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As children develop into skilled readers, they are able to more quickly and accurately
distinguish between words with similar visual forms (i.e., they develop precise lexical
representations). The masked form priming lexical decision task is used to test the
precision of lexical representations. In this paradigm, a prime (which differs by one letter
from the target) is briefly flashed before the target is presented. Participants make a
lexical decision to the target. Primes can facilitate reaction time by partially activating the
lexical entry for the target. If a prime is unable to facilitate reaction time, it is assumed
that participants have a precise orthographic representation of the target and thus the
prime is not a close enough match to activate its lexical entry. Previous developmental
work has shown that children and adults’ lexical decision times are facilitated by form
primes preceding words from small neighborhoods (i.e., very few words can be formed
by changing one letter in the original word; low N words), but only children are facilitated
by form primes preceding words from large neighborhoods (high N words). It has been
hypothesized that written vocabulary growth drives the increase in the precision of the
orthographic representations; children may not know all of the neighbors of the high
N words, making the words effectively low N for them. We tested this hypothesis by
(1) equating the effective orthographic neighborhood size of the targets for children and
adults and (2) testing whether age or vocabulary size was a better predictor of the
extent of form priming. We found priming differences even when controlling for effective
neighborhood size. Furthermore, age was a better predictor of form priming effects than
was vocabulary size. Our findings provide no support for the hypothesis that growth in
written vocabulary size gives rise to more precise lexical representations. We propose
that the development of spelling ability may be a more important factor.
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INTRODUCTION
Learning to read, unlike learning to speak, requires explicit
instruction. Models of reading attempt to account for reading
performance across development. However, several unresolved
questions prevent models of reading skill acquisition from being
further refined. Specifically, what are the mechanisms that allow
fluent readers to distinguish between words that are visually
similar but have different meanings?

Masked priming paradigms (Forster et al., 1987) provide a
means for studying developmental changes in orthographic pro-
cessing. In masked priming paradigms, a prime is presented
briefly (c. 50 ms) and is masked by a row of hash marks that pre-
cedes it and a target word that follows it (typically in a different-
case font). Participants are typically unaware of the primes
because of their rapid and masked presentation, and hence can-
not use different strategies for processing the primes. Therefore,
this paradigm is particularly useful for studying developmental
changes because it can distinguish age-related differences from
differences in strategic processing.

Form priming, where the prime and target differ by a single
letter (e.g., clee-FLEE), provides a way to measure the precision
of orthographic representations. Form priming in adults varies as
a function of orthographic neighborhood size (N), the number of
words that can be formed from a target word by changing a single
letter. For example, the word echo has no orthographic neighbors,
whereas the word yell has 9 orthographic neighbors including yelp
and cell. For adults, masked non-word form primes significantly
facilitate lexical decision times relative to unrelated primes (e.g.,
pilk-FLEE) when the target word has few orthographic neighbors,
but not when the target word has many neighbors (Forster, 1987;
Segui and Grainger, 1990; Forster and Davis, 1991; Castles et al.,
1999).

Competing hypotheses have been proposed regarding the
mechanisms underlying neighborhood size effects on adult form
priming. The first hypothesis, an entry-opening search model
(Forster and Davis, 1984; Forster, 1989), is predicated on the idea
that word detectors are more sharply tuned for high than low N
words, to minimize confusion with other visually similar words.
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This sharper tuning may be accomplished by recoding words into
their bodies and antibodies (Forster and Taft, 1994). According
to this hypothesis, form primes are not sufficiently close matches
to high N words to facilitate response times, resulting in less prim-
ing for high than low N words. Another hypothesis, a network
framework model based on Rumelhart and McClelland’s (1982)
interactive activation model, posits that greater levels of com-
petition or inhibition between neighbors for high than low N
targets offset the facilitatory effect of the prime. A recent study
from Andrews and Hersch (2010) found that for adults who were
“above average” spellers, form primes preceding high N targets
led to a significant slowing of lexical decision response time (i.e.,
the prime inhibited rather than facilitated response times). Such
inhibitory effects are not reconcilable with search models, but can
be accommodated by models postulating inhibitory links.

Masked form priming for high N words has been shown to
vary across development, suggesting experience, maturation, or
an interaction between the two alters the mechanisms that yield
this behavioral effect. Unlike adults, children show masked form
priming for both low and high N words (Castles et al., 1999, 2003,
2007). Castles et al. (1999) initially hypothesized that written
vocabulary growth, and its effects on either lexical tuning or lexi-
cal competition (Castles et al., 2007), is related to developmental
differences in neighborhood density effects on form priming.
Since children have smaller written vocabularies than adults, they
may not know all of the neighbors of a high N target, rendering
the target effectively low N. As neighbors of a particular word are
learnt, vocabulary growth would either initiate the recoding of
high N words or increase the number of inhibitory links associ-
ated with that particular word. Some studies support this theory,
documenting attenuation of form priming with age (Castles et al.,
2007). Other studies have continued to show large priming effects
during developmental periods when written vocabulary was pre-
sumed to increase. For example, Castles et al. (1999) reported that
children continued to show facilitation from 2nd grade until 6th
grade, when vocabulary testing revealed that the high N targets
were effectively high N for the 6th graders. This finding led to
the hypothesis that a neighborhood density threshold has to be
reached before lexical detectors begin to narrow their tuning. This
hypothesis was supported by the observation that the 6th graders
with the highest sight vocabularies showed no form priming for
high N targets (Castles et al., 1999).

The purpose of this paper is to test the hypothesis that differ-
ences in written vocabulary size underlie developmental differ-
ences in form priming. To test this hypothesis, we controlled for,
and quantified, effective N. We used very low N (0–1 neighbors)
and very high N (≥10 neighbors) targets, which afforded us two
potential advantages. First, the use of very high N stimuli pro-
vided an opportunity to test whether we could replicate Andrews
and Hersch’s (2010) finding of significant inhibition for high N
form priming in adults, as such high N stimuli would be expected
to generate substantial lexical competition. Second, the use of very
high N stimuli increased the likelihood that these stimuli would
be high N for young children, who might know only a fraction of
the neighbors. We measured children’s knowledge of these neigh-
bors to determine whether individual differences in form priming
related to individual differences in neighbor knowledge, as would

be expected if vocabulary size related to high N form priming. As
a final test, we created a “matched” set of stimuli whose average N
equaled the estimated effective N for the youngest children. These
matched stimuli were shown only to the adults to control for
potential differences in effective N between children and adults. If
significant differences were seen between the matched N stimuli
in adults and the high N stimuli in children, then the likelihood
is markedly reduced that vocabulary differences are the cause of
developmental differences in priming. In the first analysis, we
used linear mixed effects modeling to calculate the expected reac-
tion time to stimuli that were preceded by different prime types as
a function of age. We expected everyone to show facilitation due
to repetition primes (e.g., flee-FLEE) and form primes preceding
low N targets. However, we expected only the younger partici-
pants to show facilitation when form primes preceded high N
targets. The second analysis also entailed a linear mixed effects
model, but the matched N targets were inputted for the adults to
control for effective neighborhood size. If we found no differences
between the adults’ matched N words and the children’s high
N words, then the results would support the written vocabulary
growth hypothesis. In contrast, if we found significant differences
between the two age groups, wherein children were facilitated in
the high N form priming condition but adults were not facili-
tated in the matched N form priming condition, then the results
would not support the written vocabulary growth hypothesis. In
our final analysis, we tested whether age or vocabulary size was a
better predictor of high N form priming effects in children and
adolescents. Vocabulary being the better predictor would support
the written vocabulary growth hypothesis, whereas the opposite
result would not.

A second goal of this study was to map the developmen-
tal trajectory of form priming. Previous studies have primarily
examined discrete age groups (e.g., testing children in 2nd, 4th,
and 6th grade, as well as adults). This study is the first priming
study, to our knowledge, to test age as a continuous variable from
childhood through adulthood.

METHODS
PARTICIPANTS
Twenty-seven adults (18–27 years old, 11 males), 26 adoles-
cents (13–17 years old, 13 males), and 38 children (7–12 years
old, 15 males) were recruited from Washington University in St.
Louis and the St. Louis metropolitan area. All participants were
monolingual, native English speakers, with normal or corrected-
to-normal vision and no history of neurological or psychiatric
disorders. Adult participants and parents of child and adolescent
participants provided informed consent and child and adoles-
cent participants provided informed assent. Participants were
compensated $15/h. All aspects of the study were performed
with the approval of the Washington University Human Studies
Committee.

Subject data were included in the study if: (1) accuracy in each
condition of the lexical decision task was above chance (50%), and
(2) the participant did not report being able to read the primes.
Thirteen children and 2 adolescents did not meet the accuracy
criteria. One adult reported being able to see the primes. The
final sample comprised 26 adults (18–23 years old, 11 males),
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24 adolescents (13–17 years old, 13 males), and 25 children
(8–12 years old, 12 males). Although we did not collect IQ and
reading measures from all children, the available IQ and reading
data did not differ between included and excluded participants.
Additional demographic and psychometric data are reported in
Table 1.

Thirteen out of 38 children had to be removed from the analy-
sis due to low accuracy. This issue does not appear unique to our
cohort. For example, Castles et al. (1999) stated that “a number”
of grade 2 children (mean age = 7 years, 10 months) needed to be
removed from the analysis due to low accuracy, but did not state
how many. Fifteen percent of the grade 3 children (mean age = 8
years, 6 months) tested in the Castles et al. (2007) study had to be
removed due to low accuracy. The neighborhood size of stimuli
used in the present study may explain why this experiment was
more challenging than previous studies. Low N words and high
N non-words are the most challenging stimuli to correctly clas-
sify. The low N word targets in the Castles et al. (1999) study had
a mean N of 1.3, whereas in the present study they had 0 neigh-
bors. The high N non-words in the Castles et al. (1999) study had
a mean N of 8.9, whereas in the present study they had a mean N
of 12.7 (range: 10–19).

DESIGN AND STIMULUS MATERIALS
Design
The lexical decision task contained both word and non-word
stimuli; only words were analyzed. The words and non-words var-
ied by Orthographic Neighborhood Size (high, low) and Prime
Type (repetition, form, unrelated). An additional Orthographic
Neighborhood Size condition (matched N) was presented to adult
participants as a control condition. Children and adolescents
completed a neighbor knowledge test to measure their effective
Ns. Adolescents also completed psychometric testing; children
and adults did not, but some psychometric data were available
from previous studies in the lab. We describe three discrete age
groups in the Methods section, as the testing procedures were
slightly different for each age group. However, in the analyses, age
is treated as a continuous variable.

Table 1 | Participant information.

N Age in N Age in IQ Reading

years years standard

score

Children 38 10.31 (1.39) 25 10.57 (1.14) 124* 118.62*

Adolescents 26 15.10 (1.24) 24 15.22 (1.20) 111 103.25

Adults 27 20.98 (1.21) 26 20.91 (1.18) 126* N/A

Bold values pertain to all tested participants. Non-bold data pertain to the partic-

ipants who met the inclusion criteria. The asterisk (*) signifies that the data is

an estimate based on a subset of the included population. The Vocabulary and

Matrix Reasoning Subtests of the Wechsler Abbreviated Scale of Intelligence

were used to calculate the IQ scores. The Letter-Word ID, Word Attack, and

Reading Fluency subtests of the Woodcock Johnson (WJ) Tests of Achievement

were used to calculate the reading standard scores. Data are presented as

means with standard deviations (SD) in parentheses, except where noted.

Stimulus materials: lexical decision task
Stimuli were white letter strings displayed in the center of the
screen in Courier font on a black background. Stimuli subtended
0.57 visual degrees vertically and up to 1.64 visual degrees hor-
izontally. The mask had a contrast value of 0.47 and the other
stimuli had similar contrast values.

Target items were 210 4–5 letter English words and 210 4–
5 letter legal non-words compiled using the e-Lexicon database
(Balota et al., 2007). All the word targets shown to children and
adolescents had a 3rd grade frequency ≥ 1 (Zeno et al., 1995). The
target words had one of three orthographic neighborhood sizes:
70 were high N (10–19 orthographic neighbors), 70 were low N (0
orthographic neighbors), and 70 were matched/medium N (8–9
orthographic neighbors) (Balota et al., 2007). The target non-
words had the same characteristics, save that the low N non-words
had 1 orthographic neighbor. The orthographic neighborhood
size for the matched N stimuli, shown to adults as a control for
children’s smaller vocabularies, was selected to approximate the
expected effective N of the high N list for the youngest chil-
dren. Specifically, stimuli in matched N list had 8–9 orthographic
neighbors, which corresponded to the average number of neigh-
bors per high N word target with a 3rd grade frequency ≥ 1 (Zeno
et al., 1995).

Lexical properties of the target stimuli are displayed in Table 2.
There were no effects of Orthographic Neighborhood Size or
Lexicality on letter string length, and no effect of Orthographic
Neighborhood Size on HAL (Hyperspace Analog to Language)
frequency (Lund et al., 1995)1, HAL log frequency, and number of
syllables for words, all ps > 0.10. The HAL frequency of the ortho-
graphic neighbors for the matched N words and high N words did
not differ, p = 0.92. The 3rd grade frequency of the high N and
low N words also did not differ, p = 0.39.

Each trial began with a forward mask consisting of a row
of Xs, matched in length to the number of letters in both the
prime and target (e.g., XXXX for a four-letter prime/target).
Although an “x” is an English letter, it was only found in three
targets. The forward mask was presented for 800 ms. Next, a
prime was presented in lowercase font for 66.66 ms. This prime
duration was chosen to closely approximate the prime dura-
tion in Castles et al. (1999) (57 ms) given our monitor refresh
rate of 13.33 ms. Although the prime duration is slightly longer
than usual, all of our participants except one reported either
being completely unaware of the prime or of simply seeing a
flicker on the monitor. Despite suggestions that prime visibil-
ity has a minimal impact on behavioral effects (Schmidt, 2013),
we elected to exclude that participant because she occasionally
made lexical decisions to the prime instead of the target stim-
ulus. Then, a target was presented in uppercase font for 800 ms
or until a lexical decision was made. Participants were instructed
to determine whether the target was a real English word or a
“made-up” word and to indicate their response by either the
left or right button on a button box with the corresponding
index finger. Response mappings were counterbalanced across
participants.

1The HAL frequency was derived using a corpus of words from Usenet, which
includes all newsgroups using English dialog.
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The number of letters in the prime and target was equal for
each trial. Repetition primes were characterized by the same item
appearing in lowercase font as a prime and uppercase font as a
target. Form primes were characterized as differing by one let-
ter position from the target. All letter positions were changed an
equal number of times. Unrelated primes shared a maximum of
one letter in the same position as the target. The lexicality of the
prime was selected to give no indication of the lexicality of the
target item. For repetition prime trials, word primes always pre-
ceded word targets (e.g., rice-RICE) and non-word primes always
preceded non-word targets (e.g., deat-DEAT). For form prime
trials, non-word primes preceded word targets (e.g., ruce-RICE)
and word primes preceded non-word targets (e.g., dean-DEAT).
For unrelated prime trials, half of the targets were preceded by
non-word primes and half were preceded by word primes (e.g.,
lunt-RICE or epic-RICE; tond-DEAT or milk-DEAT). All unre-
lated non-word primes were orthographically legal. Non-word
form primes were created by replacing consonants with other
consonants and vowels with other vowels. The prime lexicality
was chosen to replicate the Castles et al. (1999) experimental
design to facilitate cross-study comparisons.

For each target, three primes (repetition, form, and unre-
lated) were created. Initially, 12 lists (6 for adults, 6 for chil-
dren/adolescents) were created with different combinations of
the 3 prime types, so that every participant viewed each tar-
get once but, across the sample, every target was preceded by
every prime type. Each list was then pseudorandomized with
the constraint that no more than 6 examples of a particular
response type were presented sequentially. Two pseudorandom-
ized versions were generated for each list, yielding a total of 24
stimulus lists (12 for adults, 12 for children/adolescents) (see
Supplementary Material for a list of stimuli).

Stimulus materials: neighbor knowledge test
The neighbor knowledge test served as our in-house vocabu-
lary test and was used to measure the children’s and adolescents’
knowledge of the neighbors of the high N stimuli. Stimuli were
white letter strings displayed in Courier font on a black back-
ground. Stimuli subtended 0.573 visual degrees vertically and up
to 1.637 visual degrees horizontally. The possible targets were the
605 unique neighbors of the word targets from the lexical deci-
sion task. The foils were 195 orthographically legal non-words.

Lexical properties of the target stimuli are displayed in Table 3.
The targets and foils were randomly divided into 5 lists of 160
items. 20–30% (M = 24.38%) of each list consisted of non-word
foils. Each list was pseudorandomized, with the constraint that
no more than 6 examples of a particular response type were
presented sequentially.

Each trial began with a centered row of Xs presented for
800 ms, matched in length to the number of letters to the tar-
get/foil (e.g., XXXX for a four-letter item). Then, a centered target
or foil was presented in lowercase font until the participant made
a lexical decision. Response mappings were kept constant from
the priming experiment.

Adults did not take the Neighbor Knowledge Test because we
assumed that the adults knew most of the neighbors. The neigh-
bors were fairly frequent [Hyperspace Analog of Language (HAL)
mean: 26639.6, range: 16–1060831], and the adults were of high
ability (estimated IQ = 126, all but one adult participant were
students at Washington University in St. Louis).

PROCEDURE
Participants were tested individually in a dark, quiet, and win-
dowless room. Stimulus presentation and response collection was
controlled by PsyScope X (Carnegie Mellon University, Build
53) scripts running on an Apple OS X computer. Stimuli were
displayed on a Trintron PC monitor. Participants’ heads were
held in place by a chin rest positioned 70 cm from the display
monitor. Child and adolescent participants completed the prac-
tice trials, the lexical decision task, and the neighbor knowledge
test. Adolescent participants also completed psychometric testing.

Table 3 | Lexical properties of neighbor knowledge test stimuli.

Length Freq. HAL Log freq. Number of Number of

HAL orthographic syllables

neighbors

Words 4.51 (0.5) 26640 (85148) 8.01 (2.2) 10.09 (4.2) 1.10 (0.3)
range: 1–24

Non-words 4.34 (0.5) 8.04 (2.7)
range: 0–22

Properties of the target stimuli expressed as mean (standard deviation).

Abbreviations and conventions as in Table 2.

Table 2 | Lexical properties of target stimuli.

Length (no. No. of Freq. HAL Log freq. 3rd grade Range of No. of HAL freq.

of letters) syllables HAL freq. neighbors neighbors of neighbors

W
or

ds

Low N 4.76 (0.4) 1.13 (0.3) 50796 (163900) 8.75 (2.0) 102.83 (299.6) 0 0.00 (0.0)
Matched N 4.73 (0.4) 1.09 (0.3) 45884 (156600) 8.88 (1.8) 8–9 8.59 (0.5) 7.96 (0.8)
High N 4.66 (0.5) 1.06 (0.2) 36436 (71635) 9.08 (1.9) 67.23 (177.5) 10–19 13.06 (2.8) 7.97 (0.8)

N
on

-w
or

ds Low N 4.74 (0.4) 1 1.00 (0.0)
Matched N 4.73 (0.4) 8–9 8.59 (0.5)
High N 4.66 (0.5) 10–19 12.70 (2.6)

Properties of the target stimuli expressed as mean (standard deviation). Frequency (freq.) measures were identified from the Hyperspace Analog to Language (HAL)

estimates in the e-Lexicon database. Coltheart’s N was used to identify neighbors.
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Adult participants completed the practice trials and the lexical
decision task.

Participants were instructed to determine whether each stim-
ulus was a real word or a “made-up” word. Participants were told
to respond as quickly and accurately as possible, and not to worry
if they made an occasional mistake.

Additional instructions were given to children and adolescents
to reduce the high false alarm rate seen during pilot testing. They
were told that all of the words were fairly easy words, which they
might have read before in books and whose meaning they knew.
Additionally, if something looked like a word, but they hadn’t read
it before or did not know what it meant, it probably was a made-
up word.

Practice trials
After receiving instructions, child and adolescent participants
viewed 10 flashcards, with different example stimuli, and were
asked to determine whether each stimulus was a word or a non-
word. The experimenter gave feedback, pointing out that some
of the non-words looked or sounded like real words. All partici-
pants were given 10 practice trials on the computer (with the same
procedure as the lexical decision task trials).

Lexical decision task
Adults completed 420 experimental trials, with five breaks.
Children and adolescents completed 280 experimental trials, with
four breaks. The difference in the number of trials was due
to adults also seeing the medium N stimuli. The task lasted
approximately 20–30 min.

Neighbor knowledge test
Child and adolescent participants completed 160 experimental
trials, with 1 break. The task lasted approximately 10 min. This
task was always presented after the lexical decision task.

Participants were instructed that accuracy was more important
than speed on this task. To reduce guessing, they were told to only
answer “word” if they were sure that they had read the item before
and knew what it meant.

Psychometric testing
Adolescent participants completed the Vocabulary and Matrix
Reasoning subsets of the Wechsler Abbreviated Scale of
Intelligence (WASI, Wechsler, 1999) and Letter-Word ID, Word
Attack, and Reading Fluency subtests of the Woodcock Johnson
(WJ) Tests of Achievement (WJ III-R COG; Woodcock et al.,
2001). Although adults and children did not complete this test-
ing, some of their IQ and reading ability measures (calculated
using the same assessments) were available from prior studies.
We believe that the subset is representative of the entire sam-
ple, as there was no systematic variation on the experimental
task between the participants for whom scores were and were not
available.

RESULTS
NEIGHBOR KNOWLEDGE TEST
For child and adolescent participants, the effective N of the high
N word stimuli was estimated from the neighbor knowledge test.

Each child was not tested on every neighbor; estimates of each
child’s effective N were generated using the sample of neigh-
bors on which he/she was tested. First, each neighbor word was
weighted by the number of word targets (henceforth, “points”)
from the lexical decision task for which it was a neighbor (e.g.,
“cases” was worth 5 points because it was a neighbor of 5 high
N targets including “cages” and “bases”). A weighted estimate
of the proportion of neighbors of the high N targets that each
child or adolescent knew was computed to estimate their effec-
tive Ns (see Equation 1). First, we summed the points for each
hit (i.e., each real word that the child identified as such). This
sum was called the number of points earned. Then, we summed
together the total possible points (# possible points). We multi-
plied the number of possible points by the false alarm rate to
estimate the number of points the child earned through ran-
dom guessing. We then subtracted this product from the number
of points earned to calculate the number of points the child
earned by knowing the vocabulary words, rather than by ran-
domly guessing. We then divided this amount by the number
of possible points to calculate the proportion of points the child
earned by knowing the vocabulary words. This proportion was
multiplied by the average N of the high N target words (13.06)
to calculate the average number of neighbors that each child or
adolescent knew. A weighted estimate was used because there was
a great range in the number of targets (1–5) for which a given
item was a neighbor. This weighted calculation allowed us to
give more credit when known words were neighbors of multiple
targets.

(
# points earned

) − [
(false alarm rate) ∗ (

# possible points
)]

(
# possible points

)

(1)
On average, children knew 9.38 neighbors (SD = 1.03) of each
target word and adolescents knew 9.98 neighbors (SD = 1.20)
out of 13.06. Although this difference is small, the correlation
with age was significant (r = 0.36, p = 0.01). Neighbor knowl-
edge test scores strongly correlated with WASI raw vocabulary
scores (r = 0.62, p < 0.01), but not WASI matrix reasoning raw
scores (r = 0.30, p = 0.07)2, suggesting that the neighbor knowl-
edge test tapped into an aspect of children’s general vocabulary
knowledge.

The neighbor knowledge test confirmed that target words were
fairly high N for the children and adolescents. Furthermore, the
“matched N” list (where N = 8.59) shown to the adults closely
approximated, or slightly underestimated, the effective N for the
children (i.e., 9.38). It is preferable for the matched N condition
to slightly underestimate the average effective N for the children,
because it is over-correcting for most children and very closely
matching the effective N for the youngest children [the average
effective N of the three youngest children (mean age = 8.95 years)
was 8.65]. The matched N condition was therefore used in sub-
sequent analyses as a control for differences in effective N across
development by determining whether similar results were seen for

2These correlations are based on the data from all of the adolescents and 13
children. The scores from the 13 children included in the correlation analyses
were obtained within a year of participation in the present study.
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adults with the matched N list and children and adolescents with
the high N list.

LEXICAL DECISION TASK
The adults, adolescents, and children were 93, 90, and 82% correct
on all trials respectively.

We conducted mixed linear analyses using the lme4 package
(Bates et al., 2010). The analysis methodology replicated that
of Andrews and Lo (2012). First, we filtered the responses to
examine only correct responses to word targets. Then we calcu-
lated the mean and standard deviation RT for each participant.
Outlier RTs more than two standard deviations from a partici-
pant’s mean were removed from the analysis (see Table 4). The
negative inverse RTs were calculated as visual inspection showed
that this best approximated a normal distribution and this trans-
formation was used in similar studies (Andrews and Lo, 2012).
The analyses treated participants and targets as crossed random
effects. We assessed the effects of target neighborhood size and
prime type with two orthogonal normalized contrasts compar-
ing (a) average priming (mean of repetition and form primes
as compared to unrelated primes) and (b) form and repetition
primes. A generalized matrix inversion was then conducted on the
contrast weights to yield interpretable main effects. To facilitate
comparison with previous evidence of form priming, a second
set of models tested generalized matrix inverted normalized con-
trasts that separately compared the form and repetitions primes
with the unrelated primes. Higher order interactions of these con-
trasts with neighborhood size were included as fixed effects. Since
the t-values obtained using linear mixed effects models are not
conventionally associated with degrees of freedom, Markov-chain
Monte Carlo simulations with 10,000 simulations were used to
obtain the associated p-values.

We were interested in testing the three-way interaction
between target orthographic neighborhood size (categorical
high/low), participant age (continuous), and prime type (using
the contrasts described above). The most straightforward sup-
port of our main hypothesis would be a significant interaction
between age, neighborhood size, and the contrast between form
and unrelated primes. This finding would suggest that the extent
of form priming (as compared against the unrelated baseline, the
typical calculation) to high N words changes with age. However,

Table 4 | Reaction time on lexical decision task.

Children Adolescents Adults

Low N Repetition 799 (281) 649 (157) 551 (109)
Form 836 (273) 677 (160) 582 (91)
Unrelated 857 (244) 700 (165) 594 (91)

Matched N Repetition – – 543 (97)
Form – – 583 (97)
Unrelated – – 584 (89)

High N Repetition 799 (258) 626 (153) 535 (94)
Form 822 (259) 672 (166) 582 (93)
Unrelated 836 (268) 665 (144) 577 (89)

The trim reaction time (ms) to correct word targets displayed as mean (standard

deviation).

our hypothesis would also be supported if there were a signifi-
cant interaction between age, neighborhood size, and the contrast
between form and repetition primes. Repetition and form primes
only differ by one letter. The significant interaction would sug-
gest that the way participants respond to partially and fully
matching primes preceding high N targets changes with age. We
also regressed out factors which can affect reaction time: fre-
quency, length, number of syllables, bigram mean, RT on the
preceding trial, and accuracy on the preceding trial (see Table 5

Table 5 | The coefficients and their significances in the model using

the high N targets in adults.

B Std. Error t pMCMC

Intercept −1.623 0.0189 −85.62 0.0001
Log freq. −0.0218 0.0033 −6.62 0.0001
Prev. RT 0.1225 0.0084 14.54 0.0001
Bigram mean −0.0001 0.0001 −1.42 0.1502
Length 0.0179 0.0145 1.24 0.1996
No. of syllables 0.0395 0.0222 1.78 0.0684
Prev. accuracy 0.0431 0.0088 4.90 0.0001
Age −0.0409 0.0040 −10.17 0.0001
N −0.0287 0.0124 −2.31 0.0160
Age*N −0.0010 0.0011 0.87 0.4120
UNRELATED/REPETITION & FORM CONTRAST; FORM/REPETITION

CONTRAST

U/R&F −0.0759 0.0055 −13.90 0.0001
F/R −0.0984 0.0062 −15.77 0.0001
Age* U/R&F −0.0017 0.0012 −1.35 0.1866
Age* F/R −0.0081 0.0014 −5.81 0.0001
N* U/R&F −0.0333 0.0109 3.05 0.0018
N* F/R −0.0414 0.0125 −3.31 0.0008
Age*N* U/R&F −0.0010 0.0024 −0.42 0.6706
Age*N*F/R −0.0074 0.0028 −2.65 0.0112
UNRELATED/FORM CONTRAST; UNRELATED/REPETITION

CONTRAST

U/F −0.0267 0.0063 −4.22 0.0001
U/R −0.1251 0.0063 −20.02 0.0001
Age*U/F 0.0024 0.0014 1.70 0.0952
Age*U/R −0.0057 0.0014 −4.09 0.0001
N*U/F 0.0540 0.0127 4.26 0.0001
N*U/R 0.0127 0.0125 1.01 0.3096
Age*N*U/F 0.0027 0.0028 0.95 0.3548
Age*N*U/R −0.0047 0.0028 −1.69 0.0924
RANDOM EFFECTS

Variance Stdev.

Target 0.0042 0.0650
Ordering by participant <0.0001 0.0003
Participant 0.0226 0.1504

pMCMC is the p-value obtained using Markov-Chain Monte Carlo simulations.

N is an abbreviation for orthographic neighborhood size. U, F, and R are abbre-

viations for unrelated, form, and repetition priming respectively. Therefore, U/F

represents the contrast between the unrelated and repetition priming conditions

and U/R & F represents the contrast between the unrelated condition and both

the repetition and form priming conditions, etc. All continuous variables are cen-

tered. Previous accuracy is a categorical variable, with a correct response being

the baseline. Orthographic neighborhood size is a categorical variable with 2

levels. A contrast code was used to compare orthographic neighborhood size.
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and Figure 1). As one can see from the figure, RT decreased with
age. For Low N targets, the effects of the three prime condi-
tions were relatively constant across age: repetition primes were
more beneficial than form primes which were more beneficial
than unrelated primes. However, for high N targets, the effects of
the three priming conditions varied with age. Although repetition
primes were always the most beneficial, the benefit derived from
repetition primes (as compared to unrelated primes) increased
with age. In contrast, the benefit derived from form primes (as
compared to unrelated primes) decreased with age. In fact, for
the oldest participants, form primes had a slight inhibitory effect.

Log frequency, orthographic neighborhood size, accuracy
on the previous trial, and age were negatively correlated with
RT, whereas RT on the previous trial was positively correlated
with RT. Consistent with our key hypothesis, the three-way
interaction between age, neighborhood size, and the contrast
between form and repetition priming was significant, t = −2.65,
pMCMC = 0.01. In the low N condition, form and repetition
priming decreased slightly with age; in the high N condition,
form priming greatly decreased with age whereas repetition prim-
ing increased with age (Figure 1). This interaction can be further
unpacked by examining the predicted values. For low N targets,
the amount of benefit derived from both repetition and form
primes preceding low N targets decreased by about 20 ms between
the ages of 9 and 22. After controlling for confounding variables,
a hypothetical 9 year old (corresponding to the average age of
the three youngest participants) would yield a 63.79 ms repeti-
tion priming effect and a 38.58 ms form priming effect; whereas a
hypothetical 22 year old would yield a 44.25 ms repetition prim-
ing effect and a 15.04 ms form priming effect. A different pattern
of results emerges for high N targets. For children, priming is

more beneficial in the low than high N condition. A hypothet-
ical 9 year old would yield a 32.26 ms repetition priming effect
and a 19.49 ms form priming effect. In adults, however, repetition
priming is equally beneficial in the high N condition (45.54 ms).
Furthermore, although form primes benefited children in the
high N condition, they actually inhibited adults (−6.3 ms).

We repeated the analysis using the matched N words for the
adults. If the models using the high and matched N words were
similar, it would suggest that development differences in prim-
ing effects are not solely due to vocabulary acquisition, as the
effective N is controlled for in the matched N model. Target-
specific random effects were excluded from matched N model
since the adults and children/adolescents saw different items. The
pattern of results seen in the matched N and high N models
were very similar (see Table 6). All significant effects replicated,
save that the three-way interaction between age, neighborhood
size, and the contrast between form and repetition priming was a
trend t = −1.78, pMCMC = 0.08. We re-ran the analyses with
a slightly different method of cleaning outliers; replacing out-
liers with a boundary value rather than replacing them (fence
method). Using this method of data cleaning, the three-way inter-
action between age, neighborhood size, and the contrast between
form and repetition priming was significant, t = −2.33, pMCMC
= 0.02. Although the interaction was only significant using one
of the methods of cleaning outliers, it is important to remember
that we over-corrected for effective N in this analysis. Therefore,
we were able to find marginally significant effects even when
the stimuli the adults saw had fewer neighbors than the chil-
dren’s effective N. Presumably, a closer matching of N would
yield significant results. The coefficients for length, number of
syllables, and bigram frequency were significant in the matched

FIGURE 1 | The predicted (based on our models) average reaction time to targets preceded by the three different prime types as a function of age (in

years). This model used the high N targets in adults.
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Table 6 | The coefficients and their significances in the model using the matched N targets in adults.

Trim Fence

B Std. Error t pMCMC B Std. Error t pMCMC

Intercept −1.626 0.0184 −88.33 0.0001 −1.605 0.0184 −87.17 0.0001
Log Freq −0.0230 0.0015 −15.53 0.0001 −0.0264 0.0016 −16.87 0.0001
Prev. RT 0.1172 0.0087 13.55 0.0001 0.1178 0.0088 13.37 0.0001
Bigram mean −0.0001 <0.0001 −2.36 0.0210 0.0001 <0.0001 −2.39 0.0160
Length 0.0153 0.0063 2.41 0.0140 0.0203 0.0067 3.01 0.0026
No. of Syllables 0.0458 0.0095 4.84 0.0001 0.0523 0.0099 5.27 0.0001
Prev. Accuracy 0.0356 0.0089 3.98 0.0001 0.0505 0.0093 5.42 0.0001
Age −0.0406 0.0041 −9.95 0.0001 −0.0406 0.0041 −9.96 0.0001
N −0.0190 0.0054 −3.53 0.0004 −0.0156 0.0057 −2.74 0.0060
Age*N 0.0010 0.0012 0.81 0.4114 0.0021 0.0013 1.67 0.0918
UNRELATED/REPETITION & FORM CONTRAST; FORM/REPETITION CONTRAST

U/R&F −0.0771 0.0057 −13.62 0.0001 −0.0817 0.0060 −13.71 0.0001
F/R −0.0926 0.0065 −14.30 0.0001 −0.0973 0.0068 −14.23 0.0001
Age* U/R&F −0.0018 0.0013 −1.39 0.1594 −0.0028 0.0013 −2.06 0.0380
Age* F/R −0.0073 0.0014 −5.02 0.0001 −0.0083 0.0015 −5.39 0.0001
N* U/R&F 0.0260 0.0114 2.29 0.0214 0.0396 0.0119 3.32 0.0008
N* F/R −0.0295 0.0130 −2.27 0.0230 −0.0319 0.0137 −2.33 0.0180
Age*N* U/R&F −0.0015 0.0025 −0.58 0.5430 0.0011 0.0027 0.43 0.6694
Age*N*F/R −0.0051 0.0029 −1.78 0.0754 −0.0071 0.0031 −2.33 0.0214
UNRELATED/FORM CONTRAST; UNRELATED/REPETITION CONTRAST

U/F −0.0308 0.0066 −4.69 0.0001 −0.0331 0.0069 −4.79 0.0001
U/R −0.1234 0.0065 −19.05 0.0001 −0.1304 0.0068 −19.06 0.0001
Age*U/F 0.0019 0.0015 1.28 0.1946 0.0014 0.0015 0.89 0.3690
Age*U/R −0.0054 0.0014 −3.72 0.0004 −0.0069 0.0015 −4.49 0.0001
N*U/F 0.0407 0.0131 3.10 0.0014 0.0556 0.0148 4.02 0.0001
N*U/R 0.0112 0.0130 0.86 0.3868 0.0237 0.0137 1.73 0.0838
Age*N*U/F 0.0011 0.0029 0.37 0.7296 0.0047 0.0031 1.52 0.1304
Age*N*U/R −0.0040 0.0029 −1.39 0.1646 −0.0024 0.0031 −0.79 0.4270
RANDOM EFFECTS

Variance Stdev. Variance Stdev.

Ordering by participant <0.0001 0.0003 <0.0001 0.0004
Participant 0.0233 0.1526 0.0232 0.1524

Abbreviations and conventions as in Table 5. Trim refers to the data cleaning method in which outliers are removed, whereas fence refers to the data cleaning

method in which outliers are replaced with a boundary value.

N model although they were not in the high N model, possi-
bly due to the exclusion of target-specific random effects in the
current model. The matched and high N model similarity can
be discerned by comparing Figures 1, 2. Inspection of the pre-
dicted values reveals that even when the effective neighborhood
size was matched, a hypothetical 22 year old adult showed more
repetition priming (44.77 ms) and less form priming (−0.76 ms,
again revealing slight inhibition) than the hypothetical 9 year
old child did (repetition priming: 34.52 ms; form priming:
16.88 ms).

Next, we tested whether the developmental trajectory was bet-
ter explained by age or by the neighbor knowledge test. We
restricted our test to children and adolescents because adults did
not take the neighbor knowledge test. We used a linear mixed
analysis, but instead of using Age as a factor in the three-way inter-
action, we used (Age + Neighbor Knowledge). This analysis was
appropriate because the correlation between age and neighbor

knowledge (r = 0.36) is well below accepted cutoffs for collinear-
ity. Since the three way interaction was of main interest, we only
ran the first pair of contrasts (unrelated/repetition&form; repe-
tition/form). The results are displayed in Table 7 and Figure 3.
In the interest of space, only factors involved in the three-way
interaction are reported. The interaction between age, N, and
the form/repetition priming contrast was significant, t = −2.50,
pMCMC = 0.01. Furthermore, the interaction between Neighbor
Knowledge, N, and the form/repetition priming contrast was
non-significant, t = 0.59, pMCMC = 0.57. This analysis suggests
that age, and not vocabulary, drives developmental differences in
priming.

DISCUSSION
Previous studies have shown that children are facilitated by both
repetition and form primes preceding both low and high N tar-
gets. In contrast, adults do not show facilitation when form
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FIGURE 2 | The predicted (based on our models) average reaction time

to targets preceded by the three different prime types as a function of

age (in years). The trim method was used to clean outliers. This model used

the medium N targets in adults. Note that the graph for the Low N words is
slightly different than Figure 1 because the item-specific random effects are
not included in this model.

primes precede high N targets (Castles et al., 1999). However, it
was unclear whether increases in written vocabulary size underlie
these developmental changes. This study sought to replicate pre-
vious findings and test the hypothesis regarding vocabulary across
a broader range of ages than had been previously studied. Our
study replicated previous findings in that children were facilitated
by repetition and form primes, but adults were facilitated in three
conditions (high and low N repetition priming; low N form prim-
ing) but inhibited by form primes preceding high N targets. When
we examined whether written vocabulary growth could explain
this developmental differences, we found that it could not. Our
models predicted developmental differences when controlling for
effective N (using a matched N stimulus set). They also indicated
that vocabulary size, measured using the neighbor knowledge test,
could not predict priming effects.

Treating age as a continuous variable also allowed us to identify
a previously unreported trend: the benefit derived from repetition
primes preceding high N targets slightly increased over the course
of development. Although previous developmental studies have
not shown changes in repetition priming with age (Castles et al.,
1999), there is evidence that more skilled adults (as measured
by faster RTs in a lexical decision task) showed more repetition
priming than low skilled adults (Kliegl et al., 2010). Since our
adults responded much faster than our children, our results nicely
dovetail with these findings.

Since written vocabulary does not seem to be related to
developmental differences in priming, another mechanism must
be at play. Andrews and Hersch (2010) identified a candidate
mechanism: lexical precision. In an adult study, they found that
spelling skill, but not written vocabulary size, was able to predict

individual differences in masked form priming. Poor spellers were
facilitated by form primes preceding high N words, whereas good
spellers were slightly inhibited. Since spelling ability is a mea-
sure of orthographic precision, these results suggest that it is
differences in lexical precision, rather than the number of neigh-
bors known (i.e., written vocabulary size), which determine form
priming effects. Although these effects were reported with adult
participants, it is possible that a similar mechanism underlies
developmental differences in priming. Children may show more
facilitation due to form primes preceding high N targets because
their orthographic representations are less precise.

Precise representations are fully specified so that a written
word can fully determine the lexical representation to be acti-
vated, and this lexical representation can be quickly activated
with minimal activation of its neighbors. Let us quickly summa-
rize how an increase in the precision of lexical entries accounts
for both our expected and rather surprising findings, before
discussing the mechanism by which the lexical entry achieves this
precision. The first finding is that adults derive equal benefit from
repetition primes preceding both low and high N targets, whereas
children derive more benefit in the low N condition. When a
person with high quality lexical representations (presumably an
adult) sees a repetition prime, the prime will quickly and cor-
rectly activate its corresponding lexical entry and nothing else.
The correct activation of its lexical entry will make response time
to the target faster. Therefore, adults will display equal repeti-
tion priming to low and high N targets. When a person with
lower quality lexical representations (presumably a child) sees a
repetition prime, it will activate its corresponding lexical repre-
sentation and the lexical representations of its neighbors (if any).
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Table 7 | The coefficients and their significances in the model that

tested the predictive power of effective N.

B Std. Error t pMCMC

Intercept −1.661 0.0440 −37.76 0.0001
Age −0.0475 0.0098 −4.86 0.0001
Vocab −0.0088 0.0224 −0.39 0.6426
N −0.0428 0.0164 −2.60 0.0082
U/R&F −0.0804 0.0124 −6.46 0.0001
F/R −0.1029 0.0142 −7.23 0.0001
Age*N −0.0032 0.0026 −1.20 0.2342
Vocab*N 0.0158 0.0060 2.62 0.0092
Age* U/R&F −0.0026 0.0028 −0.94 0.3528
Age*F/R −0.0094 0.0032 −2.92 0.0046
Vocab* U/R&F 0.0018 0.0064 0.29 0.7778
Vocab*F/R 0.0040 0.0074 0.54 0.6016
N* U/R&F 0.0300 0.0250 1.20 0.2316
N*F/R −0.0846 0.0285 −2.96 0.0032
Age* N*U/R&F 0.0017 0.0056 −0.29 0.7774
Age*N*F/R −0.0162 0.0065 −2.50 0.0102
Vocab* N*U/R&F 0.0049 0.0129 0.38 0.6946
Vocab*N*F/R 0.0088 0.0149 0.59 0.5732

Variance Stdev.

Target 0.0044 0.0662
Ordering by participant <0.0001 0.0004
Participant 0.0262 0.1617

This model only included children and adolescents. Although not shown in the

table, the length, frequency, bigram mean, and the number of syllables in the

target were controlled for in the model, as was the participants’ accuracy and

RT on the preceding trial. Here, “vocab” refers to the effective N as calculated

by the neighbor knowledge test. Abbreviations and conventions as in Table 5.

If the neighbors are slightly activated, they may weakly inhibit
the correct lexical representation. Therefore, if the prime has no
neighbors, the repetition prime will be more beneficial than if the
prime has many neighbors. Therefore, children will display more
repetition priming to low than high N targets.

This mechanism can also explain why children are facili-
tated by form primes preceding high N targets but adults are
not. Target preactivation occurs because the prime and target
share many of the same letters, so the letter level activates the
target. This facilitation can be counteracted by target neigh-
bor suppression due to lateral inhibition between orthographic
neighbors at the word level. Thus, a form prime will activate
all of its neighbors via the target preactivation effect. If the tar-
get has many neighbors, as in the high N condition, the target
word and many of its neighbors will be activated. As people
with high quality lexical representations are assumed to have
more lateral inhibition, the target word would be strongly inhib-
ited by its neighbors and the target neighbor suppression would
override all facilitation from the target preactivation effect. In con-
trast, people with low quality lexical representations have less
lateral inhibition, so the target preactivation effect would remain
stronger than the target neighbor suppression. Note that in both
cases, vocabulary is equated: people with low and high qual-
ity lexical representations know the same number of neighbors
of a given target word. But, the lateral inhibition from a given
neighbor is stronger in people with high quality lexical repre-
sentations. Of course, the above argument is purely speculative
as we, unfortunately, did not acquire measures of spelling abil-
ity (i.e., lexical precision). Nonetheless, the present results do not
support the written vocabulary hypothesis. The strongest alter-
native explanation is that changes in lexical precision underlie

FIGURE 3 | The predicted (based on our models) average reaction time to targets preceded by the three different prime types as a function of age (in

years) or effective N (in number of neighbors known) for just children and adolescents. Effective N was calculated using the neighbor knowledge test.
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developmental differences in form priming. Reading experience
cannot explain the differential priming effects in adults with vary-
ing spelling abilities, because Andrews and Hersch (2010) found
an effect of spelling ability while controlling for reading experi-
ence. However, the strength of reading experience as a predictive
variable could be moderated by age, specifically, it may wane
over development. It is possible that reading experience could
be responsible for the results found in this study for children.
Alternatively, writing experience, where children have to not only
recognize, but also produce, the correct spelling could under-
lie these developmental changes. Future studies which directly
correlate spelling ability and priming across the developmental
spectrum are needed.

Before concluding, we acknowledge additional limitations of
the present study. We restricted our target word stimuli to
higher frequency, shorter words. It is unknown whether neigh-
borhood effects on the development of form priming would
persist across different word types. Second, to allow for a close
comparison to previous developmental studies, we approximated
as closely as possible the experimental timing used by Castles
et al. (1999). However, adult form priming appears sensitive to
subtle variations in experimental timing (Ferrand and Grainger,
1994). It is unknown if children display more adult-like pat-
terns at longer prime durations. An additional concern is that
the lexical decision task elicited large developmental differences
in response time. Prior studies have demonstrated that appar-
ent developmental differences in letter processing are reaction
time dependent (Lachmann and van Leeuwen, 2008). However,
after accounting for RT in a mixed linear effects model, age
was still a significant predictor (t = −3.21, pMCMC < 0.01).
In addition, it is unlikely that the developmental differences in
RT reflect a difference in speed/accuracy trade-offs across age,
as the children were both slower and more inaccurate than the
adults.

Our results suggest that age-related factors beyond written
vocabulary size underlie the developmental differences in high N
form priming. Future studies may benefit from using designs that
more closely match children’s effective N and examining other
individual differences (e.g., spelling ability) to pinpoint specific
mechanisms that lead to developmental changes in the precision
of lexical representations. Understanding why children are differ-
entially affected by orthographic neighborhood size is crucial to
understanding how children learn to distinguish between words
with similar spellings, and why some children are not able to do
so even after adequate instruction.
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