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Nicotine alters appetite and energy expenditure, leading to changes in body weight. While
the exact mechanisms underlying these effects are not fully established, both central and
peripheral involvement of the alpha-7 nicotinic acetylcholine receptor (α7nAChR) has been
suggested. Centrally, the α7nAChR modulates activity of hypothalamic neurons involved
in food intake regulation, including proopiomelanocortin and neuropeptide Y. α7nAChRs
also modulate glutamatergic and dopaminergic systems controlling reward processes that
affect food intake. Additionally, α7nAChRs are important peripheral mediators of chronic
inflammation, a key contributor to health problems in obesity. This review focuses on
nicotinic cholinergic effects on eating behaviors, specifically those involving the α7nAChR,
with the hypothesis that α7nAChR agonism leads to appetite suppression. Recent studies
are highlighted that identify links between α7nAChR expression and obesity, insulin
resistance, and diabetes and describe early findings showing an α7nAChR agonist to be
associated with reduced weight gain in a mouse model of diabetes. Given these effects,
the α7nAChR may be a useful therapeutic target for strategies to treat and manage obesity.
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INTRODUCTION
Nicotine has long been known to affect energy balance and
weight. Smokers, for example, weigh less than age- and sex-
matched non-smokers (Albanes et al., 1987), while smoking
cessation is associated with increased food intake and weight gain
(Stamford et al., 1986; Williamson et al., 1991; Filozof et al., 2004).
Given the strong link between smoking and reduced weight, many
report using smoking for weight control, or avoid cessation due
to fear of weight gain (Camp et al., 1993; Wiseman et al., 1998;
Fulkerson and French, 2003). Experimentally, nicotine has been
shown to suppress appetite, increase energy expenditure, and
alter feeding patterns, which can lead to weight loss (Jo et al.,
2002; Zoli and Picciotto, 2012). Despite these known effects,
however, the mechanisms underlying nicotine’s effects on eat-
ing behaviors and obesity remain unclear. Nicotine acts on both
high-affinity nicotinic cholinergic receptors, such as the α4-β2
receptor, and low-affinity receptors, such as the α7 receptor, both
centrally and peripherally. Recent studies suggest that the alpha-7
nicotinic acetylcholine receptor (α7nAChR) may play a particu-
larly prominent role in nicotinic effects on eating behaviors. As
such, this review focuses on neuronal effects of nicotinic agents,
especially those involving the α7nAChR, how stimulation of this
receptor influences eating behaviors and weight, and the poten-
tial utility of α7nAChR agonists as a novel treatment strategy for
obesity.

ALPHA-7 NICOTINIC ACETYLCHOLINE RECEPTORS
Neuronal nicotinic acetylcholine receptors consist of ligand-gated
ion channels that are activated by acetylcholine, but also respond

to nicotine and similar compounds. These receptors are comprised
of five transmembrane subunits arranged around a central pore
(Paterson and Nordberg, 2000; Dani and Bertrand, 2007). These
subunits include αβ combinations (α2–α6 and β2–β4), homo-
meric nAChRs (α7–α9), and a heteromer α combination (α9 with
α10) (McGehee et al., 1995; Jones et al., 1999; Dani and Bertrand,
2007). The two main types of nAChRs found in the brain are α4–β2
receptors and α7 receptors (Jensen et al., 2005; Changeux, 2010).
While different nAChR subtypes may affect circuits involved in
feeding behavior (Jo et al., 2002; Mineur et al., 2011a,b; Zoli and
Picciotto, 2012), this review will focus on α7nAChRs, which are
receiving increased research attention for their involvement in
eating behaviors and food intake.

CENTRAL EFFECTS OF α7nAChRs ON EATING BEHAVIORS
Previous reviews have described peripheral effects of nicotine
and other α7nAChR agonists on obesity and eating behaviors
(Bencherif et al., 2011; Lakhan and Kirchgessner, 2011). As such,
while recent evidence for peripheral effects will be briefly exam-
ined, the primary focus of this review will be on central effects.
Overall, nicotine and other α7nAChR agonists appear to suppress
appetite through numerous complex, interacting central pathways,
particularly those in the hypothalamus, which plays a fundamen-
tal role in energy balance. When various interactions are jointly
considered, activation of hypothalamic α7nAChRs is thought to
result in overall increased inhibition of appetite circuits, resulting
in decreased food intake (Jo et al., 2002). Stimulation of α7nAChRs
may also reduce food intake via effects on reward pathways or
cortical networks involved in eating behaviors.
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α7nAChR EFFECTS ON HYPOTHALAMIC NEUROPEPTIDES
Hypothalamic nuclei most associated with energy balance and
feeding regulation include the lateral hypothalamus (LH), ven-
tromedial hypothalamus (VMH), arcuate nucleus (ARC), and
paraventricular nucleus (PVN). The LH is often simplistically
described as the “hunger center” and the VMH the “satiety cen-
ter” (Schwartz et al., 2000; Zoli and Picciotto, 2012). The ARC is
a primary center for peripheral feeding signal integration (e.g.,
leptin, insulin) and contains neurons that stimulate feeding and
those that inhibit feeding when activated, with projections to the
PVN and LH (Schwartz et al., 2000; Kageyama et al., 2012; Zoli
and Picciotto, 2012).

A primary potential pathway for α7nAChR mediation of eating
behaviors involves hypothalamic cholinergic input. The hypotha-
lamus contains rich cholinergic innervation and some of the
highest levels of α7nAChR expression in the brain (Sargent, 1993).
Appetite-related circuits within the hypothalamus can be modu-
lated by nAChR activation, with a complex network of hormone
and neuropeptide signals exerting neuronal effects to regulate eat-
ing behaviors. A number of studies have demonstrated effects of
nicotine on these signals. Here, we will discuss α7nAChR involve-
ment in cholinergic effects on proopiomelanocortin (POMC),
neuropeptide Y (NPY), and melanin-concentrating hormone
(MCH), all of which are involved in feeding regulation (Figure 1).

POMC AND NPY
Nicotine may suppress appetite via activation of POMC neurons.
POMC is produced in the hypothalamus (Huang et al., 2011; Zoli
and Picciotto, 2012) and is a precursor for melanocortins, such
as α-melanocyte-stimulating hormone (α-MSH), associated with
suppressed food intake (Schwartz et al., 2000; Zoli and Picciotto,
2012). Electrophysiologically, Huang et al. (2011) demonstrated

that nicotine excites mouse hypothalamic POMC neurons and
that α7nAChRs are present on these neurons. Nicotine effects
were reduced by the α7nAChR antagonist methyllycaconitine
(MLA), suggesting at least partial mediation by α7nAChRs. As
such, POMC stimulation is a potential mechanism through which
α7nAChR agonism may suppress appetite. It should be noted,
however, that MLA is not as selective an antagonist for α7nAChRs
as α-bungarotoxin (Klink et al., 2001; Mogg et al., 2002), which
should be considered when MLA is used to assess α7nAChR effects.

Neuropeptide Y, also produced in the hypothalamus, is asso-
ciated with increased food intake (Schwartz et al., 2000). NPY
neurons in the ARC project to the PVN to stimulate feeding
(Morris, 1989; Kageyama et al., 2012). Thus, POMC and NPY
have opposing effects on food intake. Smokers show reduced
NPY levels compared to non-smokers, and smoking cessation
is associated with increased NPY (Hussain et al., 2012), suggest-
ing NPY inhibition as a mechanism for appetite suppression.
However, nicotine effects on NPY are complex. As with POMC,
NPY neurons in the hypothalamus are stimulated by nicotine
and express α7nAChRs. Excitation of NPY neurons by nicotine
is partially mediated by α7nAChRs, as MLA reduces excita-
tion. Although nicotine reduces hypothalamic NPY mRNA in
rats acutely (Frankish et al., 1995), NPY mRNA increases with
chronic administration (Frankish et al., 1995; Li et al., 2000),
which is accompanied by decreased food intake (Li et al., 2000).
This is counterintuitive, as NPY stimulates food intake. How-
ever, nicotine also reduces hypothalamic NPY receptor density
(Kane et al., 2001), which could explain the decreased intake.
Another explanation for the net appetite-inhibiting effect of nico-
tine is that the depolarizing effect of nicotine on POMC neurons
(anorexigenic) is significantly greater than that on NPY neurons
(orexigenic). Furthermore, in addition to NPY neuron excitation

FIGURE 1 | Effects of α7nAChR stimulation on hypothalamic

neuropeptide and neurotransmitter release. Although there are complex
interactions among pathways, it is hypothesized that the net effect of
α7nAChR stimulation leads to reduced food intake. Inhibitory effects are
indicated with a minus sign, while excitatory effects are indicated with a plus
sign. Note that both inhibitory and excitatory effects of α7nAChR stimulation

have been observed on NPY. While appetite effects of dopamine elsewhere in
the brain are mixed, studies suggest that hypothalamic dopamine release
contributes to appetite inhibition. α7nAChR, α7 nicotinic acetylcholine
receptor; GABA, gamma aminobutyric acid; NPY, neuropeptide Y; POMC,
proopiomelanocortin; 5-HT, serotonin; Glu, glutamate; MCH,
melanin-concentrating hormone; DA, dopamine.
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by nicotine, inhibition of excitatory synaptic activity (gluta-
mate release) on NPY neurons was also observed, an effect not
seen in POMC neurons (Huang et al., 2011). Thus, although
nicotine can excite NPY neurons, the greater direct excitation
of appetite-inhibiting POMC neurons compared to appetite-
stimulating NPY neurons, in addition to indirect inhibition of
NPY neurons (via reduced glutamate release) may contribute to
the net effect of appetite inhibition by nicotine and other α7nAChR
agonists.

MELANIN-CONCENTRATING HORMONE
Melanin-concentrating hormone (MCH) neurons are primarily
located in the LH (Zamir et al.,1986) and also stimulate food intake
(Qu et al.,1996). MCH may have a particular role in reward-related
aspects of food, as MCH neurons project to the nucleus accumbens
(NAC) and the ventral tegmental area (VTA), brain areas involved
in reward processes (Schilstrom et al., 1998; Jo et al., 2005). MCH
knockout mice are excessively lean and demonstrate reduced food
intake (Shimada et al., 1998; Marsh et al., 2002). α7nAChRs may
mediate gamma aminobutyric acid (GABA)-related inhibition of
MCH neurons in the LH, leading to this appetite suppression (Jo
et al., 2005).

α7nAChR MODULATION OF NEUROTRANSMITTERS
INVOLVED IN FOOD INTAKE BEHAVIORS
In addition to hypothalamic neuropeptides, nicotine modu-
lates effects of multiple other neurotransmitter systems in the
brain. The following section describes the impact of nicotine
on GABA, glutamate, dopamine (DA), and serotonin, focusing
on how α7nAChRs may inhibit appetite by modulating these
neurotransmitter systems.

GAMMA AMINOBUTYRIC ACID
Release of GABA, the main inhibitory neurotransmitter in the
brain, is influenced by nAChRs (McGehee et al., 1995; Jones
et al., 1999). Nicotine effects on appetite reduction may be asso-
ciated with decreased excitability of MCH neurons in the LH
via increased GABAergic inhibitory tone. Jo et al. (2005) found
nicotine administration to facilitate GABAergic transmission in
adult mice, and prenatal nicotine exposure to enhance postna-
tal GABAergic transmission. Specific involvement of α7nAChRs
was also demonstrated, as an α7nAChR-specific antagonist
(α-bungarotoxin) blocked these effects. As such, activation of
α7nAChRs on GABAergic terminals in the hypothalamus may
contribute to the anorexigenic effects of nicotine.

GLUTAMATE AND DOPAMINE
Glutamate is the main excitatory neurotransmitter in the brain
and plays a role in rewarding effects of nicotine, as nico-
tine increases glutamate release in the VTA and NAC, brain
regions central to reward mechanisms (McGehee et al., 1995;
Reid et al., 2000; Schilstrom et al., 2000). High concentrations
of α7nAChRs are observed in the VTA (Clarke and Pert, 1985;
Dominguez del Toro et al., 1994; Schilstrom et al., 1998; Jones
and Wonnacott, 2004) and are thought to mediate nicotine-
associated glutamate release (McGehee et al., 1995; Schilstrom
et al., 2000). α7nAChR-mediated glutamate release plays a large

role in nicotine’s effects on DA, a neurotransmitter critical in
the reinforcing effects of nicotine (Schilstrom et al., 1998; Fowler
et al., 2008). α4-β2nAChRs are sufficient for these reinforcing
effects (Besson et al., 2012), likely via direct effects on DA neurons
(Wooltorton et al., 2003; Besson et al., 2012). However, stimula-
tion of α7nAChRs activates DA neurons via glutamatergic inputs
(Yoshida et al., 1992; Schilstrom et al., 2000, 2003; Garzon et al.,
2013). Thus, α7nAChR activation ultimately increases DA, but
this is largely mediated via glutamatergic effects. Additionally,
α7nAChRs may be important in dopaminergic function follow-
ing long-term nicotine exposure, as they are more resistant to
desensitization at usual levels for smokers than nAChR subunits
containing β2 receptors, and may prevent dopaminergic hypoac-
tivation resulting from chronic β2 desensitization (Besson et al.,
2007, 2012).

The role of α7nAChR-mediated glutamate release in food
consumption remains unclear. Administration of a glutamate
antagonist has been found to increase food intake in rats
(Maldonado-Irizarry et al., 1995; Stratford et al., 1998). As such,
glutamate release stimulated by an α7nAChR agonist could
decrease food intake. Increased DA release, amplified by
α7nAChR-mediated glutamate release, increases the reward value
of food (Yoshida et al., 1992; Schilstrom et al., 1998). Quarta et al.
(2009) observed striatal DA release in mice following adminis-
tration of an α7nAChR agonist (choline), an effect not observed
in mice lacking α7nAChRs. Food-induced DA release is attenu-
ated by an α7nAChR antagonist (MLA), implicating α7nAChRs
in eating-related reward (Schilstrom et al., 1998). However, the
role of DA in feeding behaviors is complex and varies by
brain region. Although DA contributes to rewarding aspects
of food intake in areas such as the VTA and NAC, hypotha-
lamic DA release is though to contribute to nicotine-related
reductions in food intake (Meguid et al., 2000; Schwartz et al.,
2000). Thus, further study is needed to determine if effects
of α7nAChRs on DA lead to overall increased or decreased
consumption.

SEROTONIN
Serotonin inhibits food intake (Waldbillig et al., 1981; Jo
et al., 2002), likely by promoting satiety (i.e., meal stopping;
Shor-Posner et al., 1986). One mechanism may be via NPY, as
evidence suggests serotonin inhibits NPY release (Dryden et al.,
1995, 1996a,b). Nicotine-induced nAChR activation can increase
serotonin release, contributing to appetite suppression (Summers
and Giacobini, 1995; Jo et al., 2002). Activation of α7nAChRs is
thought to influence serotonin release, as α7nAChRs have been
identified on serotonergic neurons (Galindo-Charles et al., 2008)
and α7nAChR stimulation increases serotonin release in the dorsal
raphe nucleus (Li et al., 1998).

CORTICAL α7nAChR INVOLVEMENT IN FOOD INTAKE
BEHAVIORS
Cortically, α7nAChR activation may affect limbic and paralimbic
brain systems such as the insula and cingulate cortex, which also
play a role in reward aspects of eating behaviors (Volkow et al.,
2010) and contain rich cholinergic innervation (Nyback et al.,
1989).
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INSULA/SALIENCE NETWORK
The insula, containing primary taste cortex, is involved in eating
behavior regulation, including involvement in rewarding aspects
of food and food-related arousal (Tataranni et al., 1999; Hinton
et al., 2004; Cornier et al., 2009). The insula is also a central
component of the salience network, an intrinsic brain network
involved in assessing relevance of internal and external stimuli
(Seeley et al., 2007; Bressler and Menon, 2010), in which altered
response has been observed in obese, compared to lean, individ-
uals (Garcia-Garcia et al., 2012; Kullmann et al., 2013). The insula
is associated with urges and cravings related to both food and
drugs of abuse (Pelchat et al., 2004; Naqvi and Bechara, 2009;
Forget et al., 2010). Indeed, smokers sustaining insula damage
following a stroke showed little subsequent difficulty quitting
smoking, suggesting a role for the insula in effects of nicotine
(Naqvi et al., 2007). However, the role of α7nAChRs in the insula
is not yet known. Via α-bungarotoxin binding, studies have found
α7nAChRs in the insula in both rats (Fuchs, 1989) and monkeys
(Han et al., 2003). Presence of α7nAChRs in the human insula has
been suggested by detection of α7nAChR mRNA (Wevers, 2011),
but insular α7nAChR protein levels have not yet been studied in
humans. As such, further study of α7nAChRs in the insula, and
how activation of these receptors relates to eating behaviors, is
needed.

POSTERIOR CINGULATE/DEFAULT MODE NETWORK
The posterior cingulate cortex may also be involved in eating
behaviors, having been associated with neuronal responses to
visual food cues and taste (Tataranni et al., 1999; DelParigi et al.,
2005; Cornier et al., 2009). The posterior cingulate is also a key
component of the default mode network (DMN), an intrinsic
brain network involved in self-referential thoughts and attention
to internal stimuli (Buckner et al., 2008). DMN activity may play
a role in eating behaviors, as overactivity of this network has
been observed in obese, compared to lean, individuals (Tregel-
las et al., 2011a). Furthermore, this activity, which was associated
with measures of appetite, was shown to change in response to
feeding in lean, but not obese individuals. Nicotine can reduce
resting-state DMN activity, including the posterior cingulate (Tan-
abe et al., 2011). α7nAChRs are present in high concentrations
in the cingulate cortex, as assessed by α-bungarotoxin bind-
ing (Breese et al., 1997; Marutle et al., 2001). A study of DMN
activity in schizophrenia patients observed reduced response
following treatment with an α7nAChR partial agonist [3-2,4-
dimethoxybenzylidene anabaseine (DMXB-A)], specifically in the
posterior cingulate (Tregellas et al., 2011b). As with non-mentally
ill obese individuals, DMN overactivity has been observed in
schizophrenia patients (Garrity et al., 2007; Whitfield-Gabrieli
et al., 2009), who are obese are rates twice those observed in the
general population. Given these findings, it is possible that acti-
vation of α7nAChRs could be a mechanism to normalize DMN
hyperactivity in obesity.

α7nAChRs AND PERIPHERAL FACTORS INVOLVED IN EATING
BEHAVIORS AND OBESITY
Recent studies have discovered a key role for α7nAChRs
in peripheral factors related to obesity. In a mouse model

of diabetes, Marrero et al. (2010) found that an α7nAChR-
selective agonist (TC-7020) reduced weight gain and food intake,
as well as glucose and triglyceride levels and expression of
proinflammatory cytokines. These effects were reversed by an
α7nAChR antagonist (MLA), supporting α7nAChR involvement.
In humans, Cancello et al. (2012) have also found evidence sup-
porting α7nAChR involvement in obesity. In addition to identify-
ing α7nAChR expression in human mature adipocytes, they found
that expression was downregulated in obese compared to lean
adults, and that weight loss partially restored α7nAChR expression.

A potential mechanism through which peripheral α7nAChRs
may exert weight and food intake effects is by mediating anti-
inflammatory effects. Inflammation is a key feature of obesity,
associated with increased proinflammatory cytokine produc-
tion, insulin resistance, and development of type 2 diabetes
(Marrero et al., 2010; Wang et al., 2011). Activation of α7nAChRs
on cytokine-producing cells, such as macrophages, mediates
this inflammatory response by inhibiting inflammatory cytokine
production (Wang et al., 2011). A number of studies have
demonstrated anti-inflammatory effects of nicotine (Wang et al.,
2003; Lakhan and Kirchgessner, 2011) and smokers may have a
reduced risk of some inflammatory diseases such as ulcerative
colitis (Lakhan and Kirchgessner, 2011). The “cholinergic anti-
inflammatory pathway” can be activated by α7nAChR agonists
(Cheng et al., 2007). Supporting this, nicotine-induced cytokine
inhibition can be blocked by α7nAChR-specific antagonists
(Cheng et al., 2007), and α7nAChR knockout mice show increased
LPS-induced proinflammatory cytokine production, including
TNFα and IL-1β (Wang et al., 2003). Wang et al. (2011) found
adipose tissue and macrophages in mice to express α7nAChRs,
and while nicotine suppressed proinflammatory cytokine pro-
duction, this effect was not observed in α7nAChR knockout
mice. Additionally, nicotine reduced adipose tissue inflammation
and improved insulin sensitivity in obese mice. Xu et al. (2012)
observed improved insulin sensitivity in rodents following treat-
ment with either nicotine or an α7nAChR agonist (PNU-282987),
an effect not observed in α7nAChR knockout animals. These
studies suggest that α7nAChRs are critical in anti-inflammatory
effects of nicotine. Given this, therapeutics targeting α7nAChRs
are increasingly being explored for diseases involving inflamma-
tion, such as diabetes, arthritis, and ulcerative colitis (Wang et al.,
2003; Marrero et al., 2010; Bencherif et al., 2011; Lakhan and
Kirchgessner, 2011).

CONCLUSION
The α7nAChR plays an important role in both central and periph-
eral mechanisms involved in eating behaviors and energy balance.
Studies have found links between α7nAChR expression and obe-
sity, insulin resistance, and diabetes. Centrally, α7nAChRs modu-
late hypothalamic neuropeptides and neurotransmitters involved
in feeding regulation and play a role in cortical processes affecting
intake behavior. Overall, although the circuits involved are com-
plex, it appears that net effects of nicotine and other α7nAChR
agonists result in appetite suppression, which could lead to weight
loss. Peripherally, and perhaps also centrally, α7nAChRs are also an
important mediator of inflammation, a key contributor to health
problems in obesity.
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Although α7nAChR agonists have not yet been investigated
for eating behavior effects in humans, preliminary animal work
supports this idea, finding peripheral effects such as improved
insulin sensitivity (Wang et al., 2011; Xu et al., 2012) and reduced
weight gain and metabolic changes in a model of diabetes (Mar-
rero et al., 2010). Further support for extending α7nAChR studies
to humans lies in the observation that α7nAChRs are downregu-
lated in human obesity, but normalize with weight loss (Cancello
et al., 2012). In conclusion, given nicotine’s effects in humans,
experimental support for α7nAChR involvement in eating behav-
ior regulation, and early evidence of α7nAChR agonist effects in
animal studies, the α7nAChR may represent a promising new ther-
apeutic target for weight management and the treatment of obesity
in humans.
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