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In the area of memory research there have been two rival approaches for memory
measurement—signal detection theory (SDT) and multinomial processing trees (MPT).
Both approaches provide measures for the quality of the memory representation, and
both approaches provide for corrections for response bias. In recent years there has been a
strong case advanced for the MPT approach because of the finding of stochastic mixtures
on both target-present and target-absent tests. In this paper a case is made that perceptual
detection, like memory recognition, involves a mixture of processes that are readily
represented as a MPT model. The Chechile (2004) 6P memory measurement model is
modified in order to apply to the case of perceptual detection. This new MPT model is
called the Perceptual Detection (PD) model. The properties of the PD model are developed,
and the model is applied to some existing data of a radiologist examining CT scans. The
PD model brings out novel features that were absent from a standard SDT analysis. Also
the topic of optimal parameter estimation on an individual-observer basis is explored with
Monte Carlo simulations. These simulations reveal that the mean of the Bayesian posterior
distribution is a more accurate estimator than the corresponding maximum likelihood
estimator (MLE). Monte Carlo simulations also indicate that model estimates based on
only the data from an individual observer can be improved upon (in the sense of being
more accurate) by an adjustment that takes into account the parameter estimate based on
the data pooled across all the observers. The adjustment of the estimate for an individual
is discussed as an analogous statistical effect to the improvement over the individual MLE
demonstrated by the James–Stein shrinkage estimator in the case of the multiple-group
normal model.
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1. INTRODUCTION
The title of this special issue implies two very different questions.
The first question is: how should perceptual decision-making be
modeled? The second question is: how should individual differ-
ences be estimated? This paper addresses both of these questions
from a perspective that has been informed by research in the
area of model-based memory measurement. The recommenda-
tions from this perspective result in some novel techniques for
examining perceptual detection data.

Signal detection theory (SDT) is the classic method for mea-
suring the perceived strength of a stimulus (Tanner and Swets,
1954; Green and Swets, 1966). The original applications of SDT
typically dealt with cases of detecting the presence of a slight
intensity increase on a single sensory dimension such as the
loudness of white noise or an increase in the brightness of a
color patch. The data from these studies are multinomial fre-
quencies that are used to estimate either a signal sensitivity
measure (d′) associated with the separation between two pre-
sumed distributions on a psychological strength continuum, or
a non-parametric measure such as A′ associated with the area
under the receiver-operator characteristic (ROC) curve. For such

applications there has been a general consensus that SDT is valid,
accurate and useful. SDT has also been extended to the case of
multiple dimensions (e.g., Ashby and Townsend, 1986).

Egan (1958) first noted that the target-present versus target-
absent test trials used in a yes/no recognition memory study
correspond to the signal-present versus signal-absent tests used
in a sensory-based signal detection task. It therefore followed
that SDT provided a method for measuring memory strength.
In fact Macmillan and Creelman (2005) observed that contem-
porary applications of SDT in the memory area outnumbered
the psychophysical applications. Malmberg (2008) and Yonelinas
(2002) provide extensive reviews of recognition memory from
the perspective of strength-based SDT models. Yet despite the
widespread use of the SDT approach toward recognition mem-
ory measurement, there also has been substantial criticism of this
approach (Chechile, 1978, 2013; Bröder and Schütz, 2009; Kellen
et al., 2013). These critics argue instead for the use of multino-
mial process tree (MPT) models for a variety of reasons. MPT
models have a number of desirable statistical properties and can
result in measurements of important latent cognitive processes.
For example Chechile and Meyer (1976) first used MPT models
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for recognition memory data as well as recall data in order to
obtain separate probability measures for trace storage and for the
retrieval of stored traces, because forgetting was more suitably
described in terms of either storage failures or retrieval failures
rather than simply a change in “memory strength.” The implicit-
explicit separation (IES) model is another example of a MPT
model rather than a SDT model for memory (Chechile et al.,
2012). With the IES model separate probability measures are esti-
mated for explicit storage, implicit storage, fractional storage and
non-storage. In these examples, the MPT modeler deliberately
prefers to measure cognitive processes other than a SDT strength
measure. See Erdfelder et al. (2009) and Batchelder and Riefer
(1999) for additional examples of MPT models in psychology.

MPT models are mixture models because with this approach it
is assumed that there are possibly different knowledge states that
have differential consequence for behavior. For example, some-
times there is enough information stored in memory that the
individual can reproduce the target event entirely, provided that
the information is accessible at the time of test. But for other tests,
the requisite information is either incomplete or totally missing.
In the Chechile (2004) 6P model there are separate tree pathways
for these two different knowledge states. The overall proportion of
traces that are sufficiently stored is defined as the storage proba-
bility θS. The θS parameter is thus a mixture component. Similarly
the other parameters in the 6P model are also probabilities and
can be regarded as conditional mixture probabilities. Chechile
(2013) provided strong evidence for the necessity of consider-
ing mixtures for both target-present memory tests as well as for
target-absent tests. Evidence was also provided that mixtures are
difficult to detect, i.e., data can be generated where a mixture is
present but where conventional density plots or quantile–quantile
plots fail to detect the mixture. In contrast MPT models are an
excellent method for detecting mixtures. Moreover, the absence
of a mixture is a special case of a MPT model where the tree paths
have probabilities of either 0 or 11.

While there is an ongoing debate about SDT and MPT mod-
els in the memory literature, there has not been a corresponding
contemporary debate in perceptual psychology about the relative
merits of SDT and MPT approaches. Yet the possibility of stochas-
tic mixtures is quite plausible for perceptual detection studies,
so there are reasons for considering MPT models for perceptual
detection.

One rationale for suspecting that there are mixtures comes
from the Stevens (1957, 1961) distinction between prothetic and
metathetic continua. Stevens (1961); Stevens (p. 41) illustrated
a prothetic dimension with loudness and distinguished it from
pitch, which is regarded as a metathetic continuum:

1Some MPT models have been characterized as threshold models by the
authors of the model (e.g., the two high-threshold model of Snodgrass and
Corwin, 1988). A threshold is an activation level on an underlying strength
continuum that triggers the memory to be in a given state. The assumption of
thresholds in MPT models has been vigorously challenged by researchers who
prefer a SDT perspective (viz. Dube and Rotello, 2012). However, the concept
of a mixture over different knowledge states does not require the assumption
of a threshold. For example in the Chechile (2004) 6P model, the knowledge
states discussed above are not driven by an underlying strength, but rather it
is based simply on the existence or not of specific memory content.

. . . it is interesting that some of the better known prothetic con-
tinua seem to be mediated by an additive mechanism at the
physiological level, whereas the metathetic continua appear to
involve substitutive processes at the physiological level. Thus we
experience a change in loudness when excitation is added to exci-
tation already present on the basilar membrane, but we note a
change in pitch when new excitation is substituted for excitation
that has been removed, i.e., the pattern of excitation is displaced

The Stevens distinction stresses the difference between changes
in intensity on a single dimension and changes in qualities. A
homogeneous process (as opposed to a mixture) is more likely
when dealing with a prothetic continuum; although DeCarlo
(2002, 2007) has pointed out that trial-by-trial shifts in atten-
tion or phasic alertness can produce a stochastic mixture even
in a perceptual detection task on a single dimension. However,
if the stimuli are complex and possess qualitative features, then
stochastic mixtures are even more likely. Consider, for example, a
sonar operator attempting to detect any enemy threats. The oper-
ator might detect a clear auditory pattern that is a prototypical
signal of a particular class of an enemy submarine. With train-
ing and experience the sonar operator can be highly skilled in
detecting the complex set of features that are associated with an
enemy threat; after all perceptual learning is a well established
fact (Kellman, 2002). From this framework, the operator might
confidently detect a target, not because of a greater strength or
intensity, but because the metathetic pattern exhibited by the
stimulus is linked through training to a particular type of target.
Yet there might be other cases when a threat is present, but the
sonar signal is too poorly defined to be identified as a threat. The
operator has to guess in these cases. Hence, from this perspective
targets stimuli can be considered a mixture of occasions where
the target is confidently and correctly identified and other occa-
sion where the operator guesses. A mixture is also possible over
all the target-absent cases. For example, a sonar operator might
decide that the stimulus is something other than an enemy threat
(e.g., a party boat, or a whale), but for other target-absent events
the signal might be too poorly defined for the sonar operator to
confidently identify. In this paper, a variation of a MPT model
will be advanced for perceptual-detection applications in order to
capture the possibility that there are mixtures reflected in the data.

The second focus for this paper concerns the relative accuracy
of various statistical procedures for modeling individual differ-
ences in terms of the key parameters of a perceptual detection
MPT model. There is a widespread belief that the maximum
likelihood estimates (MLE) of model parameters, done on an
individual basis, is the optional method for obtaining estimates
of individual differences. This belief is mistaken; there is now con-
siderable evidence that the MLE can be non-optimal and biased
for a number of important practical cases. Even in the case of
the Gaussian model with more than two conditions, the MLE
estimates are known to be biased and “inadmissible” due to the
Stein paradox (Stein, 1956; James and Stein, 1961; Efron and
Morris, 1977). These insights have led to empirical Bayes, James–
Stein estimators, and other shrinkage estimators as improvements
to the MLE (Efron and Morris, 1973; Gruber, 1998). Moreover,
based on Monte Carlo simulations of multinomial data,
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Chechile (2009) found that the averaging of individual parameter
estimates resulted in greater error than pooling the multinomial
data across individuals and fitting the MPT model once. This
finding foreshadows a relatively surprising result that is simi-
lar to the James–Stein shrinkage estimate for individual model
parameter estimates.

2. THE PERCEPTUAL-DETECTION (PD) MPT MODEL
2.1. DATA STRUCTURE AND TREE MODEL
The Perceptual-Detection (PD) model is essentially the Chechile
(2004) 6P model for old/new recognition test trials. The 6P model
for storage and retrieval components of memory also has a recall
test that is not a part of the perceptual-detection task. The data
categories for target-present and target-absent trials as well as
the notation for the corresponding population proportions for
each response category are shown in Figure 1. The PD tree is dis-
played in Figure 2. The MPT model has five parameters; the 6P
model had an additional retrieval parameter that is not relevant
for perceptual detection. The subscripts for the five parameters
have been labeled differently in order to better match the per-
ceptual detection context. The θd parameter is the proportion
of target-present tests when the operator clearly and confidently
detects the target stimulus; this parameter corresponds to the suf-
ficient storage parameter θS in the 6P model. The θnt parameter is
the proportion of the target-absent trials when the operator can
confidently identify a stimulus that is different than the target;
this parameter corresponds to the knowledge-based foil rejection
parameter θk in the 6P model.

The θd and 1 − θd parameters are mixing rates for target-
present trials. When the target is not clearly detected, the observer
can still decide that the stimulus is a target (with conditional
probability θg) by a secondary process that is simply labeled as
a guessing process. Similarly on target-absent tests, the operator
(with probability 1 − θnt) fails to confidently identify a non-target
but can still guess (with probability θg′) that the stimulus is more
likely a non-target than a target. The two guessing parameters in
the PD model are the same as the guessing parameters in the 6P
model. Finally the θh parameter is a “nuisance” parameter because
it is a conditional probability that is only important as a correc-
tion for overly confident guessing. This parameter corresponds to
the θ1 parameter in the 6P model.

2.2. PARAMETER ESTIMATION AND A RADIOLOGY EXAMPLE
A great deal is known about the 6P model, and this information
directly transfers to the PD model. For example, Chechile (2004)

FIGURE 1 | Data categories and population proportions for the PD

model.

formally proved that the model is likelihood identifiable, i.e.,
each configuration of the model parameters results in a unique
multinomial likelihood function2. Chechile (2004) also showed
how the maximum likelihood estimates (MLE) are obtained for
the model parameters. In that same paper, an exact Bayesian
method for drawing random vectors of values from the posterior
distribution was described; the method is called the population
parameter mapping (PPM) method (see Chechile, 1998, 2010a).
With the PPM method there is a full probability distribution
for each model parameter, and there is a probability for the
coherence of the model itself. Software also exists for obtaining
random vectors from an approximate Bayesian posterior dis-
tribution by means of a Markov chain Monte Carlo (MCMC)
sampling system3. For both the PPM method and the MCMC
method, there is a point estimate for each parameter along with

2See Chechile (1977, 1998, 2004) for a more detailed discussion of model
identifiability.
3The MCMC method is an implementation of the Metropolis–Hastings algo-
rithm after an initial “burn in” period of 300,000 cycles for sampling each
model parameter.

A

B

FIGURE 2 | Process tree for the PD model for (A) target-present test

trials and (B) target-absent test trials.
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a Bayesian posterior probability distribution4. The PPM method
has several advantages over the MCMC method. First, it does
not require a “burn in” period. Second, the posterior distribution
is exact as opposed to asymptotically exact. Third, the samples
from the posterior distribution are not autocorrelated. Fourth,
the PPM method has a probability for the coherence of the model
itself.

As an example of parameter estimation for the PD model, let
us consider the actual case of the detection characteristics of a sin-
gle radiologist who was assessing 109 CT scans in order to detect
abnormal versus normal scans. Hanley and McNeil (1982) pro-
vided the frequencies in four response categories. The categories
were labeled as (1) “definitely normal,” (2) “probably normal,” (3)
“probably abnormal,” and (4) “definitely abnormal.” There were a
total of 58 patients who were later determined to be normal, and
51 patients who were determined later to have an abnormality.
The frequencies in these four respective categories for the normals
(target-absent) are (33, 9, 14, 2)5. The corresponding frequen-
cies for the abnormals (target-present) are (3, 3, 12, 33)6. The
PPM, MCMC, and MLE point estimates for each parameter in
the PD model are displayed in Table 1.

The PD model point estimates fit the multinomial frequen-
cies very well as indicated by a non-significant goodness-of-
fit difference between the observed and predicted frequencies,
i.e., G2(1) = 0.262. In addition to the point estimates, the two
Bayesian methods have a posterior probability distribution for
each model parameter, and these distributions provide a method
for testing some important questions about the radiologist. One
of the central ideas in the PD model is the concept that there is

4There is a difference in the prior distributions used for the MCMC method
and for the PPM method. For the MCMC approach, a flat prior is assumed for
each of the PD model parameters, i.e., the (θd, θnt , θg , θg′ , θh) parameters.
However, for the PPM method the prior is a flat distribution for the multi-
nomial cell proportions shown in Figure 1, i.e., the (φi) parameters. The joint
posterior distribution for the (φi) parameters is a product of two Dirichlet dis-
tributions. With the PPM method, random samples of (φi) values are taken
from the posterior distribution, and each vector of (φi) values is mapped to a
corresponding vector of the PD model parameters.
5There were six cases for the normals where the radiologist used another cat-
egory called questionable. Three of these cases are assigned here to the second
category (probably normal), and three cases were assigned here to the third
category (probably abnormal).
6There were two CT scans for the abnormals that the radiologist gave the
response of questionable. One of these cases was assigned here to the second
category, and one was assigned here to the third response category.

Table 1 | PPM, MCMC, and MLE values for the PD model parameters

from 109 CT scans by one radiologist reported in the Hanley and

McNeil (1982) study.

Parameter PPM MCMC MLE

θd 0.552 0.555 0.578

θnt 0.496 0.507 0.523

θg 0.734 0.711 0.721

θg′ 0.405 0.438 0.421

θh 0.250 0.259 0.227

a mixture of states for both target-present cases (abnormals) and
for target-absent cases (normals). From the posterior distribution
of the θd parameter, it can be stated that the probability exceeds
0.95 that the θd parameter is at least 0.39, i.e., P(θd > 0.39) >

0.95. Similarly the posterior distribution for the θnt parameter
results in the high probability statement that θnt is at least 0.37,
i.e., P(θnt > 0.37) > 0.95.

Using a standard SDT model analysis of the radiological data
results in an estimate of d′ = 2.332 and a ratio of the stan-
dard deviations between the signal and noise conditions of σS

σN
=

1.409. This model also fits the data well as indicated by a non-
significant difference between the observed and expected frequen-
cies, G2(1) = 0.220. However, the SDT model does not posit that
there are mixtures, so the finding that the θd and θnt parameters
are reliably different than zero demonstrates that the conventional
signal detection model is missing an important feature exhibited
by the radiologist. If there were an absence of mixtures, then the
PD model would have estimated the θd and θnt parameters as
approximately 0.

For MPT models, the mean of the Bayesian posterior distri-
bution for a parameter is usually a different value than the MLE.
Chechile (2004) conducted a series of Monte Carlo simulations
to see which of these estimates is more accurate for the 6P model;
these simulations directly apply to the PD model. For each Monte
Carlo run, a random configuration of the model parameters was
selected. These parameter values became the true values that are
compared later to the estimated values. Also based on the true
values, there is a corresponding set of true multinomial cell pro-
portions, i.e., the φi values in Figure 1. From the multinomial
likelihood distributions, n random “observations” were drawn
for the target-present frequencies and another n random obser-
vations were drawn for the target-absent frequencies7. Using the
cell frequencies, the PPM and MLE parameter estimates are com-
puted. For each estimate there is thus an error score based on
the absolute value difference between the estimated value and
the true value for that particular Monte Carlo run. For each
sample size there was a total of 10,000 Monte Carlo runs. The
mean absolute value across the 10,000 runs for PPM and MLE
methods are denoted respectively as MAE(ppm) and MAE(mle).
The standard deviation of the absolute value errors was also
found for both estimation methods. Representative results from
these Monte Carlo simulations are shown in Table 2 for the θd

parameter.
The Bayesian PPM estimates are more accurate for all the sam-

ple sizes. Although the MLE and PPM errors are approaching
each other, the rate of approach is relatively slow. Notice that even
for the case of n = 1000, there is still a smaller standard devia-
tion of the errors for the PPM estimates. The greater accuracy for

7Given the values for p1 = φ1, p2 = φ1 + φ2, and p3 = φ1 + φ2 + φ3 there
are three decision points for randomly assigning a simulated “observation”
to one of the four cells. For each simulated observation, a random score is
sampled from a uniform distribution on the (0, 1) interval. If the random
score is less than p1, then the observation is for cell 1. If the random score is in
the [p1, p2) interval, then it is an observation for cell 2. If the random score is
in the [p2, p3) interval, then the observation is for cell 3. If the random score
is greater or equal to p3, then it is an observation in cell 4.
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Table 2 | The mean absolute value error (MAE) for the θd parameter

for both the PPM and MLE methods.

n MAE(ppm) MAE(mle) SDE(ppm) SDE(mle)

10 0.129 0.198 0.090 0.174

20 0.102 0.143 0.076 0.135

30 0.090 0.124 0.070 0.123

40 0.082 0.112 0.064 0.115

50 0.075 0.099 0.061 0.104

100 0.059 0.071 0.050 0.074

300 0.039 0.043 0.035 0.047

600 0.029 0.030 0.027 0.031

1000 0.023 0.023 0.022 0.025

Also shown are the standard deviations of the errors (SDE). Each entry is based

on 10,000 Monte Carlo runs from Chechile (2004).

the Bayesian PPM estimates has been also demonstrated for other
MPT models (Chechile, 2009, 2010a).

2.3. INTERPRETING THE GUESSING PARAMETERS
The θg and θg′ parameters have actually been used in mem-
ory applications since the original storage-retrieval separation
paper by Chechile and Meyer (1976). In the memory context it
was hypothesized that the guessing parameters involve a mix-
ture of processes that include the possibility of partial storage
as well as response bias factors. For memory applications, these
parameters are both typically greater than 1

2 , (viz. Chechile and
Ehrensbeck, 1983; Chechile and Meyer, 1976; Chechile, 1987,
2004, 2010b; Chechile and Roder, 1998). If the guessing param-
eters were strictly response bias, then both parameters should
not exceed 1

2 , but if there is sometimes partial storage, then that
information can be helpful and result in the two guessing param-
eters exceeding 1

2 . Although the possibility of partial storage was
likely, it was not possible to estimate fractional storage with only
the yes/no recognition data along with confidence ratings. Later
Chechile and Soraci (1999) and Chechile et al. (2012) used differ-
ent test protocols that enabled the measurement of partial storage.
These other MPT models did find evidence for partial storage
on some test trials; consequently, the finding of both guessing
parameters being greater than 1

2 is a reasonable outcome.
For the PD model, there is a counterpart to the educated

guessing based on partial storage. For the perceptual detection
task, there might be occasions where a stimulus is judged more
likely a target than not but the quality of the perception is not
good enough to constitute a confident classification. On other
occasions, the stimulus might be judged more likely a particular
“non-target” than a target, but again because the stimulus quality
is degraded, the observer is uncertain. For both cases the stimulus
is not in a clear detection state, but nonetheless, the person is still
able to make informed decisions above a random guessing level.

An interesting special case is when the guessing in both target-
present and target-absent conditions are purely response bias, i.e.,
when θg = 1 − θg′ . However, if there is something like the par-
tial storage found for some memory studies, then the stimulus
is more likely to yield a yes response in the target-present condi-
tion than in the target-absent condition. Note that the radiologist

measured with the PD model exhibited guessing better than
pure response bias because θg = 0.734 > 1 − θg′ = 0.595. These
results are consistent with the interpretation that the radiolo-
gist was relatively conservative because the doctor guessed that
the patient had an abnormality at a rate of 0.595 for the subset
of difficult scans from healthy patients. Nonetheless for the sub-
set of difficult scans from patients with an abnormality, the rate
for deciding on the abnormal categorization increased to 0.734.
Consequently on these more challenging CT scans the physician
did have some differential tendency to use the abnormal classi-
fication when in fact the CT scan came from a patient with an
abnormality.

2.4. PROPERTIES OF THE ROC FOR THE PD MODEL
The Receiver Operator Characteristic (ROC) in SDT is a curved
plot of the hit rate versus the false alarm rate. In standard SDT, any
point on the ROC is a possible operating point depending on the
decision criterion used by the subject. Hence in standard SDT, the
ROC is an iso-sensitivity curve. In standard SDT, the points (0, 0)
and (1, 1) are on the ROC curve; these points are the extrema. If
the subject had no ability to detect the target, and the data are
identical in the target-absent and target-present conditions, then
the ROC would be the line of slope 1 connecting the extrema. If
there is some greater tendency to detect the target in the target-
present condition, then in standard SDT the ROC is a smooth
curve in the region of the unit square where y ≥ x.

Empirical ROC plots have been used in numerous experi-
mental papers as a method for comparing theories, but it is
challenging to statistically discriminate between models based on
only a few points on the empirical ROC. However, given the
historical interest in the ROC in psychology, it is instructive to
consider the theoretical ROC for the PD model. See Figure 3 for
a general ROC illustration for the PD model. Also see Table 3 for
the PD model equations that are linked to key operating points.
The table caption describes the definition of the three discrete
points illustrated by the open squares in Figure 3, i.e., points P2,
P3, and P4. These three points and the two extreme points for the
PD model, P1 and P5 are a function of the five parameters in the
PD model. If 0 < θd < 1, 0 < θnt < 1, and θg > 1 − θg′ , then the
ROC path is along two linear segments. Note that the single-high
threshold model discussed by Macmillan and Creelman (2005) is
the special case of the PD model when θnt = 0 and θg = 1 − θg′ .
The double-high threshold model also discussed in Macmillan
and Creelman (2005) is another special case of the PD model
when θnt = θd and θg = 1 − θg′ .

To better understand the PD ROC, consider points P2 and P3.
If we were to define an affirmative response as strictly a “yes” with
high confidence, then the corresponding false alarm rate and hit
rate would be illustrated by P2 and have the values corresponding
to the prediction equation shown in Table 3 for that point. Next
we redefine an affirmative response as any “yes” response, then
the false alarm rate and hit would be illustrated by P3 and the
corresponding prediction equation in Table 3. The slope between
P2 and P3 is denoted as s23 and is given as

s23 = (1 − θd) θg

(1 − θnt) (1 − θg′)
, (1)
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FIGURE 3 | ROC for the PD model. See Table 3 for a description of the
points Pi , i = 0, · · · , 6. The open squares are the three theoretical
“operating” points, and the extrema points are P1 = (0, θd ) and
P5 = (1 − θnt , 1).

Table 3 | The PD model equations for the key points shown in

Figure 3.

Point x = False alarm y = Hit

P0 0 0

P1 0 θd

P2 (1 − θnt )(1 − θg′ )θh θd + (1 − θd )θgθh

P3 (1 − θnt )(1 − θg′ ) θd + (1 − θd )θg

P4 (1 − θnt )(1 − θg′θh) θd + (1 − θd )(1 − (1 − θg )θh)

P5 1 − θnt 1

P6 1 1

Point P2 corresponds to the case where a positive response is considered

as a high confident yes, but for point P3 a positive is regarded as any yes

response. For point P4 a positive is considered as any response that is not a

high confident no.

and the slope between points P1 and P2 is also equal to s23. The
linear path from points P1 and P3 can be described in terms of
a hypothetical variable v that varies on the [0, 1] interval. The
false alarm rate x and hit rate y on this path is described by the
following equations:

x = (1 − θnt) (1 − θg′)v, (2)

y = θd + (1 − θd) θgv. (3)

The least risky point P1 corresponds to when v = 0. Point P2

corresponds to the more risky case when v = θh. Point P3 cor-
responds to the even more risky case of v = 1. Of course the
only observable points on this path from P1 to P3 are P2 and P3.

Interestingly the slope from P3 to P4 is in general different than
the slope from P1 to P3. Let us denote the slope from P3 to P4 as
s34, and it is given as

s34 = (1 − θd) (1 − θg)

(1 − θnt) θg′
. (4)

It is also the case that the slope from P4 to P5 is also equal to
s34. Moreover, the linear path from P3 to P5 can be described in
terms of another hypothetical variable w that varies from 0 to 1
as the risk increases. The false alarms x and hits y on this path is
characterized by the following equations:

x = (1 − θnt) (1 − θg′ + θg′ w), (5)

y = θd + (1 − θd) θg + (1 − θd)(1 − θg) w. (6)

The P3 point corresponds to w = 0; whereas the P4 point corre-
sponds to w = 1 − θh and P5 corresponds to w = 1.

Figure 4 illustrates the PD model ROC path from one extreme
point to the other in terms of the v and w variables. As v varies
from 0 to 1 it traces points on the P1 to P3 line as stipulated by
Equations (2, 3). Similarly as w varies from 0 to 1, (Equation 5)
and (Equation 6) traces points on the P3 to P5 line. Notice that
θh determines the separation from each of the two extreme ends.
This feature is a property of the PD model because there is a
common parameter of incorrectly using the high confidence rat-
ing when guessing regardless if the guessing is done in either the
target-present condition or the target-absent condition. Chechile
(2004) also presented another identifiable memory MPT model
where there are separate parameters for over confidence when
using the “yes” response (θ2) versus over confidence when using
the “no” response (θ1). This model is the 7B model. Other than
the difference in the handling of over confidence, the 7B and 6P
models are identical, i.e., the 6P model is the special case of 7B
where θh = θ1 = θ2. Model 7B can also be applied to the percep-
tual detection task (lets denote that model as the PD∗ model).
In the PD* model the θ2 parameter determines the location for
the v variable for the P2 point, and the θ1 parameter determines
the separation for the w variable from the maximum of 1. Hence,
the spacing for the points on the v − w plot is different for the
PD* model than the spacing shown in Figure 4 for the PD model.

In general the slope from P3 to P5 is less than the slope from
P1 to P3. Given Equations (1), and (4) the ratio of the slopes can
be written as

r = s35

s13
= (1 − θg)(1 − θg′)

θgθg′
. (7)

If there is some partial or degraded perception, then the tendency
to respond “yes” is at least equal or greater in the target-present
condition as it is in the target-absent condition. It follows that

θg

1 − θg
≥ 1 − θg′

θg′
. (8)

It also follows from Equations (7, 8) that r ≤ 1. Consequently, if
θg > 1 − θg′ , then the slope from P1 to P3 is larger than the slope
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FIGURE 4 | Illustration of the relative position of the v and w variables

that determine the points on the PD ROC. See Figure 3 for the definition
of the points.

from P3 to P5. The case where r = 1 corresponds to when θg =
1 − θg′ or when there is the same “yes” guessing in the target-
present condition as in the target-absent condition. In this special
case, there is no partial detection, and the ROC does not have two
linear components, but there is instead a single line of slope 1−θd

1−θnt
between P1 and P5.

The area under the ROC has been used as a measure of sensi-
tivity in standard SDT. It is straightforward to show that area Ac

between the P1-P5 dashed line in Figure 3 and the main diago-
nal line of y = x is 1

2 (θd + θnt − θdθnt)8. This region is a function
of certain perceptual detection and does not depend on guess-
ing. Because the total area in the upper half of the unit square
where y > x is 1

2 , it is advantageous to multiply Ac by 2, so that
the area measure of certain detection is placed on a 0 to 1 scale.
This measure is defined as a certain detection Dc, and

Dc = θd + θnt − θdθnt . (9)

The area of the P1 P3 P5 triangle is a function of guessing. This
area is denoted as Ag , and it can be found from Heron’s for-

mula, i.e., Ag = 1
2 (1 − θnt)(1 − θd)[θg − (1 − θg′)]. We can put

this measure of effective guessing on a 0 to 1 scale by defining
Dg = 2Ag or

Dg = (1 − θnt)(1 − θd)[θg − (1 − θg′)]. (10)

8Note that the total area above the main diagonal is 1
2 , and the area above

the dashed line is 1
2 (1 − θd)(1 − θnt ), so Ac can be determined by subtracting

these quantities.

Thus the total detection measure can be defined as twice the area
between the ROC and the main diagonal; this metric is D = Dc +
Dg or

D = θd + θnt − θdθnt + (1 − θnt)(1 − θd)[θg − (1 − θg′)], (11)

As an example, let us compute these area-based metrics for the
radiological data discussed in section 2.2. Using PPM estimates
for θd and θnt , it follows from Equation (9) that Dc = 0.774. The
corresponding Dg measure from Equation (10) is 0.031, so the
overall D metric is 0.805.

Although the detection measure D is on a proportional basis, it
is, nonetheless, a confounded measure because it does not delin-
eate how the detection was achieved. For example suppose that
θnt = 0.805 and θd = 0, then the resulting D value would be the
same as for the radiologist discussed above. Clearly the hypothet-
ical observer with θd = 0 and θnt = 0.805 would be very good
at recognizing a normal CT scan, but would not be capable of
detecting an abnormal scan, which would be a rather serious
problem for the diseased patients of that hypothetical radiologist!
Consequently, the area-based D metric, along with its component
metrics of Dc and Dg , is less informative as the original PD model
parameters. The detection of the target increases with the value of
the θd parameter, and the identification of a non-target increases
with the value of the θnt parameter. Those two types of detec-
tion can be quite different. It is also informative to know how
the observer does for the unclear cases where there is guessing.
The D metric does not pull out the many different perceptual
and decision-making characteristics of the observer’s behavior.
Also the standard SDT metrics of d′ and the ratio of the standard
deviations do not extract the different properties of the observer’s
perceptual-detection performance.

3. INDIVIDUAL DIFFERENCE ESTIMATION FOR THE PD
MODEL

A fundamental issue that arises in mathematical psychology is the
basis for fitting a model. One method is to fit the model sep-
arately for each individual and to average individual estimates
for the group average. Another method is to aggregate the data
across a group of individuals for a particular experimental con-
dition and then fit the model once for that condition9 . The
estimates from these two approaches differ. Although there are
applications where each of these pure approaches is reasonable, in
this paper a hybrid of these two methods will be recommended.
Consequently, the answer to the question as to how to fit a model
depends on the purpose of the analysis.

There are several contexts that necessitate the fitting of the
model on an individual basis. For example, if the model is a
non-linear function of an independent variable, then many inves-
tigators have demonstrated that group-averaged data can result
in biased fits (Estes, 1956; Sigler, 1987; Ashby et al., 1994). Also

9A third approach also exists for obtaining individual and group effects by
means of a hierarchical Bayesian model similar to the analysis developed for
MPT models by Klauer (2010). This method is computationally challenging,
and it has not yet been assessed to see if it has improved accuracy relative to
the simple model advanced in the present paper.
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the theoretical issue being examined can require that the analy-
sis be done on an individual basis. For example, Chechile (2013)
examined the memory hazard function to see if there was evi-
dence of a mixture over stimuli. Had that analysis been done on a
grouped-data basis, then any results suggesting a mixture could
have been a mixture over individuals with different memory
properties instead of a mixture over stimuli.

There are also cases when pooling the data prior to the model
fit is the preferred analysis (Cohen et al., 2008; Chechile, 2009).
Chechile (2009), for example, studied four prototypic MPT mod-
els with an extensive series of Monte Carlo simulations in order
to examine the relative accuracy of averaging versus data pool-
ing. For any given Monte Carlo run, a group of ng simulated
“subjects” with slightly different true values for the model param-
eters was constructed, and for each artificial subject there were
nr “observations” that were randomly sampled from the appro-
priate multinomial likelihood distribution10. Based on this set of
simulated outcome frequencies, the model was fit in two dif-
ferent ways: (1) the averaging method and (2) the data-pooling
method. For the averaging method the MPT model was fit sep-
arately for each of the ng subjects, and these estimates were
averaged to obtain an estimate for each model parameter. For
an arbitrary model parameter, θx, the group average estimate

is θ̄x = 1
ng

∑ng

i=1 θ̂x i where θ̂x i is the parameter estimate for the

ith subject. For any Monte Carlo run, the absolute value dif-
ference was computed between θ̄x and the true mean for that
parameter θx(true) = 1

ng

∑ng

i=1 θx i(true). This difference is taken

as the error for the averaging method for that one Monte Carlo
run. The process was then repeated so that in total there were
1000 separate Monte Carlo runs for each combination of ng and
nr . Across these separate Monte Carlo runs the model parame-
ters were varied, so the model was simulated over a vast set of
configurations of the parameters. The overall error for the aver-
aging method is the mean error across the 1000 Monte Carlo
data sets for each combination of ng and nr . For the identical
data as described above, a corresponding error was also found
for the pooling method. For the pooling method the frequen-
cies in each multinomial response category was summed across
the ng subjects in a group, and the model was fit once with the
pooled data. The estimate based on pooling for the jth simulated
data set is denoted as θ̂x j(pooled). The absolute value difference
between this estimate and the true value for that run is the pool-
ing error for the jth Monte Carlo data set, and mean error across
all 1000 data sets is the overall error for the pooling method11. For
all four models reported in Chechile (2009) and for most com-
binations of ng and nr , the mean error for the pooling method
was less than the corresponding error obtained for the averaging
method12. Consequently, Chechile (2009) reported a pooling

10Each individual was within ±0.03 of the group mean.
11This whole procedure of estimating the model with both the averaging and
pooling method was done for both PPM and MLE estimates for each of the
four typical MPT models.
12Only eight cases out of 640 cases reported in Chechile (2009) had greater
error for the pooling method, and all of these exceptions were when the MLE
was used. Generally the MLE was not the optimal estimator for the model
parameters because the corresponding Bayesian PPM estimator had greater
accuracy.

advantage score that was the difference between the mean
averaging error and the mean pooling error. For example, a posi-
tive value for the pooling advantage score of 0.07 means that the
averaging mean error was larger by 0.07 than the correspond-
ing pooling error. A negative pooling advantage score would
mean that the averaging method had less error than the pooling
method.

One of the models examined in Chechile (2009) was a four-cell
MPT model that is identical to the structure of the process trees
for either the target-present or the target-absent test conditions
with the PD model. Consequently, those Monte Carlo simulations
directly apply to the PD model. Table 4 provides a condensed
summary of the Monte Carlo results from Chechile (2009). The
θd parameter in Table 4 corresponds to the θS parameter in Model
A; whereas θg and θh, respectively, correspond to the θg and θ1

parameters in Model A.
The pooling advantage scores in Table 4 exhibit a number

of interesting properties that were also found with the other
MPT models. First, the pooling advantage scores are posi-
tive indicating that there is greater accuracy for the pooling
method. Second, although the magnitude of the pooling advan-
tage decreases with the number of observations per subject (nr),
there is still a non-trivial advantage for pooling even when nr =
400. It is challenging to do an experiment with large values for
nr . For example, a replication number of 50 is larger than all
but two of the memory studies reported from my laboratory.
Consequently, the idea of running a large number of replica-
tion trials per subject is not a practical option. Third, the size
of the pooling advantage increases with group size ng . This
effect is due to the fact that the error for the pooling method
decreases rapidly with increasing group size; whereas the error
for the averaging method slowly decreases with increasing ng ,

Table 4 | The difference in mean error between averaging and pooling

for ng individuals in a group and for nr trials in the target-present

condition.

Pooling Advan. score

ng nr θd θg θh

20 20 0.069 0.076 0.078

20 50 0.045 0.050 0.051

20 100 0.034 0.035 0.034

20 400 0.015 0.013 0.013

40 20 0.078 0.086 0.087

40 50 0.054 0.059 0.059

40 100 0.037 0.040 0.040

40 400 0.017 0.015 0.015

80 20 0.087 0.096 0.098

80 50 0.059 0.065 0.064

80 100 0.043 0.043 0.045

80 400 0.020 0.016 0.016

This difference is a pooling advantage score. Positive values indicate less error

for the pooling method. Monte Carlo simulations from Chechile (2009).
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so the net effect is that the pooling advantage score increases
with ng .

It might not seem intuitive as to why the pooling of data results
in superior estimates for the group mean. This result is more rea-
sonable when viewed from a Bayesian perspective. From Bayes
theorem it does not matter if the data are examined in aggre-
gate or one observation at a time, provided that the same starting
prior probability is used. Suppose we use a uniform distribution
as the prior distribution for each combination of the parameters
(θd, θg , θh). Let us call this prior the “vague” prior. Furthermore
suppose we examine the model parameters for the first individual
in the group via Bayes theorem to yield a posterior distribution.
The posterior distribution after the first individual should then be
the prior distribution for examining the data for the second sub-
ject, i.e., it is no longer appropriate to maintain the vague prior
after examining the first subject. Similarly the prior distribution
for Subject 3 should be the posterior distribution after consid-
ering the first two subjects. This one-subject-at-a-time method
eventually yields a posterior distribution that is the same as the
posterior distribution achieved by pooling the multinomial cate-
gories and applying Bayes theorem once. Had the Bayesian analyst
used a vague prior for each of the ng subjects and averaged the
estimates, then the analysis would not be consistent in the appli-
cation of Bayes theorem. The averaging of separate estimates is
not an operation by which probability distributions are revised
via Bayes theorem. In terms of this framework, the findings in
Table 4 are quite reasonable. The pooling method should be more
accurate, and the pooling advantage should grow with the size of
the group.

Despite the above demonstration of a pooling advantage for
estimating the group mean, it is still an open question as to what
should be the basis for estimating the model parameters for an
individual. Two choices seem reasonable. One method is simply
to use the data for just the individual, e.g., for the θd parameter it
would be θ̂d i for the ith observer. For the second method the data
for the individual is used but there is a fixed correction so that the
mean across all observers is equal to the pooled estimate for the

group. For the θd parameter this estimate is denoted as θ̂
(a)
d i and is

defined as

θ̂
(a)
d i = θ̂d(pooled) − θ̄d + θ̂d i. (12)

Note that the two methods have estimates that are perfectly cor-

related because the adjusted estimate θ̂
(a)
d i is a constant plus the

individual estimate θ̂d i. The constant correction term is equal to
θ̂d(pooled) − θ̄d. The correction makes the mean of the adjusted
estimates equal to the pooling method estimate because

1

ng

ng∑

i=1

θ̂
(a)
d i = θ̂d(pooled) − θ̄d + θ̄d = θ̂d(pooled).

The estimate based on Equation (12) is similar in principle to
a James–Stein estimator used for the linear model for Gaussian
random variables because the estimate for the individual is shifted
based on properties of the group.

Another Monte Carlo simulation was designed for a widely
different group of simulated observers in order to assess the
relative accuracy of the two methods for estimating the param-
eters for individuals. The group consisted of 10 observers for
each of the 3 × 3 combinations of values for θd and θnt . The
three values were 0.2, 0.5, and 0.8. For each of the 90 simu-
lated observers the values for θh were randomly selected from
a beta distribution with coefficients of 2 and 4, and the θg and
θg′ parameters were randomly selected from a beta distribution
with coefficients of 28 and 14. Consequently true scores were
established for each simulated observer. For each observer, 20
simulated observations were randomly sampled for the target-
present condition, and another 20 observations were randomly
sampled for the target-absent condition. These observations were
based on the appropriate multinomial likelihood distribution for
each subject. The PD model was then estimated by each method
described above. Because θd and θnt are the two key parameters
of interest in the PD model, the root mean square (rms) error
was found between the true score point {θd i(true), θnt i(true)}
and the estimated point for the individual {θ̂d i, θ̂nt i}. The rms

error for the adjusted score point {θ̂ (a)
d i , θ̂

(a)
nt i} was also found.

The rms errors for the individual and the adjusted method
are respectively 0.1671 and 0.1385. Thus, the adjusted esti-
mates based on Equation (12) resulted in a 17% reduction in
the rms error. This simulation illustrates the improvement in
the accuracy of model estimation by the use of the adjusted
score method.

4. DISCUSSION
In this paper the Chechile (2004) 6P memory measurement
model was modified and applied to perceptual detection. The
resulting PD model is a MPT model that has two mixture rate
parameters (θd and θnt) that measure the proportion of times
that the observer confidently detects something that belongs to
an identifiable category. The categories are different for targets
and non-targets, but in both cases something is being identi-
fied. The measurement of these detection rates is an important
part of the psychometric assessment of perceptual performance.
The PD model also has three other parameters that come into
play when the observer is unable to confidently classify the
stimulus.

The PD model differs from standard SDT on the issue of
stochastic mixtures. MPT models, like the PD model, are essen-
tially probability mixture models. In contrast, SDT developed in
the context of assuming separate but homogeneous distributions
for target-present and target-absent conditions. The success of the
PD model in accounting for the radiological judgments described
earlier in this paper occurred because the PD model was sensi-
tive to the fact the radiologist was able to know sometimes that
a CT scan was normal and to know at other times that a CT
scan revealed an identifiable abnormality. This attribute of cat-
egorical and sophisticated perception is not an isolated property
of experts. More than 120 years ago William James discussed the
importance of perceptual learning; in fact perception according to
James differed from a pure sensation because of the information
that the person associates and adds to the sensation (James, 1890).
There is now a vast literature describing the improvement in
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perception with practice (Kellman, 2002). With experience peo-
ple can develop refined perceptual categories that sharpen their
ability to process and to interpret stimuli.

It is noteworthy that the prototypic experiments in the early
history of SDT used stimuli that were designed to be feature-
less and varied on only a single prothetic intensity dimension.
For example the stimulus-absent stimulus for some experiments
was white noise; whereas the target-present stimulus was a louder
white noise (Tanner et al., 1956). Perceptual categories and per-
ceptual learning is limited for such impoverished stimuli. SDT is
expected to be quite successful for such applications, but SDT is
expected to be problematic when stimuli possess rich perceptual
features and when the observer has some experience with the class
of stimuli. For those applications, the PD model would be a more
suitable cognitive psychometric tool for assessing the properties
of the observer.

The PD model is a minimalistic model that intentionally
eschews delineating any specific cognitive representation of the
stimulus. Like other MPT models, there are probability measures
for specific states. The states for the PD model are: (1) a state of
certain target recognition, which occurs on θd proportion of the
target-present trials, and (2) the state of certain identification of
something other than a target, which occurs on θnt proportion of
the target-absent trials. These probability measures provide for a
characterization of the observer’s detection ability.

MPT models have many desirable statistical properties and
can be estimated by a variety of methods. Monte Carlo simu-
lations with large sample sizes demonstrated that the MLE and
the Bayesian posterior mean for the PD model were very close,
but the accuracy of these estimates differed more substantially
for smaller sample sizes. When the estimates differ, the Bayesian
mean was found to be more accurate. In addition, an improved
estimate was found for the individual observer when the estimate
based on the individual’s data was adjusted. The adjustment was
a fixed amount for all observers, and it equated the mean of the
adjusted scores to the mean of the estimate based on pooled data.
This adjustment was discussed as an analogous adjustment to the
James–Stein shrinkage improvements to the MLE found for the
multiple-group Gaussian model.
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