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Jean Piaget underestimated the cognitive capabilities of infants, preschoolers, and
elementary schoolchildren, and overestimated the capabilities of adolescents and even
adults which are often biased by illogical intuitions and overlearned strategies (i.e., “fast
thinking” in Daniel Kahneman’s words). The crucial question is now to understand why,
despite rich precocious knowledge about physical and mathematical principles observed
over the last three decades in infants and young children, older children, adolescents and
even adults are nevertheless so often bad reasoners. We propose that inhibition of less
sophisticated solutions (or heuristics) by the prefrontal cortex is a domain-general executive
ability that supports children’s conceptual insights associated with more advanced Piagetian
stages, such as number-conservation and class inclusion. Moreover, this executive ability
remains critical throughout the whole life and even adults may sometimes need “prefrontal
pedagogy” in order to learn inhibiting intuitive heuristics (or biases) in deductive reasoning
tasks. Here we highlight some of the discoveries from our lab in the field of cognitive
development relying on two methodologies used for measuring inhibitory control: brain
imaging and mental chronometry (i.e., the negative priming paradigm). We also show
that this new approach opens an avenue for re-examining persistent errors in standard
classroom-learning tasks.
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The scientific study of cognitive development in young children
traces its roots back to Jean Piaget, a pioneer of this field in the
20th century (Piaget, 1954, 1983). Piaget described children as
active learners who, through numerous interactions with their
environments, construct a complex understanding of the phys-
ical world around them. From infancy to adolescence, children
progress through four psychological stages: (1) the sensorimotor
stage from birth to 2 years (when cognitive functioning is based
primarily on biological reactions, motor skills and perceptions);
(2) the preoperational stage from 2 to 7 years (when symbolic
thought and language become prevalent, but reasoning is illogical
by adult standards); (3) the concrete operations stage from 7 to
12 years (when logical reasoning abilities emerge but are limited to
concrete objects and events); and (4) the formal operations stage
at ∼12 years (when thinking about abstract, hypothetical, and
contrary-to-fact ideas becomes possible).

FROM PIAGET’S THEORY TO INHIBITORY CONTROL MODEL
Piaget underestimated the cognitive capabilities of infants,
preschoolers, and elementary schoolchildren, and he overesti-
mated the capabilities of adolescents and adults, which are often
biased by illogical intuitions and overlearned strategies (or heuris-
tics) they fail to inhibit (Houdé, 2000, 2014; Kahneman, 2011).
During the last three decades, detailed behavioral studies of chil-
dren’s problem solving led to a reconceptualization of cognitive

development, from discrete Piagetian stages to one that is anal-
ogous to overlapping waves (Siegler, 1996, 1999). The latter is
consistent with a neo-Piagetian approach of cognitive develop-
ment, in which more and less sophisticated solutions compete
for expression in the human brain. In this approach, inhibi-
tion of less sophisticated solutions by the prefrontal cortex is a
critical component of children’s conceptual insights associated
with more advanced Piagetian stages (Houdé et al., 2000, 2011;
Poirel et al., 2012; Borst et al., 2013a). According to this theoreti-
cal framework, the development of inhibitory control efficiency
during childhood and adolescence contributes to the develop-
ment of conceptual knowledge in various cognitive domains. This
view is consistent with a number of studies showing that the dra-
matic development of the inhibitory control efficiency between
3- and 5-years old (e.g., Carlson, 2005) explains to some extent
the growing ability of children to succeed in Theory of Mind
(e.g., Benson et al., 2013), counterfactual reasoning (e.g., Beck
et al., 2009) and strategic reasoning (e.g., Apperly and Carroll,
2009) tasks. In both of these literatures inhibition is viewed as
a domain-general process allowing children and adults to resist
habits or automatisms, temptations, distractions, or interfer-
ence, and to adapt to conflicting situations (Diamond, 2013).
Finally, in our view the gradual improvement of cognitive abil-
ities in different domains is directly related to the improvement of
inhibitory control efficiency. Note, however, that the development
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of inhibitory control efficiency is necessary but probably not suf-
ficient to produce conceptual development during childhood and
adolescence.

At any point in time, children and adults potentially have avail-
able to them heuristics (i.e., intuitions) and logicomathematical
algorithms, or as Kahneman (2011) described, multiple levels of
“thinking fast and slow.” Heuristics are rapid, often global or holis-
tic, useful strategies in many situations, but sometimes they are
misleading, whereas algorithms are slow, demanding and analyti-
cal strategies that necessarily lead to a correct (i.e., logical) solution
in every situation. In general, children and adults prefer using fast
heuristics spontaneously, but that choice does not indicate that
they are illogical per se (Houdé, 2000) or that they are “happy
fools” (De Neys et al., 2013, 2014). Psychologists had to be careful
to avoid false negatives (Gelman, 1997), which is a strong tendency
to say that those children or adults who fail a task are incompetent
in the target domain of knowledge. A “presumption of rationality”
is sometimes the best assessment.

Contrary to Piaget’s theory, infants learn more about the
outside world through information that is captured by their per-
ceptual systems than through motor skills development (Mandler,
1988; Baillargeon, 1995; Spelke, 2000). Infant cognition studies
evaluated both the capacity to interpret sensory data and the fac-
ulty for understanding and reasoning about complex events. In
the last 10 years, theoretical ideas and empirical research in the
field have demonstrated that very young children’s learning and
thinking mechanisms do remarkably resemble the basic induc-
tive processes of science, i.e., probabilistic models and Bayesian
learning methods (Gopnik, 2012). Infants can implicitly reason
statistically (Téglas et al., 2011). From this point of view, the very
young child is already seen as a“scientist in the crib” (Gopnik et al.,
1999).

THE NUMBER EXAMPLE
A heated debate topic in psychology is how children come to
understand numbers (Dehaene, 1997). Piaget’s answer was that
number is constructed in children through the logicomathematical
synthesis of classification and seriation operations (Piaget, 1952).
Number borrows its inclusion structure from classes (1 is included
in 2, 2 in 3, etc.); because it disregards qualities by transforming
objects into units, it brings a serial order into play, the sole means
of distinguishing one unit from the next: 1 then 1, then 1, etc. The
serial ordering of units is combined with the inclusion of the sets
that result from their union (1 is included in 1 + 1, 1 + 1 is included
in 1 + 1 + 1, etc.) to constitute number. The task Piaget used was
conservation of number. When children are shown two rows of
objects that contain an equal number of objects but that differ in
length (because the objects in one of the rows have been spread
apart), young children think the longer row has more objects.
Piaget’s interpretation was that preschool children are still funda-
mentally intuitive (their reasoning is illogical by adult standards),
or as he called them, “preoperational” (Stage 2), and hence limited
to a perceptual way of processing information (based on length or,
in certain cases, on density). At the age of 6 or 7 years old, children
understand the equivalency of quantities, regardless of apparent
transformations. At this point, they are called “operational” or
“conserving” (Stage 3), the criterion for mastery of number. Piaget

also worked on determining whether the conservation of number
develops simultaneously with inclusion (classification) and order
relations (seriation).

After this founding work on the genesis of number, research
in this domain proliferated, and criticisms of Piaget’s theory were
far from scarce. First, the synchronous development of classifica-
tion, seriation, and conservation was not validated in experimental
verifications. Second, it became clear that Piaget’s view of the
logico-structural aspect of number is overly polarized and over-
shadows the more functional aspects of numerical development,
such as counting.

A radical change in perspective began with Gelman and Meck
(1983), Gelman et al. (1986), who not only turned the attention
toward counting but also postulated the early existence of five
fundamental principles of counting: stable order (order of the
number words), strict one-to-one correspondence (between the
number words and the items counted), cardinality (the number
word corresponding to the last item counted is equal to the total
number of items), abstraction (any kind of item can be counted),
and order irrelevance (items can be counted in any order). Gelman
demonstrated the presence of these principles in young children
by having them say whether they thought a doll was counting
correctly or incorrectly. Knowledge or lack of knowledge of a
given principle was deduced from whether the child detected the
corresponding type of counting error (unstable order, violation
of the one-to-one correspondence, cardinal number referred to
by an ordinal word number, etc.). The results indicated that 3-
year-old children have already acquired the basic principles of
counting. This led Gelman to distinguish three components in
the ability to count: a conceptual component (“knowing why”
or understanding the five principles), a procedural component
(“knowing how” or understanding the structure and order of
counting), and a utilization component (“knowing when” or
understanding the relevance of using the first two components in
a given context). Defending the principles-before-skills hypothe-
sis, Gelman suggested that the numerical difficulties of preschool
children lie essentially in the procedural and utilization compo-
nents. Another of Gelman’s original contributions was her use of
the so-called “magic task” to demonstrate that 3- to 4-year-old
children are surprised by transformations that affect the cardinal
number of a set (adding and subtracting items) but not by trans-
formations that do not (spreading and grouping) (Gelman, 1972).
She concluded that despite their failure in Piaget’s conservation
of number task, the children at this age are already capable of
seeing through irrelevant transformations and treating the num-
ber of items as invariable (for a seminal study on this point,
see Mehler and Bever, 1967). This new conclusion was corrob-
orated by the discovery of the perception of numerical invariance
in neonates (Antell and Keating, 1983) and in 5- and 8-month-
old infants (Loosbroek and Smitsman, 1990; Lipton and Spelke,
2003).

The most striking example of infants as “mathematicians” is
found in the famous work by Wynn (1992). Wynn recorded the
looking time of 4- and 5-month-old infants in the “impossible-
event” procedure (or violation-of-expectation procedure) and
demonstrated that infants were surprised by (looked longer at)
impossible numerical events (e.g., 1 + 1 = 1 and 1 + 1 = 3,
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or 2 − 1 = 2) but were not surprised at the corresponding
possible events (1 + 1 = 2 and 2 − 1 = 1; the events were
staged with Mickey Mouse figures). She concluded that infants
are endowed with a mechanism that calculates the exact out-
come of simple arithmetic operations. She claimed that infants
at this age are already able to encode ordinal information and
possess genuine numerical concepts that cannot be reduced to
holistic percepts derived from a pattern recognition process (for
a brain imaging confirmation of Wynn’s results, see Berger et al.,
2006). Like Gelman’s stance, Wynn’s position is strong and seems
to run counter to what we know about the numerical difficul-
ties of preschool children. Wynn’s empirical results are robust
and consistent (Wynn, 2000), but they have sparked theoretical
debates (Simon, 1997, 1998). The task of the following research
was to devise a developmental model of logicomathematical
operations (conservation, counting, and elementary arithmetic)
that accounts for both early abilities (Gelman, Wynn, etc.) and
late inabilities (Piaget), without denying the reality of the for-
mer but raising the question of the factors that explain the
latter.

HEURISTICS, ALGORITHMS, COGNITIVE CONTROL, AND
INHIBITION OF MISLEADING STRATEGIES
How might we explain the famous number-conservation error
observed in children until the age of seven by Piaget and, after
him, by all developmental psychologists around the world? It is
an intriguing question because we know today that very young
children are already capable of treating the number of items
as invariable through irrelevant transformations and that they
possess other protonumerical skills. One of the main current
explanations is that children learn heuristics, which are often use-
ful in a large set of situations, but fail to inhibit them when,
contrary to general practice, they are misleading (Houdé, 2000,
2014). In the case of Piaget’s number-conservation algorithm,
the overlearned competing heuristic is “length-equals-number”
(Houdé and Guichart, 2001). This new theoretical approach is in
line with Diamond’s explanation of the A-not-B error in infants
(see Diamond, 1991) and assumes that cognitive development
relies not only on the acquisition of knowledge of incremental
complexity (Piaget, 1983) but also on the ability to inhibit pre-
viously acquired knowledge (Bjorklund and Harnishfeger, 1990;
Diamond, 1991, 1998; Dempster and Brainerd, 1995; Harnish-
feger, 1995; Houdé, 2000). Increasing evidence shows that the
ability to inhibit previous knowledge is critical for developmental
milestones, such as those defined by Piaget’s theory (Borst et al.,
2013a; Houdé, 2014). Inhibitory control of misleading strategies,
an executive function performed by the prefrontal cortex, has been
claimed necessary for acquisition and use of motor or cognitive
algorithms in the fields of object permanence in infants (Dia-
mond and Goldman-Rakic, 1989; Diamond, 1991, 1998; Bell and
Fox, 1992), number-conservation and class inclusion in preschool
and schoolchildren (Houdé and Guichart, 2001; Perret et al., 2003;
Borst et al., 2012, 2013b), and logical reasoning in adolescents and
adults (Houdé et al., 2000; Houdé and Tzourio-Mazoyer, 2003;
Houdé, 2007).

One of the challenges of today’s developmental research, in
all domains of cognition ranging from motor programming

to high-order logical reasoning, is to account not only for a
general and incremental process of coordination-activation capac-
ities of structural units, schemes or skills through ages and
stages (Piaget, 1983, and all the 1980s neo-Piagetians: see the
review book by Demetriou, 1988) but also for a general pro-
cess of selection-inhibition of competing strategies, i.e., heuristics
(or intuitions) and logicomathematical algorithms, occurring
with different weights at any point in time, depending on the
context, in a non-linear dynamical system of growth (Siegler,
1996, 1999; Houdé, 2000, 2014). Such cognitive model intro-
duces less regular developmental curves containing perturbations,
bursts, and collapses. O’Reilly (1998) described six principles
for biologically based computational models of cognition, one
of which is inhibitory competition (see also Johnson, 2010).
Resolving this “inhibition issue” is an important task for both
developmental psychology and cognitive neuroscience. The most
compelling magnetic resonance imaging (MRI) reports of struc-
tural changes with brain development during childhood and
adolescence showed a sequence in which the higher-order asso-
ciation area, such as the prefrontal cortex sustaining inhibitory
control, matures last (Casey et al., 2005). The sequence in which
the cortex matures parallels the cognitive milestones in human
development. First, the regions subserving primary functions,
such as motor and sensory systems, mature the earliest; the
temporal and parietal association cortices associated with basic
language skills and spatial attention mature next; and the last
to mature are the prefrontal cortex and its inhibitory control
ability.

BRAIN IMAGING: INHIBITORY CONTROL AND PREFRONTAL
CORTEX
Using fMRI (functional magnetic resonance imaging), from this
theoretical perspective, we re-examined what occurs in the devel-
oping brain when school children are tested for their performance
in Piaget’s number-conservation task. Remember that when chil-
dren are shown two rows of objects that contain an equal number
of objects but that differs in length (because the objects in one
of the rows had been spread apart), young children think that
the longer one has more objects. Piaget’s interpretation was that
preschool children are still fundamentally intuitive (their rea-
soning being illogical by adult standards), or as he called them,
“preoperational” (Stage 2), and hence limited to a perceptual way
of processing information (here, based on length or, in certain
cases, on density). When they are ∼6 or 7 years old, children
understand the equivalency of quantities, regardless of appar-
ent transformations. At this point, they are called “operational”
or “conserving” (Stage 3), the criterion for logicomathematical
mastery of number. Our new hypothesis was that their main
cognitive difficulty (beyond logicomathematical cognition per se)
was to efficiently inhibit through their prefrontal cortex the over-
learned “length-equals-number” strategy, a heuristic that is often
used both by children and adults in many school and everyday
situations.

In a first fMRI study, we found that the cognitive change
allowing children to access conservation (i.e., the shift from
Stage 2 to Stage 3 in Piaget’s theory) was related to the neu-
ral contribution of a bilateral parietofrontal network involved in
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numerical and executive functions (Houdé et al., 2011). These
imaging results highlighted how the behavioral and cognitive
stages that Piaget formulated during the 20th century mani-
fest in the brain with age. In a second fMRI study (Poirel
et al., 2012), we demonstrated that the prefrontal activation
(i.e., the blood-oxygen-level-dependent signal) observed when
schoolchildren succeeded at the Piaget’s number-conservation
task was correlated to their behavioral performance on a Stroop-
like measure of inhibitory function development (Wright et al.,
2003). These new results in schoolchildren fit well with pre-
vious brain imaging data from our laboratory showing a key
role of prefrontal inhibitory control training when adolescents
or adults (belonging to Stage 4 in Piaget’s theory) sponta-
neously fail to block their perceptual intuitions (or bias, heuris-
tics) to activate logicomathematical algorithms (i.e., deduc-
tive rules) in reasoning tasks (Houdé et al., 2000; Houdé,
2007).

If we have “two minds in one brain” as stated by Evans
(2003) or, in other words, two ways of thinking and reason-
ing, i.e., “fast and slow” (Kahneman, 2011), currently called
“System 1” (intuitive system) and “System 2” (analytic system),
then the crucial challenge is to learn to inhibit the misleading
heuristics from System 1 when the more analytic and effortful
System 2 (logicomathematical algorithms) is the way to solve
the problem (Houdé, 2000, 2014; Borst et al., 2013a). Within
this post-Piagetian theoretical approach, we can now understand
why, despite rich precocious knowledge about physical and math-
ematical principles observed in infants and young children, older
children, adolescents, and adults so often have poor reason-
ing. The cost of blocking our intuitions is high and depends
on the late maturation of the prefrontal cortex. Moreover, this
executive ability remains delicate throughout our lifetime, and
adults may sometimes need“prefrontal pedagogy”to learn inhibit-
ing intuitive heuristics (or biases) in reasoning tasks (Houdé,
2007).

An innovative research question now is to better understand
the cognitive roots of such powerful heuristics (intuitions and bias
from System 1) that children and adults have so much difficulty
inhibiting in some cases. New heuristics may appear and be over-
learned at any time in the course of development (Houdé, 2000,
2014) because our brain is an irrepressible detector of regulari-
ties from its perceptual and cultural environment. For example,
preschool children (more than infants) are often exposed, in“math
books” in the classroom or in everyday scenes, to patterns of
objects in which number and length covary (e.g., the 1-to-10
Arabic numbering series is frequently illustrated by increasing
lines of drawn animals or fruits: one giraffe, two hippopota-
mus, three crocodiles, and so on), hence the overlearned and
misleading “length-equals-number” heuristic, which is overacti-
vated in Piaget’s conservation of number task. A new avenue of
research would be to assess the role of early sensitivity to statistical
patterns (i.e., probability of hypotheses) and Bayesian inference
(Gopnik, 2012) in the psychological construction of perceptual,
motor, and cognitive heuristics. Moreover, the power of Bayesian
learning might require, in some conflict situations, a strong antag-
onist process of inhibition for blocking heuristics when they are
misleading.

MENTAL CHRONOMETRY: INHIBITORY CONTROL AND
NEGATIVE PRIMING EFFECT
In this section, we will review mental chronometry studies that
used negative priming to demonstrate the role of inhibitory con-
trol in logicomathematical tasks. The logic of the negative priming
approach is as follows: if information (or a perceptual or cognitive
heuristic) was previously ignored (or inhibited), then the subse-
quent processing of that information (or the subsequent activation
of that heuristic strategy) will be disrupted as revealed by slower
or less accurate responses (see, e.g., Tipper, 1985, 2001; Neill et al.,
1995). In the classical negative priming paradigm, participants
performed pairs of stimuli. The first stimulus of the pair is the
prime; the second one is the probe. Classically, participants’perfor-
mance is measured on the second stimulus (i.e., probe). Critically,
performance are compared between test-probes in which the tar-
get is a distractor inhibited on the first stimulus (i.e., prime) and
control-probes in which the target bears no relation with a dis-
tractor inhibited on the prime. The logic of the negative approach
is similar for strategies: if to reason logically one need to inhibit an
overlearned strategy (or heuristic) to activate a logical algorithm,
then a negative priming effect should be observed when partici-
pants perform prime-probe sequences in which the heuristic that
needs to be activated on the probe was inhibited on the prime.
Bluntly put, if people block the heuristic response on one trial,
they will pay a price if they need to rely on it on the subsequent
trial.

Following this logic, Houdé and Guichart (2001) devised the
first negative priming paradigm to demonstrate that inhibitory
control was required when children correctly solved a classic logi-
comathematical task – Piaget’s number-conservation task (Piaget,
1952). The authors asked children to perform two types of prime-
probe trials. In test trials, two rows of different length but with
the same number of objects (i.e., a classical number-conservation
item) were presented as the prime. In order to correctly state
that the two rows contained the same number of objects, chil-
dren had to inhibit the length-equals-number heuristic. On the
probe, an item in which length and number co-varied – i.e.,
the longer row contained more objects – was displayed. Criti-
cally, the length-equals-number strategy that was inhibited on
the prime became the appropriate strategy to activate on the
probe. In control trials, the strategy to be used on the prime
was unrelated to the strategy to activate on the probe. Objects
were displayed in such a way that counting each object was the
only appropriate strategy (i.e., the objects on one of the rows
were displayed vertically on the screen which ruled out using
the length-equals-number strategy). As on the test trials, an
item in which length and number co-varied was displayed on
the probe. Comparison of the probe response times between
test and control trials revealed a clear negative priming effect:
children were slower to use the length-equals-number strategy
after they performed a typical Piaget-like number-conservation
item in which the length-equals-number heuristic needs to be
inhibited to overcome the interference between the length of
the rows and the number of objects. This result suggests that
children’s ability to reason correctly on number-conservation
tasks is directly related to their ability to inhibit a misleading
strategy.
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Note that as opposed to Piaget’s seminal number-conservation
task, the transformation (i.e., the lengthening of one of the rows)
is not presented to the children in Houdé and Guichart (2001)’
study (due to the inherent structure of such sequential paradigm).
Thus, one could claim that Piaget’s seminal number-conservation
task and the Piaget-like number-conservation task designed by
Houdé and Guichart test very different numerical knowledge of
the children and (b) that success at Piaget’s seminal number-
conservation task might have nothing to do with the inhibition
of the length-equals-number strategy. However, recent fMRI and
high-density EEG studies (Houdé et al., 2011; Poirel et al., 2012;
Borst et al., 2013c) revealed that children and adults must inhibit
the length-equals-strategy to succeed at Piaget’s seminal number-
conservation task in agreement with the results reported on the
Piaget-like number-conservation task designed by Houdé and
Guichart (2001).

In a follow-up electrophysiological study using a similar neg-
ative priming adaptation of the number-conservation task with
young adults, Daurignac et al. (2006) reported enhanced ampli-
tude of the N200 wave (with a large distribution over the scalp)
when the length-equals-number strategy inhibited on the prime
became the appropriate strategy to activate on the probe. Given
that the N200 is assumed to reflect inhibitory control, electro-
physiological data garnered in this study suggest that adults as
children need to inhibit the length-equals-number heuristic to
reason correctly here (see Borst et al., 2013c for an incremental
demonstration using high-density ERP).

Negative priming has also been reported in another famous
logicomathematical Piagetian task, the class-inclusion task
(Inhelder and Piaget, 1964). In this task, ten daisies (i.e., the sub-
ordinate class A) and two roses (i.e., the subordinate class A’)
are presented to the child and he(she) is asked whether there are
more daisies than flowers (i.e., the superordinate class B = A+A’).
Before the age of seven, children erroneously think that there are
more daisies than flowers because they fail to perform the appro-
priate comparison between the superordinate class (flowers) and
the subordinate class (daisies). To succeed at this task, children
need to inhibit the direct (heuristic) perceptual comparison of
the visuospatial extensions (the number of displayed elements) of
the two subclasses (A and A’) in order to activate the appropri-
ate logical (or conceptual) comparison of the superordinate class
(B) to its subordinate class (A) – the class-inclusion algorithm. In
the negative priming adaptation of the class-inclusion task, adults
and 10-year-old children performed test and control trials with
three types of items: class-inclusion items, subclasses-comparison
items, and control items (Borst et al., 2013b). Stimuli consisted
of two rows of various geometric shapes of different colors sepa-
rated by a horizontal line (e.g., eight green squares and four blue
squares). Class-inclusion items (e.g., “More green squares than
squares”: yes or no?) required to compare the superordinate class
(e.g., squares) to one of its subordinate classes (e.g., green squares).
Subclasses-comparison items required to compare the number of
elements in the two subclasses (e.g.,“More green squares than blue
squares”). On control items participants were required to judge
whether all objects had the same given property (e.g., “Squares
have the same color”). In the test trials, participants performed a
typical class-inclusion item on the prime (in which inhibition of

the comparison of the subordinate classes’ extensions was needed)
and then a subclasses-comparison item on the probe (in which
the direct comparison of the two subclasses’ extensions became
the appropriate strategy, e.g., comparing the number of blue and
green squares). In the control trials, participants performed a con-
trol item on the prime followed by a subclasses-comparison item
on the probe. Critically, the strategy to be used on the prime was
not related to the strategy to be used on the probe. Negative prim-
ing was reported for both children and adults: children and adults
were slower to determine that there were more objects in one sub-
ordinate class than in the other after they successfully determine
that there were more elements in the superordinate class than in
one of the two subordinate classes. In addition, negative prim-
ing decreased with age. The results reported in this study extend
the related findings of Perret et al. (2003) in school-aged children
by showing (a) that young adults still need to inhibit the mis-
leading perceptual strategy – i.e., the direct comparison of the
subordinate classes – to reason about class inclusion and (b) that
the efficiency of the inhibitory control needed in this specific task
increases between fourth graders and young adults.

Another study from our lab has used a negative priming
paradigm to demonstrate that inhibition is required in syllogis-
tic reasoning (Moutier et al., 2006; Borst et al., 2013a). As in other
negative priming studies, children performed test and control tri-
als. Each trial consisted of two syllogisms with many words in
common. In test trials, on the prime the validity of the syllogism
was in contradiction with children’s knowledge of the world (e.g.,
All elephants are light). Therefore, children had to inhibit their
belief heuristic (e.g., elephants are heavy) to correctly judge the
logical validity of the conclusion. On the probe, a syllogism was
presented in which children’s belief was congruent with the logical
validity of the conclusion (e.g., All elephants are light, when the
conclusion was not valid). Critically, the belief that was inhibited
on the prime was congruent with the validity of the syllogism on
the probe. On control trials, children solved neutral syllogisms
in which the conclusion was neither unacceptable nor acceptable
regarding the children’s beliefs (e.g., No students in the blue school
are interested in sports) followed, on the probe, by a syllogism in
which the belief was congruent with the logical validity of the con-
clusion. As expected if inhibitory control is needed for syllogistic
reasoning a negative priming effect was reported on the number of
errors made by the participants: children committed more errors
on the congruent syllogisms (probe items) when performed after
syllogisms (prime items) in which beliefs and the validity of the
conclusion interfered. Thus, as with the other logicomathematical
tasks that we reviewed, syllogistic reasoning seems directly related
to the ability to inhibit irrelevant strategies (or beliefs) in order to
activate a logical algorithm.

Further studies are needed to investigate whether inhibitory
control development during childhood and adolescence con-
tributes to conceptual development in other cognitive domains
than the ones we investigated (i.e., number, categorization, and
reasoning).

FROM THE LAB TO THE CLASSROOM
Finally, beyond classical laboratory experimental situations, it
seems that some systematic difficulties children have in resolving
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problems in the classroom are also related to their difficulty to
inhibit what they previously learned. For example, we investigated
whether simple arithmetic word problems such as “Bill has 20
marbles. He has five more marbles than John. How many marbles
does John have?” could remain challenging for children because
they fail to inhibit the “add if more, subtract if less” misleading
heuristic. Indeed, errors in this type of problems are character-
ized by adding the numbers instead of subtracting them or vice
versa. Using a negative priming paradigm, we demonstrated that
children and even adults must inhibit the “add if more, subtract if
less” misleading strategy to solve simple arithmetic word problems
in which the relational term (“more” or “less”) is incongruent with
the arithmetic operation to perform (Lubin et al., 2013). Thus, the
increased efficiency to solve this type of problems from childhood
to adulthood may be directly related to the gradual development
of inhibitory control efficiency.

This new approach of cognitive development opens an avenue
for designing pedagogical interventions (in line with Zelazo, 2006;
Diamond et al., 2007; Houdé, 2007; Chevalier and Blaye, 2008;
Diamond and Lee, 2011; Moriguchi, 2012) based on training the
inhibition of heuristics (or reasoning biases). Previous studies
have demonstrated that this type of pedagogical interventions not
only improve logical reasoning to a greater extent than ones based
solely on verbal logic per se (e.g., Houdé et al., 2000; Moutier and
Houdé, 2003; Houdé, 2007; Cassotti and Moutier, 2010) but also
help children in the classroom overcome systematic difficulties to
a greater extent than traditional curricula (Lubin et al., 2012). Fur-
ther studies much as the ones conducted on the effect of training
working memory, another domain-general executive function (see
e.g., Olesen et al., 2004), are needed to determine more precisely
the effect of inhibitory control training on the development of the
prefrontal cortex.
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