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The ability to recognize a shape is linked to figure-ground (FG) organization. Cell
preferences appear to be correlated across contrast-polarity reversals and mirror reversals
of polygon displays, but not so much across FG reversals. Here we present a network
structure which explains both shape-coding by simulated IT cells and suppression of
responses to FG reversed stimuli. In our model FG segregation is achieved before shape
discrimination, which is itself evidenced by the difference in spiking onsets of a pair
of output cells. The studied example also includes feature extraction and illustrates a
classification of binary images depending on the dominance of vertical or horizontal
borders.
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INTRODUCTION
Neurons in the inferior temporal cortex (IT) have been linked
to visual shape representation and object recognition (Rolls
et al., 1977; Logothetis et al., 1995; DiCarlo and Maunsell, 2000;
Riesenhuber and Poggio, 2000; Rollenhagen and Olson, 2000).
Lesions in this area result in visual agnosia (Farah, 1990). fMRI
studies in humans show how objects activate this part of the cor-
tex and how restricted spots of it are driven by specific classes
of stimuli (Desimone, 1991; Malach et al., 1995; Tanaka, 1996).
Individual IT cells discriminate, in particular, the shape or color
of the stimulus or both parameters (Desimone et al., 1985).
Their selective responses are maintained across changes in the
size or location on the retina. Actually, in Baylis and Driver’s
paper (Baylis and Driver, 2001), the visual shape preferences of
IT neurons of monkeys were also invariant under two stimulus
transformations. The stimuli were different polygon displays and
the correlated transforms consisted of either a change in the con-
trast polarity between the figure and the background or a mirror
image. That form of invariance or symmetry is often referred to
as “generalization” and its degree of exactness is typically subject
to some amount of elasticity.

The exact computational process by which the IT region repre-
sents shape remains controversial (Peterson et al., 1991). A central
mechanism herein is figure-ground (FG) segmentation, or the
segregation of visual information into objects and their surround-
ing regions (Rubin, 1958). If this task were performed by the
brain solely through the contours distinguishing the input dis-
plays, then generalization under FG reversal would be expected
as well. However, it was absent from Baylis and Driver’s results
(Baylis and Driver, 2001). Thus, shape coding is not exclusively
based on the processing of contour features. For explaining such
results, some type of segregation has to be included.

Similarly, psychological findings on human visual shape judg-
ments indicate that one-sided assignment of edges plays a crucial
role (Baylis and Driver, 1995a,b; Nakayama et al., 1995; Rubin,

2001). Such an assignment means that the border is “owned” by
the side which is imagined “in front,” and regarded as “figure.”
Since the dividing curve is the same, the background shares the
same informative contour as the original figure, and has its “pro-
file” embedded. Even so, humans typically rate a mirror image of a
figure as more similar to the original than the background in iso-
lation (Hoffman and Richards, 1984). Likewise, IT cell responses
generalize more strongly across mirror imaging than across FG
reversal. That is, they are activated by shape components only
after FG assignment (Baylis and Driver, 1995c, see also Hulleman
et al., 2005). Apparently, the shape of an object is then coded after
the perception of it as a separate entity (however, this issue was
contended for a long time and other alternatives were offered, e.g.,
by Peterson et al., 1991).

We have already favored the idea that the visual system uses
one-sided edge assignment to figures (Supèr et al., 2010). In
fact, we developed a spiking model which by means of surround
inhibition gave FG responses. We concluded that feed-forward
connections contribute to the neural mechanisms underlying FG
organization, namely, that the phenomenon arises from the com-
putations that happen in earlier stages. Feedback merely controls
FG segregation by influencing the neural firing patterns of feed-
forward projecting neurons (Supèr and Romeo, 2011). Motivated
by all the above observations, we have constructed a network
structure, based on our previous work, which explains both the
suppression of responses to FG reversed stimuli and the possibil-
ity of achieving shape selectivity for the other transformations.

In summary, when an IT cell is selective to a certain shape, the
fact that this shape is presented as figure or as ground does matter.
We shall be upholding the hypothesis that FG segregation takes
place before feature extraction and further processing (alternative
hypotheses admitted that shape recognition was possible before
FG relationships were determined—Peterson et al., 1991). The
present work includes these specific elements: (1) A proposed
mechanism for figure segregation: local excitation and global

www.frontiersin.org May 2014 | Volume 5 | Article 481 | 1

http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.00481/abstract
http://community.frontiersin.org/people/u/49190
http://community.frontiersin.org/people/u/17418
mailto:hans.super@icrea.cat
http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Romeo and Supèr Feed-forward model of IT coding

inhibition leading to rebound spiking on regions of smallest area,
already introduced by Supèr et al. (2010), and (2) An additional
structure for extracting and processing features which, if applied
to the considered image type, classifies shapes by vertical|hori-
zontal edge dominance and reproduces the observed weakening
in the response when the shape goes into the background.

MATERIALS AND METHODS
Our network consists of five areas made of Izhikevich’s neurons
(Izhikevich, 2003, 2007). The dynamics of that neural model is
explained in the Supplementary Material. Of the five areas form-
ing the network, areas 1–4 are divided into two feature channels
labeled by F, and in areas 3 and 4 each channel is further divided
into 4 sub-channels associated with the 4 employed receptive
fields labeled by j. Area 5 consists of two cells, indicated by i, for
classification (see Figure 1, middle).

The shapes used as stimuli are polygons made of straight frame
edges at the top, bottom and along one side, and a “profile” line—
possibly but not necessarily curved—on the other side (Baylis
and Driver, 2001). When that profile runs between mid-points
of opposed frame sides, the total length of the present borders is
the same for the original and for the three transformations (see
Figure 2).

A combination of local excitation and global inhibition on area
2 is meant to cause the rebound spiking effects described in Supèr
et al. (2010). In area 1 the images are accurately represented, as the
two-channel input is mapped onto this layer. Only the neurons
at the locations of white regions are firing spikes, while those on
black regions are quiescent.

Neurons in area 2 receive spiking input from area 1. Each
cell gets retinotopic excitatory input and global inhibitory input.
For the channel receiving the region of smallest area, the spatial

FIGURE 1 | Top: Approximate location of V1, V2, V4, and IT in a macaque
brain. Middle: Structure of the studied network, made of five areas. Areas 1–4
are divided into two “feature” channels which, for areas 3 and 4, are further
divided into 4 sub-channels associated with each of the employed receptive

fields fj , 1 ≤ j ≤ 4. Area 5 consists of two neurons. Squares indicate arrays
and circles single cells. Bottom: An example of feature extraction from a
binary array by application of filtering fields (process from area 2 to area 3).
The top row show the activated sites when every field is applied.
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FIGURE 2 | Chosen images and their mirror-reversals,

contrast-reversals, and figure-ground reversals. Note that within each
row, the total length of the existing borders for every image is the

same. The two originals have inner size n = 64 without margins, outer
size N = 76 including margins, and an equal area ratio of 0.42 without
frame, 0.30 including frame.

FIGURE 3 | Network responses on area 5 for the image sets of Figure 2,

employing the w5i weights quoted in the text. Times are given in ms and
potentials in mV. For figure-ground reversal the responses are suppressed

while, for the other three cases, the firing order of cells 1 and 2 on area 5
signals the pertinence to one of two possible object categories (second and
third columns).

pattern of spiking activity reproduces the excitatory input pattern.
On the contrary, for the channel receiving the region of largest
area, the spatial activity pattern is the reversal of the input pattern,
signaling the complementary region. That change is explained by
rebound spiking after a strong inhibition in the smallest region.
For neurons on the largest region, global inhibition is partly
compensated by retinotopic excitation. However, for cells on the
smallest region, that inhibition is the only input and gives rise to a

strong a rapid hyperpolarization which provokes rebound spiking
of these cells.

The new parts are added “on top” of the previous struc-
ture. In area 3, features are extracted by applying a non-linear
function—in fact, a step function with given threshold—to con-
volutions of spike maps and filters (see Figure 1, bottom). The
signals produced by application of the different filter types are fed
into separate sub-channels. Area 4 collects spatial integrations of
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FIGURE 4 | Spike counts for the example of Figure 2. Each plot corresponds to an image set and an area 5 cell. In every case there are fewer spikes for
FG-reversal.

FIGURE 5 | Firing onset times—i.e., first spike times—for the example of Figure 2. Each plot is associated with an image set and an area 5 cell. In every
set the spiking starts later when FG-reversal is applied.

the obtained detections within each sub-channel. Finally, area 5,
which contains several output units, receives combinations of area
4 signals, including, in principle, all channels and sub-channels.
Hypothetically there are as many output units as categories for
classification (in our particular example, 2).

The numerical values of our inputs are set by the following
rules:

I1F = w1TF, F = 1, 2

I2F = w2eS1F − |w2i|S1F1, S1F ≡ 1

N2

∑
k,l

(S1F)kl, F = 1, 2

I3Fj = w3 �(S2F ∗ fj − 1), F = 1, 2, 1 ≤ j ≤ 4

I4Fj = w4S3Fj, S3Fj ≡ 1

N2

∑
k,l

(S3Fj)kl, F = 1, 2, 1 ≤ j ≤ 4

I5i =
2∑

F = 1

4∑
j = 1

w5iFjS4Fj, i = 1, 2.

TF , F = 1, 2, stand for original stimulus (F = 1) and its contrast-
reversed version (F = 2). Since the inhibitory weight w2i is
negative, we have written it as w2i = −|w2i|. Concerning the
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inputs themselves, I1F , I2F , F = 1, 2 and I3Fj, F = 1, 2, 1 ≤ j ≤ 4,
are N × N matrices; I4Fj, F = 1, 2, 1 ≤ j ≤ 4, and I5i, i = 1, 2,
are scalars. An analogous convention is employed to indicate the
binary (0,1) spike maps: S1F denotes the spike map produced by
the potentials on area 1 channel F, and so on. Thus, S1F , S2F ,
F = 1, 2, and S3Fj, F = 1, 2, 1 ≤ j ≤ 4, are N × N matrices, while
S4Fj, F = 1, 2, 1 ≤ j ≤ 4, are scalars. For I = 1, 2, every w5i can be
regarded as a matrix of two rows, labeled by F, and four columns,
labeled by j. The 1 symbol indicates an N × N matrix whose coef-
ficients are all them equal to one. Array convolution product is
denoted by the “∗” symbol, and � indicates the step function
�(x) = 1 if x = 0 and 0 otherwise. The feature-selective fj filters
are given by:

f1 =
(−1

1

)
f2 = ( − 1 1) f3 =

(
1

−1

)
f4 = (1 − 1)

FIGURE 6 | Spiking area ratios for the figural parts. The numbers
indicate the ratio between spiking area and total area. For contrast and
FG-reversal in F = 1 channel the figure is segregated after “rebound
spiking.” Moreover, in the case of FG-reversal the involved area ratio is the
largest one.

In the studied set-up we adopt w1 = 10, w2e = 400, w2i = −750,
w3 = 500, w4 = 5.0, all of them in µA. The considered images
(Figure 2) are squares of side n = 64 pixels when margins are not
included. As margins are 6 pixels wide, N = 76 pixels. The num-
ber of white pixels is the same in the two original images, and they
yield an area ratio of 0.42 without frame, or 0.30 including frame.

The ability to classify will depend on the particular form of
the w5 matrices. On area 5, cell i = 1|2 has to show preference for
image 1|2. The question can be addressed by considering the role
of the j indices, initially labeling the applied filters. For cell 1, lim-
itation to vertical contrast takes place by setting non-zero values
in even columns only. Analogously, horizontal contrast for cell 2
is obtained by adopting non-zero values just in the odd columns.
Figure 7 illustrates that the strongest signal from FG-reversal goes
through F = 2, related to the second row of w5i. Because this
signal should yield the weakest output, the remaining non-zero
coefficients in the second rows have to be smaller than those in
the first rows. A solution meeting this requirement in terms of
only two non-zero constants A, B is

w51 =
(

0 A 0 A

0 B 0 B

)
, w52 =

(
A 0 A 0

B 0 B 0

)

with B smaller than A. In practice, satisfactory performance is
obtained for A = 100 µA, B = 5 µA.

In agreement with Baylis and Driver’s results (Baylis and
Driver, 2001) and our previous proposals, FG discrimination is
achieved already in area 2, long before shape recognition, and
rests on one-sided edge assignment to figures. The shape-selective
responses of area 5, identified as IT, depend mainly on the w5i

matrices, which—hypothetically—would consist of a group of
learned weights. Shape-coding is evidenced by the difference in
spiking onsets for the output units. Cells in V4 code diagnostic
boundary features at specific locations, already ascribed to the
object figure, which represent through their population response
the complete shape. This matches with the findings by Patsupathy
and Connor (2002).

RESULTS
The described model processes sets of figures consisting of origi-
nal, mirror-reversed, contrast-reversed, and FG-reversed versions

FIGURE 7 | Spiking rates, in number of spikes per second, for the area 2 potentials V21 and V22 at a point inside the “figural” region of the first image

in Figure 2. These values were obtained after a 100 ms simulation. In the case of FG-reversal, the spiking for “feature 1” is less frequent than for “feature 2.”
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FIGURE 8 | Potentials on area 5 for the first image set of Figure 2 and its own rotated version. Cell 1 and cell 2 responses are interchanged.

FIGURE 9 | Spike counts for the images of Figure 8. Cell 1 and cell 2 counts are interchanged.

of the original one. Depending on the lengths of horizontal and
vertical borders, the different activity of the output units classifies
the elements of these sets. In addition, responses are similar for
original, mirror-reversed and contrast-reversed transformations
of the same image, and significantly decrease for the FG-reverse
version.

Results of running the network with our particular matri-
ces are shown in Figure 3. On area 5, cell 1 spikes earlier than

cell 2 for image 1 and cell 2 spikes sooner than cell 1 for
image 2. Since the non-zero columns of matrices w51|w52 cor-
respond to vertical|horizontal contrast features, the employed
solution is valid for any case in which the predominance of ver-
tical|horizontal borders can be a distinctive criterion. Moreover,
within each image set, responses to FG-reversed images are the
lowest because row 2 (which weights the inputs from “F = 2”
channel) has smaller coefficients than row 1 (which multiplies
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FIGURE 10 | Firing onset times for the images of Figure 8. Cell 1 and cell 2 times are interchanged.

FIGURE 11 | Rows 1–4: network responses on area 5 for a circle disconnected from a hypothetical frame. Rows 5–8: responses for a circle connected to
the frame by the mid-points of opposed sides (preserving the border length, as required).

the “F = 1” channel signals). Indeed the spike counts shown in
Figure 4 indicate that there are fewer spikes for the FG-reversal
of every image. Furthermore, the produced spike bursts start
later when applying FG-reversal, as can be seen in Figure 5. On
the whole, firing onset times are a better criterion than spike
counts.

The applied mechanism may be understood in terms of spik-
ing area ratios for figural parts because, in the end, the number
of spikes relative to the total area has a decisive contribution to
the excitation-inhibition balance. For the case of contrast and FG-
reversal in F = 1 channel, the figural part is not segregated until
“rebound spiking” takes place on area 2 (rebound spiking occurs
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after a strong inhibition, even in the absence of excitation—see
Izhikevich, 2003, 2007 or Supèr et al., 2010). For FG-reversal the
involved area is the largest (see Figure 6) and the resulting inhi-
bition, which is proportional to the spiking area, turns out to be
somewhat stronger (Figure 7).

Because our criterion rests on differences in length between
vertical and horizontal borders, the system distinguishes an image
from its own rotated version, as can be seen in Figures 8–10.
Predictably, for area 4, responses in sub-channels with even and
odd indices are interchanged, and for area 5, the 1 and 2 cell
responses are swapped as well.

In the considered image realm profiles should run between
mid-points in opposite frame sides (see lower part of Figure
1 in Baylis and Driver, 2001) in order to preserve the total
length of all the boundaries. Going out of this image class we
can imagine the case of a disconnected circle. Then, the weak-
est signal is the “contrast reversed” one, while the “FG-reversed”
version produces a higher response (see Figure 11, upper part)
caused by the existence of a longer boundary. For this exam-
ple the third transformation must be simply ignored, because it
just amounts to the reversal of an unconnected frame, while the
only reasonable analog to FG-reversal is now the contrast reversal
itself. Examination of the numerical output reveals that it starts
spiking marginally later than the original and mirror-reversal (by
1.25 ms) and with fewer spikes (7 instead of 11). Thus, the result
is not inconsistent. When the circular shape is connected to the
frame and the overall area ratio correctly set, normal working is
restored (Figure 11, lower part).

DISCUSSION
We have been able to design a network structure which mod-
els the suppression of responses to FG reversed stimuli, and
shows the possibility of producing selective outputs that general-
ize across mirror reversed and contrast reversed stimuli. Although
the model was not meant for complex images and had no pre-
tence to describe state-of-the-art knowledge on IT processing,
it is quite coherent as its outcome fits our previous findings,
was constructed using similar values to our forerunning model
(Supèr et al., 2010; Supèr and Romeo, 2011) and yields invariance
in the pattern of responses across a variety of stimuli and their
transformations.

An essential ingredient was the dual pathway for the given fig-
ure and its own contrast-reversed version, which represents the
existence of two input preferences (Supèr et al., 2010). Although
the incoming signals for these two channels are different, the spik-
ing parts in area 2 eventually highlight a single region, identified
as “figure.” Despite the space coincidence, the strengths of these
signals may still vary, showing a sizable difference for the FG-
reversal case. Later, the obtained figural part undergoes a multiple
feature extraction process. Spatially-averaged results of that fea-
ture detection procedure are then fed into cells mimicking IT
neurons. By virtue of the devised scheme, which benefits from the
linear character of the I5i inputs, our IT cells are in fact selective
for two image categories. The nature of the performed selection is
determined by the weight choice.

A correspondence between model architecture and visual sys-
tem can be depicted as follows: The first area transforms the input

into a spiking train like the Ganglion cell area of the retina, the
second area then would be V1, assuming that the LGN (lateral
geniculate nucleus) merely relays sensory information. Areas 3–4
may be assimilated to connections occurring both in V2 and in
V4, while area 5 would be analogous to IT.

The remarked dependency on orientation can be viewed as the
consequence of “experience” (contained in the values of the w5i

weights) that causes the system to perform holistic processing. In
the case of the rotated image, the features or components are pro-
cessed in the same way as in the original (by V4 neurons). If there
were edge detectors for enough different orientations and all their
outputs could be integrated in a rotationally-invariant fashion,
responses for an image and its own rotated version ought to be
equal. In our case the limited “experience” implicit in the weights
does not suffice for obtaining this symmetry. An implication is
that in our model both sorts of information are explicitly encoded
as suggested by Schwaninger et al. (2002).

Another consequence would be that our memory of a category
has a specific orientation, the usual one in the type of stimu-
lus processed. A well-known example of this affirmation is the
Thatcher illusion, where the eyes and mouth of a face are turned
upside down (see Thompson, 1980). When the whole image is
subsequently inverted the grotesque appearance vanishes. In the
context of our model implications, the component representa-
tions would then be normal and thus could be matched with the
output of the holistic process.

At least for polygons of the studied type, our model bears
out the view offered by Baylis and Driver (2001) and provides
a computational scheme explaining their observations. FG dis-
crimination is achieved in an area which becomes active before
shape selection takes place, and is based on one-sided edge assign-
ments. Such a mechanism, which accounts for the observed
generalization, operates by a purely feed-forward process.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fpsyg.
2014.00481/abstract
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