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Marr famously decomposed cognitive theories into three levels. Newell, Pylyshyn, and
Anderson offered parallel decompositions of cognitive architectures, which are psycho-
logically plausible computational formalisms for expressing computational models of
cognition.These analyses focused on the objective meaning of each level – how it supports
computational models that correspond to cognitive phenomena. This paper develops a
complementary analysis of the subjective meaning of each level – how it helps cognitive
scientists understand cognition. It then argues against calls to eliminatively reduce higher
levels to lower levels, for example, in the name of parsimony. Finally, it argues that the
failure to attend to the multiple meanings and levels of cognitive architecture contributes
to the current, disunified state of theoretical cognitive science.
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INTRODUCTION
In the first chapter of Vision, Marr (1982) famously decomposed
cognitive theories into three levels. He examined neuroscience the-
ories of vision and found them too focused on neural circuitry –
the lowest level. He examined artificial intelligence models of
vision and found them too focused on data structures and algo-
rithms – the middle level. He argued that understanding the what
and how of vision would not constitute a complete theoretical
account. An understanding of the why of vision – the problem it
solves for the organism – was also needed, and this could only be
provided by the highest level. Marr surveyed the cognitive science
landscape and found only two theories articulated at this level,
Chomsky’s (1965) theory of language “competence” and Gibson’s
(1979) “ecological” theory of visual perception. He argued that
future progress in cognitive science would require greater attention
to all three levels.

Marr was not the only cognitive scientist thinking along these
lines. The cognitive revolution was 25 years old when Vision was
published, and the optimism generated by early computational
models was giving way to a growing recognition of their limi-
tations. Newell (1982), Pylyshyn (1984), and Anderson (1990)
offered analyses that were strikingly similar to Marr’s in the lev-
els they proposed, but that addressed a class of cognitive theories
called cognitive architectures.

Every science strives for a unified theory of all of its phenom-
ena (Oppenheim and Putnam, 1958). For example, physicists are
searching for a grand unified theory of the fundamental forces
of nature (Weinberg, 1993). Its equations, once discovered, will
provide an account of all physical phenomena – at least in princi-
ple. Cognitive scientists are similarly searching for a unified theory
of cognition (Newell, 1990). It will not be a set of equations, as
it will be for physics. Rather, it will be a cognitive architecture –
a computational formalism for expressing computational models
of cognitive phenomena. This reflects the fundamental claim of

the cognitive revolution, that cognition is a form of information
processing. A better analogy, then, is to classical mechanics, the
unified physical theory of its day. Classical mechanics postulates
a continuous universe where forces act on bodies across space
and time. Newton lacked a suitable mathematical formalism for
expressing classical mechanics, and so he designed one – the cal-
culus. Similarly, cognitive architects design new computational
formalisms for expressing the models that cognitive scientists
dream up.

The analyses offered by Marr, Newell, Pylyshyn, and Anderson
focused on the objective meaning of each level – how it supports
models that correspond to the phenomena of cognition. This
paper offers a complementary analysis of the subjective meaning
of each level – how it helps cognitive scientists understand cog-
nition (Varma, 2011). The first half articulates the objective and
subjective meanings of each level. The important point is that
these meanings are quasi-independent: they can mutually con-
strain each other (“quasi”), but cannot entirely replace each other
(“independence”). This paper then draws the implications of this
analysis. It first argues that the subjective meanings of different lev-
els are also quasi-independent, and this precludes the reduction of
higher levels to lower levels, for example, in the name parsimony.
In fact, preserving multiple levels provides working cognitive sci-
entists with the flexibility to choose the most appropriate level for
their modeling activities. It concludes by explaining the current,
disunified state of theoretical cognitive science as the product of
failing to understand the multiple meanings and multiple levels at
which architectures explain cognition, and on which they must be
compared.

THE LOWEST LEVEL
The lowest level of cognitive architecture is the most familiar; it is
what cognitive scientists think of when they think of architecture
at all. This section first describes the objective meaning of the
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lowest level, as articulated by Marr and others, and then describes
its subjective meaning.

COMPUTATIONAL MECHANISMS
Standard decompositions of cognitive architecture differ in how
they name the lowest level. Marr (1982) called it the “hard-
ware implementation,” Newell (1982) the “device” level, Pylyshyn
(1984) the “physical” (or “biological”) level, and Anderson (1990)
the “biological” level. What is common to all is the proposal
that the lowest level defines the interface between the brain and
the mind, where neural information processing elements aggre-
gate into cognitive information processing elements. We call
these cognitive information processing elements computational
mechanisms. They come in three types.

Basic representations are the primitive means for encoding
information. Different architectures provide different basic rep-
resentations. For example, the basic representation of production
system architectures is the declarative memory element, or dme
(Newell, 1973a). A dme is a set of attribute–value pairs, where
each attribute is a distinction that the perceptual-cognitive-motor
system makes and each value is a number, symbol, or another
dme. The basic representation of connectionist architectures is the
vector of microfeatures, where each microfeature has a numeric
value, encoded as the activation level of a unit (Rumelhart
et al., 1986). The basic representation of exemplar architectures
is the episodic trace. It is a vector of features, some encoding
semantic information and others contextual information, that
can assume numeric values (Raaijmakers and Shiffrin, 1981). A
critical difference between dmes on one hand and microfeature
vectors and episodic traces on the other is that the former can
be recursively embedded within each other, whereas the latter
are “flat,” and thus recursive embeddings must be implemented
by a combination of computational mechanisms (Elman, 1990,
1993; Hinton, 1990; Pollack, 1990; Smolensky, 1990; Murdock,
1993).

Basic operators are the primitive means for processing infor-
mation. A basic operator takes basic representations as input,
transforms them, and generates basic representations as output.
For example, the basic operator of production system architectures
is the production (Newell, 1973a). A production has a condition
side and an action side. The condition side is matched against
the available dmes. If a match results and the production is fired,
then the individual actions of the action side are executed, adding,
deleting, and modifying dmes. The basic operators of connec-
tionist architectures include the weighted links that connect units
and the activation functions of the units themselves (Rumelhart
et al., 1986). For example, in a feedforward connectionist archi-
tecture, as activation flows across weighted links and through
activation functions, input vectors are transformed into hidden
layer vectors, and ultimately into output vectors. The basic oper-
ator of exemplar architectures computes the similarity between
two episodic traces. Similarity is a superlinear function of the
number of shared feature values – multiplicative in the search
of associative memory model (SAM; Raaijmakers and Shiffrin,
1981), cubic in Minerva-II (Hintzman, 1986), and exponential in
the generalized context model (GCM; Nosofsky, 1984; Shepard,
1987).

The control structure is the regimen for scheduling the applica-
tion of basic operators to basic representations over time (Newell,
1973a). Different architectures adopt different control structures.
Among production system architectures, ACT-R employs serial
control, firing one production at each point in time (Anderson,
2007), whereas 4CAPS employs parallel control, firing all match-
ing productions (Just and Varma, 2007). Soar utilizes a mixed
control structure, parallel for some aspects of its “decision cycle”
and serial for others (Newell, 1990; Laird, 2012). Connectionist
architectures also exhibit a variety of control structures: Hopfield
(1982) networks update the activation of one unit at a time; inter-
active activation and competition (IAC) networks update all units
simultaneously (McClelland and Rumelhart, 1981; Rumelhart and
McClelland, 1982); and feedforward networks mix the two con-
trol structures, updating units in the same layer in parallel and
units in different layers serially (Rumelhart et al., 1986). Exemplar
architectures offer comparatively rudimentary control structures,
perhaps owing to their origins in mathematical psychology, not
computer science. One exception is Minerva-II, which uses a serial
control structure where the trace retrieved on the current iteration
serves as the probe on the next iteration. This continues until the
content of the probe and the retrieved trace converge (Hintzman,
1986).

CRITERIA FOR COMPUTATIONAL MECHANISMS
Cognitive scientists prefer to construct computational models
within cognitive architectures rather than general-purpose pro-
graming languages such as C and Java. This is because the
computational mechanisms of architectures are psychologically
plausible (e.g., microfeature vectors), whereas those of program-
ing languages are not (e.g., “for loops”). This decreases the degrees
of freedom available during the construction of models, increasing
their generalizability to new phenomena.

There are two criteria for judging the psychological plausibility
of computational mechanisms. The first criterion is that compu-
tational mechanisms be biologically realizable. Prior analyses of
the lowest level define it as the interface between the mind and
the brain. Marr populated his lowest level with neural process-
ing elements such as feature detectors (e.g., Hubel and Wiesel,
1962) and spatial frequency detectors (e.g., Campbell and Robson,
1968). However, he acknowledged the parallel between the neu-
ral architecture and “the detailed computer architecture” (Marr,
1982, p. 25). Newell (1989) offered a similarly dual conception
of the lowest level, noting that in “current digital computers it
is the register-transfer level, but in biological systems it is some
organization of neural circuits” (p. 404). For a computational
mechanism to be biologically plausible, it must be consistent
with what is known about neural information processing. It has
been claimed that the computational mechanisms of connection-
ist architectures are of greater biological realizability than those
of symbolic architectures (Rumelhart and McClelland, 1986).
There are two reasons to doubt this claim. The first is that some
neuroscientists question the correspondence between the compu-
tational mechanisms of connectionist architectures and the details
of neural information processing (Crick and Asanuma, 1986, pp.
369–371). The second reason is that the biological realizability of
the computational mechanisms of some symbolic architectures
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has been demonstrated by the construction of models that can
account for neuroscience data (Anderson, 2007; Just and Varma,
2007).

The second criterion is that computational mechanisms be
disaggregate (Newell and Simon, 1972; Pylyshyn, 1984). A com-
putational mechanism is disaggregate if it can be defined in
non-cognitive terms. A non-cognitive definition can be mathe-
matical, physical, chemical, or biological. By contrast, a cognitive
definition is in terms of other computational mechanisms. A cog-
nitively defined computational mechanism is problematic because
if it is replaced everywhere (i.e., in all models) with its defin-
ing combination, the resulting architecture would have the same
expressive power but would be more parsimonious, and would
therefore be preferable. The computational mechanisms of con-
nectionist architectures are disaggregate, and therefore do well
on this criterion. Units, weighted links, activation functions, and
learning rules can be defined mathematically, without recourse
to cognitive terms. By contrast, the computational mechanisms
of symbolic architectures are on shakier ground. For exam-
ple, the basic operator of production system architectures, the
production, directly supports “variable binding” (Fodor and
Pylyshyn, 1988). Some connectionists have argued that vari-
able binding is an aggregate computational mechanism, and that
it should be replaced everywhere with a combination of sim-
pler computational mechanism, for example, in the “conjunctive
coding” technique (Hinton et al., 1986; Touretzky and Hinton,
1988).

COGNITIVE PRIMITIVES
The subjective meaning of a cognitive architecture is the under-
standing it brings cognitive scientists of cognition (Varma, 2011).
At the lowest level, the computational mechanisms of an architec-
ture are cognitive primitives that specify a metaphysics for cogni-
tion. They offer a particular perspective on cognitive information
processing, guiding cognitive scientists to value some compu-
tational models over others that are “equivalent” in objective
meaning (i.e., correspondence to cognitive phenomena).

That the lowest level makes metaphysical claims is hinted at
in Marr’s analysis. He observed that choices made at the lowest
level necessarily make it easier to express some cognitions (i.e.,
more natural, more parsimonious) but harder to express others
(i.e., more awkward, more complex). He illustrated this with an
example from mathematics: choosing a base-10 representation
for numbers makes some computations easy, such as determining
whether a number is a power of 10, but makes other computations
difficult, such as determining whether a number is a power of 2.
If a base-2 representation is chosen, however, the opposite trade-
off results. More generally, “any particular representation makes
certain information explicit at the expense of information that is
pushed into the background and may be quite hard to recover”
(Marr, 1982, p. 21).

Cognitive primitives are not computational mechanisms; the
subjective meaning of the lowest level is quasi-independent of its
objective meaning. This is evidenced by the fact that different
cognitive primitives can be realized by the same computational
mechanism, and the same cognitive primitive can be realized by
different computational mechanisms. Consider the productions

of the ACT-R and 4CAPS architectures. As computational mecha-
nisms, they are quite similar: their condition sides are matched
against available dmes, and when a matching production is
fired, the actions of its action side are executed, changing the
set of available dmes. As cognitive primitives, however, they
are quite different. ACT-R productions function like goal-driven
schemas for accessing information in perceptual-motor buffers
and long-term declarative memory (Anderson, 2007). By con-
trast, 4CAPS productions function like constraints on dmes,
activating those that are consistent with each other and sup-
pressing those that are inconsistent with each other (Just and
Varma, 2002). As cognitive primitives, 4CAPS make metaphys-
ical claims that are closer to those of the weighted links of
IAC networks (Goldman and Varma, 1995). This commensu-
rability arises because at their highest levels, both 4CAPS and
IAC networks understand cognition as a form of constraint
satisfaction.

To take another example, connectionist architectures include
microfeature vectors as basic representations. However, this
computational mechanism implements very different cognitive
primitives in localist vs. distributed connectionist architectures.
Localist representations gain meaning through denotation – each
unit codes for one and only one referent (Page, 2000; Bow-
ers, 2009). By contrast, in distributed representations, each unit
contributes to the representation of multiple referents, and ref-
erence is via similarity (Hinton et al., 1986). The difference is
so contentious that some advocates of distributed representa-
tions have claimed that localist representations have no place in
connectionist architectures at all (Plaut and McClelland, 2010).
As cognitive primitives, distributed connectionist representa-
tions make metaphysical claims that are closer to those of the
episodic traces of exemplar architectures built upon the convo-
lution and correlation operations (Eich, 1985; Murdock, 1993;
Plate, 1995).

THE HIGHEST LEVEL
If the lowest level specifies the minutiae of cognitive information
processing, it is at the highest level that a cognitive architecture
offers its broadest characterization of thinking. This section first
reviews Marr’s seminal description of this level, which emphasizes
its objective meaning. It then articulates the subjective meaning of
this level.

FUNCTIONAL SPECIFICATION
In Marr’s decomposition, the highest level of a cognitive theory
is the “computational theory” it offers. This is a functional specifi-
cation of cognition “as a mapping from one kind of information
to another” where “the abstract properties of this mapping are
defined precisely” (Marr, 1982, p. 24). The details of how this
mapping is implemented are left to lower levels.

Marr argued for the existence of the highest level through a crit-
ical review of vision research following World War II. Empirical
studies had revealed much about the implementation of the visual
system. Emphasizing the lowest level of theoretical description
was advocated most strongly in Barlow’s (1972) “neural doctrine,”
which asserted that “a description of the activity of individual
nerve cells is a sufficient basis for understanding the function of
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the visual perception” (p. 380). Marr’s review came to a very dif-
ferent conclusion: although neuroscience theories were revealing
the what and how of vision, they were not explaining the why.

Suppose, for example, that one actually found the apocryphal grand-
mother cell. Would that really tell us anything much at all? It would tell
us that it existed – Gross’s hand-detectors tell us almost that – but not
why . . . such a thing may be constructed from the outputs of previously
discovered cells.

(Marr, 1982, p. 15)

The limitations of theorizing only at the lowest level are not
particular to neuroscience (Anderson, 1972; Brooks, 1991). Marr
argued that every cognitive science theory must include a highest
level that specifies the function of its domain. He gave one exam-
ple of a high-level theory from mathematics. The field axioms
specify the abstract properties of algebraic expressions, such as
the commutativity of addition, but are silent on low-level mat-
ters of implementation, such as how numbers are represented
(Roman numerals? base-10? base-2?). Marr gave two examples
from cognitive science. The first was Gibson’s (1979) “ecological”
theory of visual perception, which defines the function of visual
perception – to enable organisms to navigate their ecological envi-
ronments – independently of the computational details of how
that function is implemented. The second example was Chomsky’s
(1965) theory of linguistic “competence,” which defines the set of
language structures. Exactly how these structures are mapped or
computed from inputs such as words or sounds – the data struc-
tures, parsing algorithms, memory systems, and so on – is left to a
lower-level theory of linguistic “performance.”

PROCESSING STYLE
Marr’s characterization of the highest level as a functional mapping
emphasizes its objective meaning. It does not capture its subjective
meaning – the broadest ways in which cognitive theories make
their domains comprehensible to cognitive scientists. This can be
seen by returning to the example of the field axioms. Although they
specify the form of algebraic expressions, they do not completely
capture the meaning of algebra in the lives of mathematicians. To
claim otherwise is to believe that Diophantus, Brahmagupta, and
the other great algebraists who lived before their formulation did
not understand the subject to which they contributed so much.

The subjective meaning of the highest level is the processing
style it attributes to cognition. Although missing in Marr’s analy-
sis of cognitive theories, it is nascent in Newell’s and Anderson’s
analyses of cognitive architectures, as we will see next. This is per-
haps not surprising. Cognitive architectures are computational
formalisms – are programing languages. Programing languages
cluster into “paradigms” or “families” based on their underlying
model of computation. Imperative languages such as C model
computation in terms of the von Neumann architecture, func-
tional languages such as Lisp in terms of the lambda calculus,
logical languages such as Prolog in terms of logical inference, and
so on (Bergin and Gibson, 1996; Wexelblat, 1981). To understand
a programing language is to think through its model of compu-
tation, and to write programs that express this model rather than
fight against it. Similarly, to understand a cognitive architecture at
the highest level is to think through its model of computation –

its processing style – and to write models that express it in their
cognitive information processing.

We next consider two example processing styles. That they
are each implemented by multiple cognitive architectures gives
evidence of their generality.

Rationality and optimality
A number of cognitive scientists have proposed that cognitive
information processing is, at its highest level, rational. This is
true of Newell’s (1982) “knowledge level,” with its accompany-
ing “principle of rationality,” and Anderson’s (1990) “rational
level.”

Rationality is a processing style with a pedigree: many of the
most elegant theories in science appeal to the optimality of the
natural world. One example is Fermat’s principle of least time,
which states that “of all the possible paths that it might take to
get from one point to another, light takes the path that requires
the shortest time” (Feynman et al., 2011, pp. 26-3). This principle
can be stated and applied independently of the details how the
optimal path is computed, which are left to a lower level theory.
Optimality principles seem to give a purpose to – explain the
why of – the natural world. Perhaps for this reason, theories that
appeal to optimality are often judged to be of greater esthetic
merit, another component of their subjective meaning (McAllister,
1996).

Different cognitive architectures implement the rational pro-
cessing style using very different lower levels. Soar adopts a
procedural notion of rationality, learning from prior problem solv-
ing new procedural knowledge to optimize the speed of future of
problem solving. ACT-R adopts a Bayesian notion of rationality,
learning statistics over prior experiences to take actions that max-
imize expected utility in the future (Anderson, 2007). That the
rational processing style can be implemented by different sets of
cognitive primitives demonstrates the quasi-independence of the
highest and lowest levels. As Anderson (1990, p. xi) writes,“a ratio-
nal analysis can stand on its own,” independent of the cognitive
primitives of “an architectural theory.”

Constraint satisfaction
A number of cognitive architectures characterize cognition as a
form of constraint satisfaction. The next cognitive state is not
computed directly, as it is in symbolic architectures that uti-
lize “forward chaining” and connectionist architectures where
activation flows in a “feedforward” direction. Rather, a set of
constraints defines the landscape of possible cognitive states,
an objective function defines the “goodness” of each one, and
the next cognitive state is the one that maximizes the objec-
tive function subject to the constraints. In “hard” constraint
satisfaction, the next cognitive state must satisfy all of the con-
straints. It is typically implemented by architectures that utilize
symbolic computational mechanisms, such as marker-passing
networks (Waltz, 1975; Fahlman, 1979) and symbolic program-
ing languages (Sussman and Steele, 1980). In “soft” constraint
satisfaction, the next cognitive state satisfies many, but not nec-
essarily all, of the constraints. It is implemented by connectionist
networks that employ distributed representations and thermody-
namic control structures (e.g., settling, simulated annealing), such
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as Hopfield (1982) networks and Boltzmann machines (Ackley
et al., 1985). It is also implemented by hybrid architectures that
utilize both symbolic and connectionist computational mecha-
nisms at their lowest levels, including Pandemonium (Selfridge,
1959), IAC networks (McClelland and Rumelhart, 1981; Rumel-
hart and McClelland, 1982; Kintsch, 1988), classifier systems
(Holland et al., 1986), and 4CAPS (Just and Varma, 2007). As
these examples demonstrate, the constraint satisfaction process-
ing style is quasi-independent of the cognitive primitives that
implement it.

THE MIDDLE LEVEL, BRIEFLY
There is also a middle level to cognitive theories and cognitive
architectures. We briefly analyze its objective and subjective mean-
ings here, and direct the interested reader to Varma (2011) for a
fuller explication.

Marr defines the middle level objectively, as “the representation
for the input and output and the algorithm to be used to transform
one into the other” (pp. 24–25). Newell (1989, p. 404) gives a sim-
ilar definition, colored by his advocacy of symbolic architectures:
“the symbol level is that of data structures with symbolic oper-
ations on them, being carried out under the guidance of plans,
programs, procedures, or methods” (p. 404). Other objective
characterizations include Pylyshyn’s (1984) “symbolic” level and
Anderson’s (1990) “algorithm” level. What is common to all is the
proposal that at the middle level, the computational mechanisms
of the lowest level combine into data structures and algorithms, to
implement the functional specification of the highest level.

The middle level has a parallel subjective meaning. It is where
the cognitive primitives of the lowest level combine to process
information in an architecture’s characteristic style. We call these
combinations idioms (Lallement and John, 1998; Jones et al.,
2007). They help cognitive scientists understand cognition in at
least two ways.

First, idioms possess pragmatic value. Some problems occur
over and over again during model construction. Each problem
can be solved by multiple combinations of cognitive primitives.
The question, then, is which combination is “best”? Idioms answer
this question. They are patterns of cognitive primitives that solve
recurring problems in a canonical manner, one consistent with the
overall processing style of an architecture (Chase and Simon, 1973;
Gamma et al., 1995). For example, when constructing connection-
ist models of complex cognition (e.g., sentence comprehension),
certain problems occur that cannot be solved at the lowest level.
One such problem is the representation of variable bindings (e.g.,
when computing the agreement between two phrases). It is often
solved using the CONJUNCTIVE CODING idiom, whereby by a pop-
ulation of units is defined, one for each possible combination of
feature values (Hinton et al., 1986; Touretzky and Hinton, 1988).
Another such problem is the representation of recursively embed-
ded information (e.g., syntactic structures). This problem cannot
be solved at the lowest level because the basic representations,
microfeature vectors, are “flat.” Connectionist architectures solve
this problem using a variety of idioms at the middle level. In feed-
forward architectures, the TENSOR idiom can be used to encode
structured information using vector representations (Smolensky,
1990). In recurrent architectures, the STARTING SMALL idiom –

biasing early training toward simpler structures and later train-
ing toward complex structures – can be used to learn structured
representations within hidden layers (Elman, 1993). This raises
the question of why different connectionist architectures solve the
recursive embedding problem using different idioms. The rea-
son is that each idiom solves the problem in a manner consistent
with its architecture’s metaphysical claims at the lowest level and
its processing style at the highest level. Although feedforward and
recurrent architectures have similar cognitive primitives, they real-
ize different processing styles, and therefore solve the recursive
embedding problem using different idioms.

The second contribution that idioms make to the subjective
meaning of the middle level is to enhance communication between
cognitive scientists. They help cognitive scientists understand
computational models written by other members of the architec-
tural community. These models are seen not as tangles of cognitive
primitives (“spaghetti code”), but rather as patterns signifying the
problems that arose during model construction, and how they
were solved. Idioms also increase the efficiency of communica-
tion. Cognitive scientists who belong to the same architectural
community know the same idioms. Therefore, their discussions
can utilize the succinct vocabulary of the middle level, and not
default to the verbose vocabulary of the lowest level.

IMPLICATIONS
We have articulated the objective meanings of the different levels
of cognitive architecture, following analyses originated by Marr,
Newell, Pylyshyn, and Anderson. We have also identified the
subjective meaning of each level – the understanding it brings
cognitive scientists of cognition (see Table 1 for a summary).
Importantly, the objective meaning of a level is quasi-independent
of its subjective meaning: one cannot entirely replace the other
(“independence”), though they can mutually constrain each other
(“quasi”).

Here, we draw several implications of this analysis. We first
argue that the subjective meanings of different levels of a cognitive
architecture are also quasi-independent of one another. We next
argue against reducing higher levels to lower levels, for example,
in the name of parsimony, because this would lose the subjective
meaning unique to higher levels. This would also needlessly limit
the flexibility of cognitive scientists to choose the architectural
level most relevant for understanding the phenomena of inter-
est to them. We conclude by considering the implications of the
multiple meanings and multiple levels of cognitive architecture for
understanding the current, disunified state of theoretical cognitive
science.

QUASI-INDEPENDENCE
We have seen that the objective meaning of each level is quasi-
independent of its subjective meaning. Returning to a previous
example, ACT-R and 4CAPS have similar objective meanings at the
lowest level, with both including productions as basic operators.
However, productions have very different subjective meanings in
the two architectures – are very different cognitive primitives.
They function as goal-driven schemas for accessing relevant infor-
mation in ACT-R, whereas they function as constraints between
representations in 4CAPS.
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Table 1 | Summary of the multiple meanings and multiple levels of cognitive architecture.

Level Objective meaning Subjective meaning

Highest Functional specification: mapping from perceptual-cognitive inputs to

cognitive-motor outputs

Processing style: model or paradigm of computation

Middle Data structures and algorithms: combinations of computational

mechanisms that implement the functional specification

Idioms: combinations of cognitive primitives that solve problems

that recur during model construction in a manner consistent with the

processing style

Lowest Computational mechanisms: basic representations, basic operators,

and control structure of cognitive information processing

Cognitive primitives: specify a metaphysics for cognition

A natural question is the relation between the meanings of
different levels. Simon (1996) observed that complex systems tend
to be organized hierarchically, with components at higher levels
being nearly decomposable into components at lower levels. Marr
(1982) argued that, for the case of cognitive theories, the objective
meanings of different levels are quasi-independent.

The three levels are coupled, but only loosely. The choice of an algo-
rithm is influenced for example, by what it has to do and by the
hardware in which it must run. But there is a wide choice available
at each level, and the explication of each level involves issues that are
rather independent of the other two.

Marr, 1982 (pp. 24–25)

The subjective meanings of different levels are also quasi-
independent. The processing style of the highest level is quasi-
independent of the idioms of the middle level, which are quasi-
independent of the cognitive primitives of the lowest level. Here
“quasi-independence” means that the subjective meanings of dif-
ferent levels can mutually constrain each other (“quasi”), but
cannot entirely replace each other (“independence”). We argue for
this proposal indirectly, by drawing its implications and providing
evidence for them from the history of cognitive architecture.

AGAINST REDUCTION
One implication of the proposal that the subjective meanings of
different levels are quasi-independent is that higher levels cannot
be entirely reduced to lower levels. This implication is provoca-
tive because it flies in the face of parsimony, the standard esthetic
criterion in science. This is the preference for simpler theories
over more complex theories, all other things being equal (McAl-
lister, 1996). For example, the Ptolemaic and Copernican theories
provided comparable accounts of the structure of the solar sys-
tem – of the observed movements of planets. The Copernican
theory came to be preferred in part because it was simpler, i.e.,
did not require ad hoc assumptions about epicycles. This implica-
tion is also provocative because it is antithetical to reduction, the
standard unification strategy in science (Oppenheim and Putnam,
1958). When higher-level theories are reduced to lower-level the-
ories, macroscopic phenomena come to be explained as emergent
properties of microscopic phenomena. An example of a successful
reduction is Pauling’s explanation of the chemical bond in terms of
quantum mechanics, a physical theory. Within cognitive science,
this strategy has been advocated most forcefully by “eliminative”

reductionists (Churchland, 1981). They argue that higher-level
theories are “folk psychological” – approximate at best and incor-
rect at worst – and should be reduced away to lower-level theories
of neural information processing.

There are two reasons why higher levels cannot be entirely
reduced to lower levels. The first is that reduction is underde-
termined. The subjective meanings of different levels are quasi-
independent, and in particular the same processing style can
be realized by different sets of cognitive primitives that make
distinct, even incommensurable metaphysical claims. Therefore,
there is no “best” reduction. Returning to a previous example,
both ACT-R and Soar implement the rational processing style,
but they do so using very different cognitive primitives. To select
the next operator to perform, ACT-R uses Bayesian cognitive
primitives that maximize expected utility. By contrast, Soar uses
set-theoretic primitives, asserting preferences to (partially) order
candidate operators and then selecting the most preferred one.
Should the rational processing style be reduced to the Bayesian
cognitive primitives of ACT-R or the set-theoretic primitives of
Soar?

The second reason that reduction fails is because it is lossy. In
his famous paper“More is Different,”Anderson (1972) argued that
condensed matter physics cannot be entirely reduced to particle
physics because “at each level of complexity entirely new proper-
ties appear” (p. 393). Similarly, because the subjective meaning
of a higher architectural level is quasi-independent of the subjec-
tive meaning of a lower level, some of its unique meaning will be
necessarily lost during reduction. Returning to a previous exam-
ple, the STARTING SMALL idiom solves the problem of representing
recursive embeddings for recurrent connectionist architectures.
If this idiom is reduced away – replaced everywhere in the lit-
erature with its defining combination of cognitive primitives –
then its pragmatic value would be lost. Cognitive scientists trying
to comprehend the sentence processing model of Elman (1993)
would not understand the theoretical claim behind decreasing the
proportion of simple structures and increasing the proportion
of complex structures over training. They would incorrectly dis-
miss it as a “hack.” The communicative value of the idiom would
also be lost. For example, consider connectionists discussing the
modeling of problem solving. They would not be able to discuss
the representation of plans, which are recursively embedded struc-
tures, in terms of the STARTING SMALL idiom. Rather, they would be
forced to converse at the lowest level, in the language of cognitive
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primitives, increasing the ambiguity and verbosity of their
communication.

APPROPRIATENESS
Different levels do not just convey different subjective meanings.
They also explain cognition at different scales. This provides cog-
nitive scientists with the flexibility to select the most appropriate
level for understanding their phenomena of interest. Reducing
away higher levels in the name of parsimony or unification would
needlessly sacrifice this flexibility.

That different theories explain at different scales, and that sci-
entists choose the most appropriate level given the phenomena
they seek to understand, is evident in other sciences. For example,
Carnot formulated classical thermodynamics to explain macro-
scopic phenomena such as the operation of heat engines. A half
century later, Maxwell, Boltzmann, and Gibbs reduced its laws to
those of classical mechanics, applied at the molecular level. Their
statistical thermodynamics did not reduce away the older theory;
scientists did not stop speaking of“temperature”and start speaking
only of “mean molecular kinetic energy.” Rather, scientists gained
an additional level of explanation, and the flexibility to choose
the most appropriate one given the scale of the phenomena to be
understood.

Similarly, cognitive scientists select the level most appropri-
ate for understanding the cognitive phenomena at hand. An
important factor in this selection is the temporal scale or fre-
quency of the phenomena (Newell and Simon, 1972; Pylyshyn,
1984). Higher levels are more appropriate for understanding cog-
nitions that unfold over longer time scales, such as problem
solving, whereas lower levels are more appropriate for under-
standing cognitions that unfold over shorter time scales, such
as word recognition. If the level selected is too high, then the
explanation it offers will be too coarse – will be insensitive to
the moment-by-moment time course. If the level selected is too
low, then the converse problem will arise: cognitive scientists
will be forced to make overly detailed claims about moment-by-
moment processing that cannot be evaluated against empirical
data.

IDENTIFIABILITY
We conclude by considering the implications of the analysis offered
here for progress toward “better” cognitive architectures. Many
cognitive scientists are committed to a fallibilist approach to scien-
tific progress, where competing theories are put to empirical tests,
corroborated theories are retained, and falsified theories are dis-
missed (Popper, 1963). And yet historically, it has proven difficult
to select between competing cognitive theories and cognitive archi-
tectures on empirical grounds (Newell, 1973b; Hintzman, 2011).
[There are some exceptions. For example, that humans can learn
linearly inseparable concepts but perceptrons cannot (Minsky and
Papert, 1969) was used to falsify this particular architecture.]

This difficulty is compounded by the problem of identifiabil-
ity. Cognitive architectures are computational formalisms, and
most are Turing-equivalent in their computational power. That is,
they can express computational models that implement the same
functions from perceptual-cognitive inputs to cognitive-motor
outputs. Because of their computational equivalence, we cannot

select between them based on the “competence” of their com-
putational models. It has been argued that although competing
architectures support models that compute the same input–output
functions, these models exhibit different“performance”character-
istics – different temporal profiles, error distributions, and so on. It
might be possible to select the architecture whose models’ perfor-
mance characteristics most closely resemble those of humans, and
in this way make progress (Pylyshyn, 1984; Newell, 1990). How-
ever, this strategy appears to be undercut by “mimicry” theorems
showing that architectures that adopt even diametrically opposed
computational mechanisms (i.e., symbolic vs. spatial representa-
tions, serial vs. parallel control) can express models that exhibit
identical performance characteristics (Townsend, 1974; Anderson,
1978).

One solution to these problems is to abandon the fallibilism
of Popper (1963) for the methodology of scientific research pro-
grammes proposed by Lakatos (1970). This solution was proposed
by Newell (1990) and has been developed in great detail by Cooper
(2006, 2007).

The analysis offered here points to an alternative understanding
of why progress toward“better”cognitive architectures has been so
slow. Comparisons between competing architectures are typically
conducted in a particular domain, for example, sentence com-
prehension, and at a particular level, typically the lowest. Such
comparisons are often compromised by the failure to consider
appropriateness. If the chosen level is appropriate for modeling
the chosen domain in one architecture but not another, then that
architecture will be judged as “better.” However, if a different
level had been chosen, then the choice might have been reversed.
More generally, the fallibilist approach cannot ensure progress
toward “better” cognitive architectures if appropriateness is
ignored.

For example, consider the long-running debate between propo-
nents of symbolic vs. connectionist architectures. Are productions
superior to weighted links and activation functions for modeling
sentence comprehension, as proponents of symbolic architectures
argue? Notice that the phrasing of this comparison is at the low-
est level (productions, weighted links, activation functions). This
is the appropriate level for addressing the information processing
requirements of sentence comprehension – recursive embeddings,
variable bindings – in symbolic architectures. However, it is
inappropriate for addressing these requirements in connectionist
architectures. As we saw above, it is at the middle level that con-
nectionist architectures provide idioms for recursive embeddings
(e.g., STARTING SMALL) and variable bindings (e.g., CONJUNCTIVE

CODING). And thus it is not surprising that such comparisons have
generally been indeterminate. When the ability of connection-
ist architectures to support models of sentence comprehension is
evaluated at the appropriate level, then the result can be much
more informative (Steedman, 1999).

More generally, when cognitive scientists use cognitive archi-
tectures to understand cognitive phenomena, they select the level
most appropriate for the phenomena to be explained. This level
is different for different architectures and for different domains.
Marr’s analysis was seminal in revealing this complexity, and
continues to be an important component of the meta-theory of
cognitive science.
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