (mp) paraventricular nucleus of the
hypothalamus (PVN) in response to the stressor. In addition
to stimulating adrenocorticotropic hormone (ACTH) release

from the pituitary and the cascade of events leading to glu-
cocorticoid release, CRH is also released into the arcuate
nucleus of the hypothalamus (ARC) to inhibit neuropeptide
Y (NPY)/agouti-related peptide (AGRP) neurons there (Hein-
richs et al., 1993; Currie, 2003). This population of cells is
normally responsible for stimulating feeding behavior and sup-
pressing energy expenditure; thus CRH released after acute stress
inhibits appetite (Heinrichs and Richard, 1999; Richard et al.,
2002).

Other molecules from the CRH family, such as urocortins,
also play a role in appetite suppression (Weninger et al., 1999;
Richard et al., 2002). Thus, early studies from Weninger et al.
(1999) showed CRH-deficient mice can have normal stress-
induced suppression of food intake, implicating other CRH-
like molecules. More recently, Tanaka and colleagues demon-
strated both CRH and urocortins suppress food intake, but
the urocortins, particularly urocortin 1, do this more effec-
tively (Tanaka et al., 2009). It is likely urocortins 1, 2, and
3 influence appetite suppression by acting on the CRHR2
receptor in the hypothalamus (Richard et al., 2002). Cen-
trally administrated urocortins are also able to suppress ghrelin
secretion, potentially preventing ghrelin-induced stimulation of
appetite (Yakabi et al., 2011). On the other hand, peripher-
ally administered urocortins act at CRHR2 receptors in the
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gut to stimulate an increase in circulating ghrelin (Wang et al.,
2013). These mechanisms likely interact to accurately fine-tune
feeding.

In addition to acting on the NPY neurons of the ARC, CRH-
induced appetite suppression also involves other regions of the
hypothalamus: the PVN, supraoptic nucleus, perifornical and ven-
tromedial hypothalamus; as well as brain regions further afield,
the lateral septum, parabrachial nucleus, and the dorsal portion
of the anterior bed nucleus of the stria terminalis (BNST; Richard
et al., 2002; Ciccocioppo et al., 2003; Fatima et al., 2013). Thus,
CRH injected directly into the dorsal anterior BNST (but not the
ventral part or other brain regions such as the central amygdala
or locus coeruleus) significantly reduces food intake in already
food-deprived rats (Ciccocioppo et al., 2003).

THE CHRONIC EFFECTS OF STRESS ON APPETITE
Ethologically, the appetite suppressive response is useful for divert-
ing energy away from food-seeking behavior and eating toward
more pressing concerns, such as escaping the predator or rehears-
ing the speech. With longer-term stressors, however, the energy
used coping needs to be replaced. In the hours to days after the
onset of an ongoing stressful event (e.g., infection, bereavement),
glucocorticoids in the bloodstream are elevated. Peripherally, glu-
cocorticoids enhance the activity of lipoprotein lipase in adipose
tissue, leading to an increase in fat storage (Bjorntorp, 1996, 2001).
This occurs particularly in visceral fat where lipoprotein lipase
activity is higher (Marin et al., 1992a). Thus, chronically elevated
glucocorticoids contribute to visceral fat accumulation (Marin
et al., 1992b; Rosmond et al., 1998; Epel et al., 2000). Other mech-
anisms by which glucocorticoids stimulate excess fat deposition
are reviewed in (Spencer and Tilbrook, 2011).

In terms of feeding behavior, glucocorticoids also act on the
hypothalamus to stimulate appetite (Santana et al., 1995; Dallman
et al., 2004). Thus, in humans, a peripheral injection of CRH leads
to increased food intake 1 h later but the amount of food consumed
is directly correlated with the magnitude of the cortisol response
to the injection (George et al., 2010). Glucocorticoids stimulate
food intake by interacting with several appetite-regulating targets.
They increase AMP-activated protein kinase signaling in the ARC
to up-regulate NPY and AGRP expression in this region and stim-
ulate the actions of these orexigenic peptides (Savontaus et al.,
2002; Konno et al., 2008; Shimizu et al., 2008). Glucocorticoids
also influence the function of leptin, whose normal role is to signal
satiety thus suppressing appetite. Although glucocorticoids stim-
ulate leptin release from adipose tissue, which would normally
lead to appetite suppression, they also reduce the sensitivity of
the brain to leptin, contributing to leptin resistance (Zakrzewska
et al., 1997, 1999; Jequier, 2002). Thus, adrenalectomized rats
respond to intracerebroventricular (icv) leptin with a larger reduc-
tion in food intake and body weight than intact rats and the
addition of glucocorticoids reduces leptin’s anorexigenic effects
(Zakrzewska et al., 1997).

Insulin is another appetite-regulatory hormone that is influ-
enced by glucocorticoids, although the role of glucocorticoids
here is more complex. Insulin usually acts at the hypothalamus
to reduce food intake and at the ventral tegmental area (VTA)
to reduce the dopaminergic neuron-mediated rewarding nature

of food (Figlewicz et al., 2008). Acutely, glucocorticoids stimulate
insulin secretion from the pancreas (Strack et al., 1995), having an
appetite-suppressant effect. However, chronically activated gluco-
corticoids also contribute to insulin resistance. Thus, as is seen with
leptin, glucocorticoids contribute to a reduced ability of insulin to
inhibit NPY/AGRP neurons in the ARC, which has the converse
effect of lessening appetite suppression (Asensio et al., 2004). The
intermediate role of glucocorticoids in the connection between
insulin sensitivity and increased appetite is typically observed in
patients with Cushing’s syndrome. Glucocorticoid excess in these
patients leads to an increase in appetite, weight gain and insulin
resistance (Anagnostis et al., 2009).

Glucocorticoids also influence food intake by enhancing the
preference for “comfort foods.” Insulin’s suppressive effect on
reward pathways likely means the food needs to be more “reward-
ing”to achieve the same effect; hence under stressed conditions rats
prefer foods that are high in fat and sucrose when a choice is avail-
able (la Fleur et al., 2004; Warne et al., 2006, 2009). Chronically
stressed animals thus prefer calorically dense foods (Pecoraro et al.,
2004; Foster et al., 2009). This enhanced caloric intake has been
proposed to correspond with the increased brain energy demand
and thus preferential glucose allocation to the brain under the
conditions of stress (Peters et al., 2011). Remarkably, this highly
palatable food also leads to a reward-mediated negative feedback
onto the hypothalamic-pituitary-adrenal (HPA) axis to suppress
it. In this way, a junk food diet or a stress-induced ice-cream binge
may actually alleviate the symptoms of stress (Pecoraro et al., 2004;
Foster et al., 2009). Rats given chronic restraint stress for 3 h per
day for 5 days voluntarily eat more lard and sucrose than con-
trol rats, and the plasma ACTH and glucocorticoid response to
this restraint is suppressed in those rats that were given free access
to these “comfort” foods. Unsurprisingly, these rats also become
heavier than their restraint-stressed counterparts given normal
chow (Pecoraro et al., 2004).

Another mechanism by which glucocorticoids can influence
appetite during stress is via its interaction with ghrelin. Ghre-
lin is a peptide derived principally from the gut. It is released
as a signal of hunger or just prior to the usual meal time to
stimulate feeding (Hosoda et al., 2006). Circulating ghrelin is
increased in response to stress (Kristenssson et al., 2006) and
probably acts at the level of the anterior pituitary as well as
higher brain regions, such as the centrally projecting Edinger
Westphal nucleus (EWcp), to modulate ACTH release from the
pituitary and regulate glucocorticoid negative feedback (Spencer
et al., 2012). Chronic or severe stress resulting in elevated gluco-
corticoid secretion will also lead to elevated circulating ghrelin
levels, culminating in increased ghrelin-mediated stimulation
of NPY/AGRP and increased food intake (Asakawa et al., 2001;
Kristenssson et al., 2006; Lutter et al., 2008; Ochi et al., 2008).
Interestingly, while stress-induced elevation of ghrelin corre-
sponds with exacerbation of social avoidance and increased
food intake in wild-type animals, deletion of ghrelin receptor
(growth hormone secretagogue receptor; GHSR−/−) results in
even more pronounced social avoidance than stress does, but
it does not increase food intake (Lutter et al., 2008). Activa-
tion of ghrelin signaling in response to stress may thus repre-
sent a coping mechanism, where combatting the effects of the
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stressor is prioritized at the expense of increased food intake.
Acute psychosocial stress in human subjects has been also doc-
umented to induce increased release of ghrelin (Rouach et al.,
2007).

The consequences of a chronically stimulated HPA axis
response to stress are easy to imagine. Excessive glucocorticoid
production and/or elevated basal glucocorticoids, as can occur
with chronic stress and mood disorders (McEwen, 2008; Lupien
et al., 2009), leads to energy conservation and appetite stimula-
tion. Excessive high calorie foods are consumed and excess weight
gain and eventually obesity ensue (De Vriendt et al., 2009). How-
ever, exposure to chronic stress may also suppress appetite in
some individuals, particularly in unrestrained eaters, as opposed
to restrained eaters who voluntarily restrict their diet to main-
tain proper weight, but tend to increase their food intake when
stressed (Greeno and Wing, 1994). Depression, which can often
be triggered by chronic exposure to stressful events, is also fre-
quently associated with reduced appetite (Nestler et al., 2002). It is
likely ghrelin plays a principal role in determining if an individual
responds to stress with an increase or a decrease in appetite. Indi-
viduals classified as “emotional eaters” (those who consume more
highly palatable food during stress) have lower basal ghrelin than
“non-emotional eaters” (those whose food intake is suppressed or
unchanged by stress; Raspopow et al., 2010). Lower basal ghrelin
levels are also associated with binge-eating, an emotional eat-
ing disorder (Geliebter et al., 2005). Stress-induced ghrelin levels
remain unaltered by food intake in emotional eaters but are rapidly
restored to baseline by food in non-emotional eaters (Raspopow
et al., 2014). Thus, emotional eaters may require relatively more
palatable food to suppress stress-induced ghrelin to the same
degree as non-emotional eaters.

EARLY LIFE HPA AXIS DEVELOPMENT AND ITS EFFECTS ON
EATING BEHAVIOR
Lifetime experience, whether acute or chronic, clearly shapes
both HPA axis and eating behavior. However, how an individ-
ual responds to each experience can be influenced at times outside
the immediately pertinent event. It is now well accepted that the
early life period is one of significant vulnerability to programming
influences. For instance, central pathways governing feeding and
metabolism start to develop at specific stages of early life and, at
this time, the animal is particularly vulnerable to influences from
the environment.

An initial critical window of vulnerability occurs in prenatal life,
when HPA axis and feeding-regulatory pathways begin to develop.
For instance, both stress (or synthetic glucocorticoids) and poor
nutrition in utero can have significant long-term consequences for
feeding and behavior. Excessive stress during pregnancy can lead
to HPA axis dysfunction (Henry et al., 1994; Rossi-George et al.,
2009) and a long-term susceptibility to mood disorders in the
offspring (Vallee et al., 1997), as well as impaired learning and
memory (Lordi et al., 1997; Entringer et al., 2009), changes to
reward pathways that lead to addictive behaviors (Morley-Fletcher
et al., 2004; Thomas et al., 2009), and also, obesity (Li et al., 2010).
The effects of prenatal stress on long-term feeding biology have
been elegantly reviewed in (Entringer et al., 2012; Entringer and
Wadhwa, 2013). Conversely, obesity during pregnancy, or even a

pregnancy diet high in fat and sugar, can influence metabolic phe-
notype long-term as well as central reward processing, altering
the way the rewarding aspects of food are perceived through-
out life, leading to a preference for fatty, sugary foods (Ong and
Muhlhausler, 2011).

This type of vulnerability in the developing individual contin-
ues postnatally.

In the rodent the hypothalamic connectivity involved in feed-
ing develops during the second week postnatally (Bouret et al.,
2004a,b). Leptin is one critical trophic factor in stimulating this
growth. Thus, insufficient leptin available in the dam’s milk while
these pathways are developing can disrupt the formation of these
connections (Bouret and Simerly, 2007). A premature leptin surge
or excessive leptin, such as can occur with in utero growth restric-
tion or with obese or hyperleptinemic dams, can also disrupt this
connectivity and result in a subsequent insensitivity to satiety sig-
nals (Yura et al., 2005; Kirk et al., 2009). Similarly, ghrelin normally
counteracts leptin’s trophic effects on these regions and a change in
the timing or magnitude of the expected progressive elevation in
plasma ghrelin can also disrupt this development (Grove and Cow-
ley, 2005). The ultimate effect of such developmental influences
on the animal is a disruption of central responses to nutritional
status and disrupted feeding behavior.

It is interesting to note that development of the HPA axis occurs
in the rodent at similar times to the development of feeding-
regulatory pathways. An animal’s ability to respond to stress is
immature at birth and the lifespan is characterized by a stress-
hyporesponsive period that lasts from approximately the first
to second weeks of life (Sapolsky and Meaney, 1986). Excessive
stress, exposure to glucocorticoids, or prolonged absence from the
dam can permanently terminate this stress hyporesponsive period,
leading to life-long hypersensitivity to stress (Lehmann et al.,
2002a,b; Barna et al., 2003; Xu et al., 2011). Certainly, early life
stressful events such as maternal separation in the rodent, or child
abuse/loss of a parent in humans can cause disruption of the HPA
axis in this way (Koch et al., 2008; D’Argenio et al., 2009). However,
neonatal developmental influences can also be fairly subtle and still
have pronounced effects. For instance, Meaney’s group has shown
rat pups given high-intensity nursing and grooming by their dams
grow up to have attenuated HPA axis responses to psychologi-
cal stress and reduced vulnerability to anxiety (Liu et al., 1997;
Champagne and Meaney, 2001).

In addition to, or perhaps as a result of, disrupting the HPA axis,
the parental influence at this time is also crucial for establishing
feeding patterns long-term. Thus, maternal separation can lead
to the offspring having lower voluntary food intake and a pref-
erence for foods low in carbohydrates (Penke et al., 2001), while
social isolation in previously maternally separated rats elevates
food intake and weight gain (Ryu et al., 2009). It is likely this effect
of the early environment on feeding patterns long-term is some-
what adaptive for the animal. Thus, early maternal separation in
the wild rat likely occurs when food is scarce and foraging diffi-
cult. Thus, the offspring is brought into a world of food scarcity
and high stress and its physiology adjusts accordingly to become
hypersensitive to the effects of stress and to overeat. Essentially the
neonatal environment thus imposes a drive to make the most of
feeding opportunities when they are available (Meaney, 2001).
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MECHANISMS OF EARLY LIFE INFLUENCE ON HPA AXIS
FUNCTION
Early life events are able to disrupt HPA axis function in a
variety of ways (Figure 1). Prior to birth, the fetus is remarkably
well protected from the effects of stress. The placenta pro-
duces 11β hydroxysteroid dehydrogenase 2 (11βHSD2), which
converts active glucocorticoids from the mother into the inac-
tive form, ensuring maternal glucocorticoids are prevented from
reaching fetal circulation (Lucassen et al., 2009). Central changes
also occur in the mother to ensure she responds to stress by
secreting less glucocorticoids; for instance, allopregnanolone-
mediated inhibition of the noradrenergic input to the PVN
is enhanced as progesterone levels increase with pregnancy,
meaning HPA axis activation is suppressed (Brunton et al.,
2005, 2009). However, severe or prolonged stress or synthetic
glucocorticoid exposure can over-ride these protective mecha-
nisms and influence the development of the fetal HPA axis.
For instance, excess maternal glucocorticoids can increase fetal
circulating glucocorticoid levels and can alter fetal 11βHSD2
(Clifton et al., 2006) and glucocorticoid receptor (GR) expres-
sion (Edwards et al., 1993). Excess fetal glucocorticoids can also
interfere with normal brain growth and development at this
time, with restraint stress to the dam during pregnancy lead-
ing to reduced levels of proteins such as growth-associated
protein of 43 kDa (GAP-43) that are involved in synaptic prun-
ing (Pfenninger et al., 1991; Larsson, 2006; Jutapakdeegul et al.,
2009).

Postnatally there are fewer mechanisms to protect the animal
from the effects of stress and excessive glucocorticoids. The pres-
ence of the dam, in rodents, is essential for the maintenance of
attenuated sensitivity to stress in the stress hypo-responsive period,
but the neonatal HPA axis is still very vulnerable at this time. As
with fetal glucocorticoids, postnatal glucocorticoids or stress can
alter synaptic pruning and can also lead to reduced GR expression
in brain regions important for glucocorticoid negative feedback,
the hypothalamus and hippocampus (Liu et al., 1997).

These effects of the perinatal environment on GR can be
imposed long-term via changes to the epigenome. For instance,
even something as subtle as the style of attention imparted by the
dam to her offspring can induce pronounced epigenetic changes
to GR expression. When rat pups are groomed by the dam it
induces a rise, in the pup, of nerve growth factor inducible factor
A (NGFI-A) expression (Hellstrom et al., 2012). The increase in
NGFI-A expression in turn leads to increases in histone acetyla-
tion of the GR, demethylation of the GR promoter and increased
GR activity (Hellstrom et al., 2012). Thus, pups that experi-
enced a paucity of grooming in early life have reduced NGFI-A
expression and suppressed GR activity and expression in glu-
cocorticoid negative feedback regions. The long-term effect of
this early under-grooming is a hypersensitivity to the effects of
stress (Champagne and Meaney, 2001). Elevations in GR expres-
sion due to early life influence have also been linked to excess
weight gain throughout life (Stevens et al., 2010; Begum et al.,
2012).

FIGURE 1 | Early life stress can influence development of the HPA axis,

as well as regulation of satiety-related hormones, leptin, insulin, and

ghrelin to alter feeding behavior long-term. Thus, early life stress can lead
to epigenetic modification of glucocorticoid receptor (GR) expression in the
hypothalamus and hippocampus and arginine vasopressin (AVP) and
corticotropin-releasing hormone (CRH) in the hypothalamus, resulting in
suppressed GR and increased AVP and CRH activity in response to stress
later in life. Synaptic pruning in the hippocampus and circulating 11βHSD2 are

also affected leading to elevated circulating glucocorticoid (GC)
concentrations both under basal conditions and in response to stress. These
effects of early life stress are ultimately seen in altered outputs from the
paraventricular nucleus of the hypothalamus (PVN) to feeding-related nuclei
such as the arcuate nucleus (ARC) and the dorsomedial nucleus of the
hypothalamus (DMH). Early life stress can also potentially induce increased
release of trophic/satiety hormones such as leptin, insulin, and ghrelin, again
influencing appetite, feeding behavior, and metabolism throughout life.
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Arginine vasopressin (AVP) regulation of the HPA axis response
to stress is also subject to epigenetic modification by early life
events. Thus, in the mouse, early separation from the dam
leads to changes in DNA methylation, resulting in increased
PVN AVP expression and changes in coping responses to stress
(Murgatroyd et al., 2009; Murgatroyd and Spengler, 2011). While
the early life period is one of particular vulnerability to environ-
mental influences, epigenetic modification can occur in response
to the environment at any time. Thus, chronic social stress in adult
mice can induce lasting demethylation of the CRH gene, resulting
in heightened anxiety-like behavior (Elliott et al., 2010).

In addition to the early influence of stress and glucocorti-
coids directly on the HPA axis, stress and glucocorticoids can also
independently influence development of the feeding circuitry dis-
cussed above. For instance, perinatal glucocorticoids, in rodents
and humans, can lead to elevations in plasma leptin (Bruder et al.,
2005; Marinoni et al., 2008). Given what we know about the sen-
sitivity of the developing hypothalamic connectivity to circulating
leptin at this time, it is highly likely this glucocorticoid-mediated
increase in leptin interferes with the normal leptin-induced estab-
lishment of connections between the ARC, PVN, dorsomedial
nucleus of the hypothalamus (DMH), and lateral hypothalamus
(LH). Glucocorticoids can also influence levels of other crucial
trophic hormones at this time, increasing insulin release from the
pancreas (Moyer-Mileur et al., 2011) and ghrelin release from the
gut (Hosoda et al., 2006; Kristenssson et al., 2006). There is even
recent evidence maternal insulin sensitivity during pregnancy can
influence fetal brain activity and may contribute to prenatal pro-
gramming of long-term insulin sensitivity (Linder et al., 2014).
Again, it is likely these changes are able to interfere with appropri-
ate establishment of feeding-related circuitry in the hypothalamus.
It is also worth noting these trophic factors may also contribute to
HPA axis development, further consolidating the link between the
HPA axis and feeding. Thus, elevated neonatal leptin levels (inde-
pendent of other environmental stimuli) can lead to an increase in
GR in the hypothalamus and hippocampus and resulting changes
in HPA axis sensitivity to glucocorticoid negative feedback (Proulx
et al., 2001).

CONCLUSION AND CLINICAL IMPLICATIONS
The discussed data make it clear that the HPA, stress, axis and
feeding regulation are inextricably linked, with the early life devel-
opmental environment being critical in establishing both. The
challenge now will be to ensure we achieve the appropriate balance
when influencing these systems with parental care and neona-
tal medical treatments. There is no doubt that several current
perinatal treatments, while crucial for their immediate purpose,
have far-reaching side-effects on systems such as the HPA axis and
feeding circuitry. For instance, synthetic glucocorticoid, adminis-
tered prenatally to assist in lung development, may elevate plasma
leptin (Marinoni et al., 2008), stimulate epigenetic modifications
in GR and elevate 11βHSD2 (Clifton et al., 2006). Similarly, the
current practice of intensively feeding premature and small for ges-
tational age babies to accelerate brain and lung development has
the negative side-effect of predisposing these babies to long-term
excess weight gain (Ong et al., 2000; Stettler et al., 2005). While
these strategies may be essential in the immediate term to ensure

the newborn’s survival, consideration should be given to how we
can mitigate the long-term negative effects. Understanding of the
mechanisms by which stress interacts with eating behavior in the
developed adult is also essential for behavioral and pharmaceutical
treatments to prevent excess weight gain in at-risk patients.
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