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In the present paper we investigate weekly fluctuations in the working memory capacity
(WMC) assessed over a period of 2 years. We use dynamical system analysis, specifically a
second order linear differential equation, to model weekly variability in WMC in a sample of
112 9th graders. In our longitudinal data we use a B-spline imputation method to deal with
missing data. The results show a significant negative frequency parameter in the data,
indicating a cyclical pattern in weekly memory updating performance across time. We
use a multilevel modeling approach to capture individual differences in model parameters
and find that a higher initial performance level and a slower improvement at the MU task
is associated with a slower frequency of oscillation. Additionally, we conduct a simulation
study examining the analysis procedure’s performance using different numbers of B-spline
knots and values of time delay embedding dimensions. Results show that the number of
knots in the B-spline imputation influence accuracy more than the number of embedding
dimensions.
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INTRODUCTION
The aim of the present study is to investigate intraindivid-
ual variability in a measure of cognitive performance using the
dynamical systems modeling approach. Nesselroade (1990a) dis-
tinguishes between intraindividual changes, meaning long-term
change that occurs on macro time scales, and intraindividual vari-
ability, meaning short-term change that occurs on micro scales.
Ram and Gerstorf (2009) conceptualize two types of intraindi-
vidual variability. Firstly, net intraindividual variability, which
is characterized by change that is not systematically ordered in
time; the second type is time-structured intraindividual variabil-
ity, which is systematically ordered in time. Various researchers
have emphasized the importance of interpretation of the short-
term intraindividual variability. Salthouse et al. (2006) reported
results of the within-person variability in cognitive performance.
Nesselroade and Salthouse (2004) investigated the relationship
between age and short-term intraindividual variability using
perceptual motor performance. As a measure of intraindivid-
ual variability they used the intraindividual standard deviation
(ISD). In the present study we focus on intraindividual variabil-
ity in weekly achievement in a memory updating task (Oberauer
et al., 2000, 2003; Schmiedek et al., 2009) in 9th graders over
a period of 2 years. As shown in Oberauer et al. (2000) mem-
ory updating is a reliable indicator of working memory. We first
introduce the methodological perspective of week to week within-
person variability in cognitive performance over 2 years, where

we focus on dealing with missing data while applying dynami-
cal systems analysis. The second aspect describes how the week
to week within-person structured variability can be predicted
by covariates.

The most established and widely used methods to investigate
intraindividual change and variability of intensive longitudinal
data are structural equation modeling (SEM; Bollen, 1989), hier-
archical linear modeling and the multilevel approach (Laird and
Ware, 1982; Raudenbush and Bryk, 2002). In order to study
intraindividual variability over a short period of time, Wang et al.
(2012) proposed an autoregressive model focused on investigat-
ing the amplitude of fluctuation and the temporal dependency.
We aim to apply a different approach to analyze intensive lon-
gitudinal data in order to explore intraindividual variability: the
dynamical systems modeling approach (Boker, 2001). Deboeck
et al. (2009) highlighted that the methods based on ISD and
variance are likely to be insufficient to explore intraindividual
variability. They suggest dynamical methods are better able to
describe how individuals vary with respect to time. Bermúdez
(2010) has given an introduction on why dynamical systems
analysis should be used to model cognitive abilities. Statistical
approaches based on traditional linear models are not efficient
to explore non-linear dependencies in data. The basic aims of
dynamical systems modeling are the investigation of the change
in repeated observations, and how rapidly these observations
change over time (Boker and Bisconti, 2006). Boker and Bisconti
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(2006) concur that many phenomena in nature can be viewed
as dynamical systems. Furthermore, Smith and Thelen (2003)
emphasized the usefulness of the dynamic systems technique for
developmental psychologists, in order to conceptualize develop-
mental change. Differential equations have the ability to describe
a system that changes over time. Theoretical aspects of differen-
tial equations for analyzing the behavior of dynamical systems
are given in Soong (1973). Oravecz et al. (2009) proposed a
modeling tool for longitudinal data based on a solution of the
Ornstein-Uhlenbeck process, which is a first-order stochastic dif-
ferential equation (SDE). Voelkle and Oud (2013) introduced
a continuous time model for longitudinal data that solves the
problem of different time intervals. Their approach uses SDEs
to transform the continuous time model into discrete time. In
the literature the SDEs and ordinary differential equations (ODE)
based approaches have been discussed by Oud and Folmer (2011)
and Steele and Ferrer (2011). Oud and Folmer (2011) proposed
modeling a damped linear oscillation with stochastic dynamical
systems using the Exact Discrete Model (EDM; Bergstrom, 1988).
Alternatively, Steele and Ferrer (2011) used the Latent Differential
Equation (LDE; Boker et al., 2004) method, a technique based
on ODEs. As pointed out by Steele and Ferrer (2011) the ODE
and SDE based approaches distinguish themselves mainly in the
error term. Both strategies have their advantages and drawbacks.
The approach we adopt in the present study is expressed using
an ordinary linear second-order differential equation. Dynamical
systems may be realized either in discrete or in continuous
time (Nowak and Lewenstein, 1994). Linea differential equa-
tions do not necessarily result in linear trajectories (Boker and
Bisconti, 2006). The requirements for applying dynamical sys-
tems analysis are: repeated observations of each individual to
estimate within-person variation, at least three observations and
equally/unequally spaced time intervals between measurements
(Boker et al., 2010a). As pointed out by Nesselroade and Salthouse
(2004), at least three occasions are needed to provide the accurate
comparisons of individual differences in within-person variabil-
ity. Von Oertzen and Boker (2010) found that when using time
delay embedding for analysis of intensive longitudinal data, the
precision of parameter estimates describing intraindividual fluc-
tuation increases. There are also different methods to investigate
the oscillatory pattern in longitudinal data. To analyze the oscil-
lation processes, an autoregressive model can be used in case of
equally spaced data. Voelkle and Oud (2013) proposed a con-
tinuous time model with person-specific time intervals within
and between individuals for oscillating and non-oscillating pro-
cesses. The disadvantage of their proposed method is that it
operates only with fixed effects, without providing random effects
to account for individual differences. As noted in Hu et al. (2014)
and Boker and Nesselroade (2002), in contrast to the damped
linear oscillation model an autoregressive model cannot tackle
the phase problem (phases are often not synchronized among
individuals).

METHOD
DAMPED LINEAR OSCILLATOR MODEL
One way to analyze time-structured intraindividual variability is
a damped linear oscillator model (DLO; Boker, 2001). The DLO

model is based on derivatives of a univariate time series, and
is expressed as a linear combination of the displacement Xt its
first order derivative (velocity) Ẋt and the second order derivative
(acceleration) Ẍt .

Ẍt = ηXt + ζẊt (1)

Where Xt represents the displacement from equilibrium at time t,
in our case represented by the detrended longitudinal data, Ẋt and
Ẍt represent the first and second order derivatives of the displace-
ment Xt with respect to time t, and η and ζ parameters are the
frequency and dampening coefficients. With η, ζ < 0, the linear
oscillator is called damped.

The period of oscillation indicates how long one cycle lasts,
and is defined as

λp = 2π√
− (

η + ζ2/4
) (2)

The solution to the second-order differential equation Equation

(1) is given as Xt = A0 sin
(

t
√

− (
η + ζ2/4

) + δ
)

. A0 is the

amplitudeand δ is the phase of oscillation at t = 0, defined
in the interval from 0 to 2π. Boker and Ghisletta (2001)
introduced the multilevel approach of a linear oscillator as
a random coefficient model, which allows for person-specific
η and ζ parameters. Steele and Ferrer (2011) explored emo-
tion self-regulation in couples using a damped linear oscil-
lator. The time-delay embedding method (TDE) is used to
estimate derivatives of time series by constructing short sec-
tions drawn from long time series (Boker et al., 2004; Boker,
2007). There are several ways to estimate derivatives of time
series including Latent Differential Equations (LDE; Boker et al.,
2004), Local Linear Approximation (LLA; Boker and Nesselroade,
2002), Generalized Local Linear Approximation of Derivatives
(GLLA; Boker et al., 2009) and Generalized Orthogonal Local
Derivatives (GOLD; Deboeck, 2010). The LDE approach uses
the SEM framework with a three-factor model, whereby the
latent variables are expressed as estimates of Xt and its first
and second derivatives. The fixed factor loading of the first
and second order derivatives of Xt are included in the load-
ing matrix. GLLA is used to calculate approximate deriva-
tives of a differential equation from repeated measures, and is
defined as:

Y = XDW, (3)

Where the matrix Y contains columns with the displacement
Xt and its first and second order derivatives Ẋt and Ẍt , XD is
the time delay embedding matrix with dimension D, and W is
the time related matrix of weights with W = L(LTL)−1 where
L is the loading matrix and LT is the transpose of the loading
matrix.

The example below (Hu et al., 2014) demonstrates a TDE
for D = 5 constructed from the original time series Xpt , with
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t = 1, . . . , T observations for each individual p = 1, . . . , N.

X(5) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X(1,1) X(1,2) X(1,3) X(1,4) X(1,5)

X(1,2) X(1,3) X(1,4) X(1,5) X(1,6)

. . . . .

. . . . .

. . . . .

X(1,T−4) X(1,T−3) X(1,T−2) X(1,T−1) X(1,T)

X(2,T−4) X(2,T−3) X(2,T−2) X(2,T−1) X(2,T)

. . . . .

. . . . .

. . . . .

X(N,1) X(N,2) X(N,3) X(N,4) X(N,5)

X(N,2) X(N,3) X(N,4) X(N,5) X(N,6)

. . . . .

. . . . .

. . . . .

X(N,T−4) X(N,T−3) X(N,T−2) X(N,T−1) X(N,T)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X(1,3) Ẋ(1,3) Ẍ(1,3)

X(1,4) Ẋ(1,4) Ẍ(1,4)

. . .

. . .

. . .

X(1,T−2) Ẋ(1,T−2) Ẍ(1,T−2)

X(2,T−2) Ẋ(2,T−2) Ẍ(2,T−2)

. . .

. . .

X(N,3) Ẋ(N,3) Ẍ(N,3)

. . .

. . .

. . .

X(N,T−2) Ẋ(N,T−2) Ẍ(N,T−2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L =

⎛
⎜⎜⎜⎜⎜⎝

1 −2τ ( − 2τ)2/2
1 −1τ ( − 1τ)2/2
1 0 0
1 1τ (1τ)2/2
1 2τ (2τ)2/2

⎞
⎟⎟⎟⎟⎟⎠ (4)

The W matrix can be calculated in R by using the gllaWMatrix()
function provided in Boker et al. (2009). The disadvantage of
GLLA is that it produces a large amount of bias in the estimated
frequency parameter η due to correlated errors in the estimates of
the derivatives (Deboeck, 2010). For this reason, Deboeck (2010)
developed an alternative method, GOLD, in order to eliminate the
problem of correlated errors. The introduced method is based on
orthogonal polynomials, meaning that in this case the W matrix
is constructed to be an orthogonal matrix.

SAMPLE AND MEASURES
Study design
Within a completed study on longitudinal student achievement
(Hülür et al., 2011a,b), N = 112 German students from the
beginning of 9th grade until the end of 10th grade completed a

120 min test battery on student achievement and working mem-
ory. Over a period of 2 years, students participated in 40 test
sessions. Within each point of measurement, each working mem-
ory task was administered twice. At each measurement occasion
different versions of the tasks were used. One of the work-
ing memory capacity tasks used in this intensive longitudinal
study was a memory updating task (Oberauer et al., 2000, 2003;
Schmiedek et al., 2009).

Memory updating task (MU)
Each MU consisted of eight items per measurement. The first
two items consisted of three numbers and six mathematical
operations, the middle four items of four numbers and eight
operations, and the last two items of five numbers and 10 opera-
tions. The numbers within each item were presented for 4000 ms
and disappeared after 500 ms. The arithmetic operations were dis-
played for 2000 ms for one half of the items and 1500 ms for the
other half. The length of the interstimulus interval was 250 ms
for all items. The working memory capacity data was scored
using the proportion of correct answers at each point of measure-
ment. The measurements were collected on a weekly basis so the
observations were scaled by weeks.

Participants
The mean age of students at the beginning of the study was M =
14.7 (SD = 0.70), the proportion of female students was 64.3%
(72 female and 40 male students).

ANALYSIS PROCEDURE
The main focus of the present analysis is whether there is an
oscillation pattern in the memory updating (MU) performance
of students as they progress from 9 to 10th grade, and how it
differs between individuals. From visual inspection of the lon-
gitudinal data, it appears that there may be a non-linear change
and a type of oscillatory pattern in the data over time. As the
students participated in the study on unequally spaced mea-
surement occasions, longitudinal observations of the MU task
collected on 40 occasions were fit to the same time scale, with
one measurement occasion per week. If the time elapsed between
observations amounted to more than 1 week; missing values were
inserted in the data set. Initially the students were tested every 2
weeks, but over the entire data collection period it was not possi-
ble to maintain this consistently. Hence, the amount of missing
data was around 50%. Each individual has exactly 40 observa-
tions, but a different number of missing observations. The typical
missing pattern of 10 students is depicted in Figure 1 over 97
weeks.

The analysis of the data required several steps, illustrated in
Figure 2 below. The applied techniques allow us to represent the
individual differences within the linear mixed model.

By analyzing the data with the multilevel linear oscillator
method, data was imputed by a B-spline imputation with a dif-
fering number of knots. A large amount of missing data requires
a flexible imputation method. The result obtained from the spline
imputation using the R splines package (Bates, 2011) showed
slightly over-smoothed imputed data. For this reason we chose
B-spline imputation as a missing data imputation method.
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FIGURE 1 | Missing data pattern of 10 different individuals over 2 years in weeks.

FIGURE 2 | Illustration of the applied method. K, number of knots in the
B-spline imputation; LM, lm() function; GOLD, Generalized Orthogonal
Local Derivatives; D, time-delay embedding dimension.

Missing data imputation
To handle the missing measurement points, a B-spline imputa-
tion was implemented in order to impute cyclic data (R code is
given in Racine, 2011). A B-spline function is a piecewise poly-
nomial function, with each of its pieces connected via knots (K is
the number of knots). Schumaker (2007) and Wahba (1990) give
a detailed introduction to B-spline imputation. To demonstrate
the data imputation technique, Figure 3 below show data for a
single individual imputed with the B-spline method.

In the first analysis step, a B-spline was estimated for each
individual, based on their incomplete data set. In the next step,
regression coefficients of the estimated B-spline were sampled,
and missing values were imputed based on stochastic regression
imputation (Little and Rubin, 2002). The number of measure-
ment points for each individual result from implementation var-
ied between a minimum of 77 and a maximum of 97. We applied
the numbers of knots K = 5 and K = 10 in order to investigate
how a different number of knots influences the obtained results.
The number of knots has a direct influence on the variability of
the imputed data. A small number of knots oversmoothes the data
and removes the variability, whereas a big number of knots has
the risk of a larger variability, which gives a biased representa-
tion of the data. For adequate results both cases should be chosen
with necessary diligence. For this reason we provided a simula-
tion study on the number of knots, to assess the accuracy of the
applied B-spline imputation.

Linear detrending
Before estimating dynamics the analysis, we need to center the
time series about their respective equilibrium, to do this we
estimated residuals for each individual on a weekly basis by apply-
ing linear regression (Bisconti et al., 2004, 2006). Using R’s R
Development Core Team (2012) lm (linear models for fixed
effects) function1. To linear detrend separately for each individual.
Residuals, intercept and slope from the linear mixed effects model

1At the same time we applied the lme (linear models for mixed effects)
function in order to estimate person-specific intercepts, slopes and residuals.
Results obtained from lme() detrending do not differ from the lm() results,
for both numbers of knots K = 5 or K = 10 in the B-spline imputation.
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FIGURE 3 | B-spline imputed data of the same individual. Black dots on the curve denote the observed data, while pieces between were imputed.
(A) Number of knots K = 5; (B) Number of knots K = 10.

for each individual were estimated for each of the two B-spline
imputation conditions (K = 5, K = 10) as

Ypt = Ip + SpTp + ept, (5)

Where Ypt is the weekly achievement in MU of each person
p on occasion t, Ip represents the initial level of each individ-
ual, Sp is the slope over time for each individual p, Tp indicates
each person’s observation point, and ept represents the normally
distributed residual process.

The time elapsed between measurement point t and t – 1
was set at 1 week. For the estimating the dynamics we used the
residuals, since dynamically patterned intraindividual variabil-
ity is represented by residuals. According to Nesselroade (1990a)
residuals contain information about intraindividual variability
[ept from Equation (5)].

Constructing a time-delay embedding matrix
Using the residuals obtained from the lm() function, we con-
structed six candidate time-delay embedding matrices using
dimensions D = 5, 7, 9, 11, 13, 15. The embedding dimension
D indicates how many columns are time delayed in the matrix.
The number of observation delays between columns, τ was set
to one (i.e., each successive observation was used to construct an
embedding matrix).

GOLD method
First and second order derivatives were estimated using GOLD
for each of six candidate time delay embedded matrices (D =
5, 7, 9, 11, 13, 15). Each of the B-spline data sets were
imputed using two different numbers of knots (K = 5 and
K = 10). The main idea behind the GOLD method is to apply
an orthogonal transformation of the time-delay embedding
matrix to obtain least square estimates of derivatives of the
time series. As mentioned in the introduction, GOLD pro-
duces uncorrelated errors in estimating derivatives, in contrast
to GLLA.

Fitting the models
In the last step we applied a multilevel damped linear oscillator
model (Model 1) and an extension of this model with predictors
(Model 2). These models have been previously used in the context
of modeling intraindividual variability in emotional well-being in
widows (Bisconti et al., 2004). The models were applied to each
of the six candidate time delay embedded matrices (D = 5, 7,
9, 11, 13, 15 and embedding interval τ = 1). In order to cap-
ture individual differences between participants in their ability
to accomplish the MU task, the multilevel approach was imple-
mented using the lmer() function in the R package lme4 (Bates
et al., 2011).

Model 1 is defined as

Ẍpt = ηpXpt + ζpẊpt + υpt, (6)

ηp = μη + uηp,

ζP = μζ + uζp. (7)

Where Xpt represents the observed scores for each individual p on
each week t, in this case the residuals. Ẋpt and Ẍpt are the first
and second order derivatives, ηp and ζp are frequency and damp-
ing parameters that vary among all individuals, μη and μζ are
the mean values of the frequency and damping parameters, uηp

and uζp are the individual effects of the frequency and damping
parameters.

The relationship between the zero order Xpt and second order
derivatives Ẍpt is represented by ηp parameter. This parameter
is the major determiner of fluctuations in weekly achievement
in the MU task. The same is true for damping parameter, with
corresponding individual effects uηp and uζp.

We investigated how well individual’s parameters from the
linear growth model Equation (5), predicted the frequency in
intraindividual variability in Model 2 Equations (8)–(10). The
multilevel damped linear oscillator in Model 2 was specified with
individual-level predictors intercept Ip and slope Sp. A similar
approach was reported in Bisconti et al. (2006), where the pat-
tern of the intraindividual variability was examined by predictors.
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Model 2 can be written:

Ẍpt = ηpXpt + ζpẊpt + υpt, (8)

ηp = μη + b01Ip + b02Sp + uηp, (9)

ζp = μζ + b11Ip + b12Sp + uζp. (10)

Both Models 1 and 2 contain student-specific frequency and
damping parameters, with random effects for the frequency and
damping parameters. The predictors in Equations (9) and (10)
describe the relationship between the derivatives and each indi-
vidual’s intercept (Ip), as well as each individual’s slope (Sp) over
all measurements. When individuals behave differently, person-
specific values of intercept and slope can be used to predict the
frequency η and damping ζ parameters.

The analysis steps were repeated 10 times, due to the imputa-
tion of missing data. We also calculated the period of oscillation
λp Equation (2). As the data has been scaled by weeks, this for-
mula represents the mean period of oscillation in units of weeks
over all individuals.

SIMULATION STUDY
In an analysis pipeline with as many steps and choices as the
current method, it is wise to question how well the method is
recovering parameters of interest. In addition one can reasonably
question how each of the analytic choices might affect results.
In order to better understand how this method is performing
for a data set with similar characteristics, we performed a small
simulation study.

In order to explore how well the method works, we simulated
1000 data sets that describe fluctuations of N = 112 linear oscil-
lators over a minimum of 77 and a maximum of 97 occasions.
The pattern of the missing data in the simulated data set was
defined to be identical to the original data of the longitudinal
study on student achievement study. The known parameter values
used to generate the data sets were chosen from results with the
number of knots K = 10, dimension D = 11, frequency param-
eter η = −0.0245 (SD = 0.0001) and damping parameter ζ = 0
(SD = 3.74 × 10(−10).). Additionally, each of the 1000 simulated
data sets was treated with the B-spline imputation method under
four different conditions: K = 5, K = 8, K = 10, and K = 15.
For each value of K, the imputed data were linearly detrended
using the lm() function. The residuals were used to construct six
candidate time delay embedding matrices with dimensions D =
5, 7, 9, 11, 13, 15, and embedding interval τ = 1. Subsequently,
the GOLD method was used to estimate derivatives. The parame-
ters of the multilevel linear oscillator model were estimated using
Equations (6) and (7) (see the Supplementary Material for the R
script). The procedure described above was repeatedly applied to
the simulated data set with missing values 10 times for each value
of K = 5, 8, 10, 15 and each dimension D = 5, 7, 9, 11, 13, 15.
The results of 10 repetitions were combined by the mitools pack-
age. To assess the accuracy of the estimation we used following
criteria:

(1) Bias was calculated as the difference between the true param-
eter values and the means of sample parameter estimates over
1000 replications.

(2) Root mean square error (RMSE) of the parameter estimates
was calculated as the root mean squared difference between
the sample parameter estimates and the true parameter
value.

RESULTS
The results are based on memory updating data collected over
2 years on 40 measurement occasions, with N = 112 German
students from the beginning of 9th grade until the end of 10th
grade. After including occasions missing data, the number of
measurement points varied from 77 to 97 per student. First, we
present the B-spline imputation method with K = 5 and K = 10
knots to interpolate the missing data. Then the GOLD method
to obtain estimates of the zeroth, first, and second derivatives
from the B-spline imputed data. A linear mixed effects model
was then used to estimate parameters of the linear oscillator
(Bisconti et al., 2004, 2006). As described in the analysis sec-
tion, we combined the results of 10 estimation procedures by
using the MIcombine() function in the mitools package (Lumley,
2012) based on “Rubin’s rules” of multiple imputation (Rubin,
1987).

We applied a damped linear oscillator model to the longitudi-
nal data in order to explore the variability of the MU performance
over a period of 2 years. First, the data were analyzed to detect an
oscillation pattern, and then the frequency of the fluctuation was
predicted by using the initial status of each individual. We only
report values of the frequency parameter η and ζ, but neglect the
interpretation of ζ. The significant negative value of η implies an
oscillatory pattern.

Table 1 presents results of the B-spline imputed data fit by
Model 1 Equation (6) and (7) for K = 5 and K = 10 over six
distinct time-delay embedding dimensions D. Results show sig-
nificant (α = 0.05) negative values of η over all embedding
dimensions for K = 10. These values decrease when the dimen-
sion numbers increase. For K = 5, values of η were not signifi-
cant for D = 5, but were significant with time delay embedding
dimensions D ≥ 7. As shown in Table 1, the number of knots
K influences the estimated values. The results of Model 1 with
K = 10 for B-spline imputed data show a negative frequency
parameter η. For D = 7 and D = 9, η appeared to be very
similar: ηD = 7 = −0.0269 (SE = 0.0016) and ηD = 9 = −0.0261
(SE = 0.0010).

Table 2 contains the results of η predicted by intercept
and slope for B-spline imputed data with K = 5 and K = 10.
Estimated values differ from each other within the B-spline
imputed data, both across the number of knots and across time-
delay embedding dimensions D. As displayed in Table 2, the
intercept is a significant predictor for frequency only for K = 10
for embedding dimensions D = 9 (t = 2.90), D = 11 (t = 3.24),
D = 13 (t = 2.34), and D = 15 (t = 3.40). The positive relation-
ship implies that an individual having a higher initial perfor-
mance level at the MU task is associated with a slower frequency of
fluctuation. The slope is significant in predicting a slower fluctu-
ation for K = 5 with D = 11 and D = 15, and for K = 10 across
all dimensions except for D = 11 and D = 15. This means that
individuals who fluctuate more often have less improvement at
the MU task over time. Since we specified Model 1 and Model
2 as multilevel models, we also calculated the random effects of
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Table 1 | Estimated fixed effect of Parameter η using Model 1 applied on B-spline imputed data.

Model 1 GOLD-Function with B-SPLINE imputation

LM K = 5 K = 10

Est. SE t Est. SE t

PARAMETER η (μη)

D = 5 −0.0076 0.0041 −1.83 −0.0238 0.0026 −9.04

D = 7 −0.0089 0.0026 −3.41 −0.0269 0.0016 −16.69

D = 9 −0.0108 0.0012 −8.41 −0.0261 0.0010 −24.85

D = 11 −0.0098 0.0007 −12.43 −0.0247 0.0012 −19.67

D = 13 −0.0088 0.0007 −11.10 −0.0224 0.0007 −30.89

D = 15 −0.0081 0.0006 −13.33 −0.0212 0.0006 −30.91

PARAMETER ζ (μζ)

D = 5 0.0020 0.0024 0.82 0.0007 0.0029 0.24

D = 7 0.0022 0.0019 1.17 −0.0008 0.0039 −0.20

D = 9 0.0012 0.0035 0.33 −0.0028 0.0026 −1.08

D = 11 0.0004 0.0023 0.18 0.0002 0.0019 0.14

D = 13 −0.0002 0.0017 −0.16 0.0000 0.0033 0.02

D = 15 −0.0037 0.0023 −1.63 0.0022 0.0021 1.04

Total number of observations 8469 with a sample size of 112 individuals (which means that df > 100 for t-tests); D, number of time-delay embedding dimension;

K, number of knots; LM, lm() function; Results are based on 10 times estimated values combined in one by the MIcombine() function; μη and μζ represent the

fixed effects of frequency and damping parameters.

Table 2 | Estimated fixed effect of parameter η predicted by intercept and slope using Model 2 applied on B-spline imputed data.

Model 2 GOLD-Function with B-SPLINE Imputation

LM K = 5 K = 10

Est. SE t Est. SE t

PARAMETER η (μη)

D = 5 0.0256 0.0076 3.37 −0.0374 0.0107 −3.48

D = 7 −0.0142 0.0050 −2.83 −0.0343 0.0050 −6.81

D = 9 −0.0171 0.0035 −4.84 −0.0377 0.0039 −9.54

D = 11 −0.0133 0.0029 −4.45 −0.0361 0.0038 −9.29

D = 13 −0.0121 0.0014 −8.13 −0.0319 0.0035 −9.05

D = 15 −0.0107 0.0013 −7.83 −0.0295 0.0024 −11.80

η: Ip (b01)

D = 5 0.0083 0.0291 0.28 0.0232 0.0240 0.96

D = 7 0.0107 0.0099 1.07 0.0112 0.0108 1.03

D = 9 0.0136 0.0078 1.73 0.0223 0.0077 2.90

D = 11 0.0051 0.0064 0.80 0.0225 0.0069 3.24

D = 13 0.0040 0.0035 1.13 0.0187 0.0079 2.34

D = 15 0.0033 0.0031 1.06 0.0163 0.0047 3.40

η:Sp (b02)

D = 5 0.7851 1.7936 0.43 2.5863 0.9274 2.78

D = 7 0.5483 0.4909 1.11 1.7146 0.7441 2.30

D = 9 0.3256 0.5134 0.63 1.4729 0.5495 2.68

D = 11 0.7839 0.2618 2.99 1.0904 0.9765 1.11

D = 13 0.9825 0.5693 1.72 1.0610 0.4530 2.34

D = 15 0.7666 0.2816 2.72 0.8281 0.4493 1.84

Total number of observations 8469 with a sample size of 112 individuals (which means that df > 100 for t-tests). D, number of time-delay embedding dimension; K,

number of knots; LM, lm() function. Results are based on 10 times estimated values combined in one by MIcombine () function. μη and μζ represent the fixed

effects of frequency parameter; Ip, Intercept; Sp, Slope with regression coefficients b01 and b02.
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each parameter. Random effects were estimated as nonzero for
embedding dimension D = 11, D = 13, and D = 15.

Using the fixed effects we transformed the estimated values
into a period of oscillation. We report the mean period of oscil-
lation for Model 1. Model 2 describes the dependency of the
oscillation period from the covariates intercept and slope. The
period of oscillation lasts between 38 and 40 weeks and might
indicate that MU performance is connected to the school routine.
One oscillation period begins at the beginning of the school year
and ends at the end of the school year. Fluctuations of working
memory performance from day to day were also investigated by
Brose et al. (2012). The number of weeks for one competed cycle
λ Equation (2) for data imputed with B-spline imputation with
K = 10 and D = 5 was equal to λ = 40 weeks, calculated from
Model 1. For D = 7, the period was λ = 38.3 (Figure 4), D = 9,
λ = 38.8, D = 11, and D = 13 the number of weeks for one oscil-
lation was approximately 40 weeks (Figure 4). Figure 4 depicts
an oscillation (sinus curve) for D = 7 and D = 13. The number
of weeks needed for one cycle depends not only on the time-
delay dimension D, but also on the number of knots K within
the B-spline imputation method.

For Model 2 we predicted the frequency parameter and the
oscillation period length by setting the covariates intercept and
slope at their mean, minimum and maximum values. The mean
value of the intercept over 112 individuals was M = 0.443 (SD =
0.167), whereas the mean value of the slope was M = 0.0015
(SD = 0.0018). We predicted the frequency for B-spline imputed
data with K = 10 and D = 13. The predicted frequency for
a student with a mean intercept and a mean slope was η =
−0.0124 with an oscillation period of 56 weeks. At the value
of one standard deviation below the mean intercept (0.2760)
and mean slope (−0.0002) the predicted frequency was −0.0175
with an oscillation period equal to 47 weeks. At one standard
deviation above the mean intercept (0.6100) and mean slope

(0.0034) the predicted frequency was η = −0.0073 with a period
of oscillation equal to 73 weeks. The period of oscillation is
influenced by the frequency Equation (2), i.e., the smaller the
frequency the shorter the period. The correlation between inter-
cept and slope was r = −0.074. The relationship between the
frequency parameter and initial performance level was positive.
Since the frequency parameter value is negative, this means that
the smaller the frequency the lower the initial level. Therefore,
the smaller the frequency parameter (with η < 0) the shorter the
length of oscillation period. The relationship between frequency
and improvement on the MU task over time is positive. This
can be interpreted as the less the improvement over time the
lower the frequency value of students, and the more often they
fluctuate.

We implemented the LDE model in WinBUGS by applying
a Bayesian approach, whereas the GOLD Method was imple-
mented in R by using the GOLD function. The latter method
requires imputation of missing values in the longitudinal data. An
LDE model in a Bayesian framework was implemented using the
R2WinBUGS package (Bayesian inference using Gibbs Sampling,
Lunn et al., 2000; Spiegelhalter et al., 2003). In contrast to the
LDE model in OpenMx (Boker et al., 2010b), LDE in WinBUGS
allows for individual differences, as WinBUGS incorporates the
hierarchical structure of the data. The idea behind the usage of
WinBUGS was to analyze the data in one-step within the mul-
tilevel approach, without imputing the missing data. The data
contained missing values, but these values were not imputed by
using a B-spline. We chose the number of iterations to be 10,000,
with 5000 burn-in iterations. We used the mean of the sampled
values of the posterior distribution as an estimator of the param-
eter of interest. In the empirical illustration of this paper, we
verified the convergence by visually monitoring the trace plots.
Brooks and Gelman (1998) suggested a number of convergence
tests, emphasizing that a single-chain diagnostic depends on the

FIGURE 4 | Oscillation curve. The red line represents an oscillation for D = 11 and K = 10 with η = −0.0224, ζ = −0.0002, and λ = 40. The blue line
represents an oscillation for D = 7 and K = 10 with η = −0.0269, ζ = −0.0008, and λ = 38.3.
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Table 3 | Estimated fixed effect of parameter η and ζ using LDE (WinBUGS) and GOLD.

Embedding dimension D = 11

LDE GOLD K = 5 GOLD K = 10

Est. SE t Est. SE t Est. SE t

MODEL 1

η (μη) −0.0611 0.0074 −8.21 −0.0098 0.0007 −12.43 −0.0247 0.0012 −19.67

ζ (μζ) −0.0040 0.0143 −0.28 0.0004 0.0023 0.18 0.0002 0.0019 0.14

MODEL 2

η (μη) −0.0523 0.0095 −5.70 −0.0133 0.0029 −4.45 −0.0361 0.0038 −9.29

η: I (b01) 0.0042 0.0250 0.16 0.0051 0.0064 0.80 0.0225 0.0069 3.24

η: Sp(b02) −0.0006 0.0002 −3.12 0.7839 0.2618 2.99 1.0904 0.9765 1.11

D, number of time-delay embedding dimension; K, number of knots. μη and μζ represent the fixed effects of frequency and damping parameters; Ip, Intercept; Sp,

Slope with regression coefficients b01 and b02.

starting points of the simulation. The LDE model was fit to the
same data set as the GOLD model. As shown in Table 3, results
obtained for embedding dimension D = 11 reveal a larger value
for the frequency parameter η, which also implies less fluctuation
in the data and a longer oscillation period.

The parameter estimation based on LDE in WinBUGS has sev-
eral practical issues. First, the algorithm failed to converge with
the increasing size of the time-delay embedding dimension. For
example, values of dimension D = 13 and higher caused the algo-
rithm to crash. Second, further research is needed to identify
appropriate initial values.

In order to verify that the estimated results are consistent,
the jackknife technique was applied. The jackknife technique
(Cameron and Trivedi, 2005) is a resampling method, and is used
to provide more information about uncertainty in estimates. We
calculated the jackknife estimation of the standard error of an
estimate θ̂ that captures the variability between subsamples.

SEJK
[
θ̂
] =

⎡
⎣N − 1

N

N∑
p = 1

(θ̂(−p) −¯̂
θ )2

⎤
⎦

1/2

(11)

N jackknife replication estimates θ̂(−p) are obtained by deleting
observations of the pth subject for p = 1, . . . , N, then recom-
puting the estimates from a reduced sample size (N − 1), where
θ̂N is an estimate computed over the original sample size N.
¯̂
θ = 1

N

∑N
p = 1 θ̂(−p) is an average across N jackknife replication

estimates θ̂(−p).

tJK
[
θ̂
] = θ̂(−p) − ¯̂

θ[
N−1

N

N∑
p = 1

(θ̂(−p) − ¯̂
θ )

2
]1/2

(12)

Table 4 shows results obtained from jackknife inference, for
dimension D = 13 with K = 5, and K = 10. Results of the full
sample were obtained from a single implementation of the anal-
ysis steps. Estimates of the standard error and t-value obtained

from jackknife inference differ very little from the full sample
estimates, indicating consistent results.

RESULTS OF THE SIMULATION STUDY
Results presented in Table 5 contain the true value η, bias, RMSE
and means of estimates from 1000 data points, with the estima-
tion procedure applied 10 times repeatedly to the data due to
the imputation of missing values. The mean values of 10 esti-
mation repetitions were combined in one via the MIcombine()
function. Each of the generated data points contained a sample
size N = 112 (sampling interval was set at 1 week) with the dif-
ferent number of missing values (from 77 to 97) and exactly the
same number of 40 observations. The initial values for the gen-
eration of the data were calculated using K = 10. As expected,
the number of knots and the value of the embedding dimension
have a strong impact on the simulation results. For the number
of knots K = 15, the bias becomes smaller with the increas-
ing size of the time-delay embedding dimension D. As shown
in Table 4 for D = 5 bias = −0.0289, whereas for D = 15 bias
is equal to −0.0041. The best estimates (i.e., with the smallest
values of bias and RMSE) were obtained for K = 8. The esti-
mates for K = 5 were underestimated, while for K = 10 and K =
15 the values were overestimated. The calculated RMSE values
are very close to the bias values, which indicate that the stan-
dard deviation of the estimates is close to zero. The reported
results show that the number of knots used in the B-spline
influence accuracy more than the dimension D. This simulation
examined the linear oscillator model, focusing on the previ-
ously applied B-spline imputation method. The results of this
simulation study indicate that for K = 5, K = 10, and K = 15,
small embedding dimension values give a poor reflection of the
true value.

DISCUSSION
In this paper, we investigated intraindividual variability in mem-
ory updating performance using dynamical systems analysis
applied to a longitudinal study over a period of 2 years with. This
paper adds findings for estimating the parameters of a damped
linear oscillator model for applications with sparse measurements
in time.
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Table 4 | Results for the full sample (N = 112) and jackknife sample, with number of knots K = 5 and dimension D = 13.

D = 13 B-spline

LM K = 5 K = 10

FS.SE FS.t JK.SE JK.t FS.SE FS.t JK.SE JK.t

MODEL 1

η (μη) 0.0011 −7.00 0.0010 −7.61 0.0016 −14.32 0.0016 −14.33

ζ (μζ) 0.0052 −0.45 0.0055 −0.42 0.0045 −0.35 0.0041 −0.39

MODEL 2

η (μη) 0.0034 −4.24 0.0030 −4.82 0.0047 −8.44 0.0049 −8.12

ζ (μζ) 0.0165 1.60 0.0119 2.22 0.0132 2.49 0.0145 2.26

η: Ip(b01) 0.0071 1.39 0.0057 1.72 0.0095 3.50 0.0096 3.45

η:Sp(b02) 0.4681 2.98 0.4758 2.93 0.7285 2.13 0.7344 2.11

Results of one implementation of the analysis for Model 1 and Model 2. FS, Full sample; JK, Jackknife sample. μη and μζ represent the fixed effects of frequency

and damping parameters; Ip, Intercept and Sp, Slope with regression coefficients b01 and b02.

Table 5 | Mean estimates, Bias and RMSE of the linear oscillator parameter η for K = 5, K = 8, K = 10, and K = 15 across all dimension

conditions.

True ημη =
−0.0245

K = 5 K = 8 K = 10 K = 15

Mean(η) BIAS RMSE Mean(η) BIAS RMSE Mean(η) BIAS RMSE Mean(η) BIAS RMSE

D = 5 −0.0156 0.0089 0.0090 −0.0244 0.0001 0.0013 −0.0288 −0.0042 0.0044 −0.0535 −0.0289 0.0290

D = 7 −0.0161 0.0084 0.0085 −0.0251 −0.0005 0.0011 −0.0290 −0.0044 0.0045 −0.0473 −0.0227 0.0228

D = 9 −0.0160 0.0085 0.0086 −0.0254 −0.0008 0.0012 −0.0285 −0.0039 0.0040 −0.0416 −0.0170 0.0170

D = 11 −0.0168 0.0077 0.0078 −0.0253 −0.0007 0.0011 −0.0279 −0.0033 0.0034 −0.0364 −0.0118 0.0119

D = 13 −0.0174 0.0071 0.0071 −0.0254 −0.0008 0.0012 −0.0277 −0.0031 0.0033 −0.0320 −0.0074 0.0075

D = 15 −0.0180 0.0065 0.0065 −0.0259 −0.0013 0.0016 −0.0278 −0.0032 0.0034 −0.0286 −0.0041 0.0042

Combined means of the repeatedly calculated estimates from 1000 simulated data sets were presented. K is the number of knots in B-spline imputation and D the

number of time-delay dimensions. ημ represents the fixed effect of frequency parameter.

First, we introduced the B-spline imputation method for cyclic
data to account for missing data. Subsequently, we analyzed the
data by using a multilevel linear oscillator model, which is rep-
resented by a second-order differential equation. The GOLD
Method estimated the derivatives and parameters of interest that
represent the intraindividual variability, such as the frequency
parameter (i.e., change in fluctuation). Brose et al. (2012) cap-
tured trends in cognitive performance by spline smoothing while
investigating daily variability in working memory. Nesselroade
(1990a) analyzed differentiation between short-term fluctuations
and changes over long periods of time. Intraindividual variability
represents short-term changes or fluctuations, whereas intrain-
dividual change implies long-term changes. Intraindividual
variability was captured using the residuals of each person’s
performance on weekly assessments of working memory capacity.
Visual examination of the data showed that there are person-
specific differences in their trajectories. This means that analysis
based on the overall mean trajectory represents inadequate indi-
vidual change over time. Due to individual differences, we applied
multilevel modeling in order to account for each individual’s
frequency and damping parameter. Before fitting the multilevel
linear oscillator model, we calculated derivatives from B-spline

imputed data using GOLD in order to estimate zeroth, first and
second order derivatives from a time delay embedding matrix.
The values of lag between observations τ in the embedded matrix,
and the value of embedding dimension D, have an impact on
estimates of derivatives (Boker and Nesselroade, 2002; Hu et al.,
2014). They showed that the Akaike Information Criterion (AIC)
and −2 log likelihood (−2LL) based criteria, recommended by
Boker and Nesselroade (2002), are not reliable to select D, and
suggested instead a new rule that uses the estimated values of
the frequency parameter η. The recommended procedure to find
the optimal D is to plot estimated values of η as a function of
parameter D. The first value of D that results in a stable estima-
tion of η is the optimal choice. In our case this criterion was
not appropriate, since we did not obtain reliable stable values
of estimated η. In this study, the time delay embedding matrix
based on residuals was used, and grouped by student ID num-
bers, with dimension D = 5, 7, 9, 11, 13, 15, and τ = 1. This
means that the time-delay ranged between 5, 7, 9, 11, 13, and 15
columns of embedded matrices constructed from repeated mea-
sures set at 1 week. Students’ weekly performance in the MU task
was modeled so as to estimate frequency, meaning how slowly or
quickly each participant fluctuates over a certain period of time.
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To test whether each person showed oscillatory patterns in their
weekly performance in the MU task, the dynamical systems oscil-
lator model was applied to the residuals of each individual at
each measurement point. Next, we specified a multilevel mixed
effects model to investigate whether the frequency and damp-
ing parameters might be predicted by the initial status and rate
of change. A significant negative value of η and significant fixed
effects of intercept indicate that individuals with high initial per-
formance values oscillate more slowly in their weekly achievement
in the MU task. Furthermore, individuals with lower initial per-
formance levels showed greater variability than those with higher
performance levels. These findings are supported by the litera-
ture, in which intraindividual variability has been associated with
inconsistency in cognitive performance (Hultsch et al., 2000; Ram
et al., 2005). Hultsch et al. (2000) found that healthy adults with
lower cognitive performance level show more inconsistency in
their performance than individuals with higher cognitive perfor-
mance level. Ram et al. (2005) termed week-to-week intraindi-
vidual variability as random noise and suggested that individuals
with higher random noise levels perform lower on intelligence
tests. The estimation of dynamical systems analyses using differ-
ential equations has become more popular among researchers for
describing intraindividual variability, particularly since intrain-
dividual variability is considered to be a cyclic process. Findings
over all models and knots within imputations showed an oscilla-
tion pattern in the data. For number of knots K = 5 and K = 10
the mean number of weeks for one completed oscillation ranged
from approximately 40 weeks, which might be associated with the
end of a school year and start of summer break.

To better understand the sensitivity of estimates toward the
number of knots K in the B-spline method, a simulation study
was conducted based on the examination of bias and RMSE values
of simulated data. The data sets were simulated using the damped
linear oscillator model. The initial values for frequency η and
damping ζ parameter were calculated from B-spline imputed data
with K = 10 within the GOLD method in Model 1 for time-delay
embedding dimension D = 11. The simulated data set included
missing values with the same pattern as the original data. In the
simulation study the best estimates were obtained by using num-
ber of knots K = 8. In this case, the difference between the true
value and the mean estimate was smaller than using K = 10,
K = 15, or K = 5.

The realization of the LDE model in WinBUGS showed imple-
mentation issues while using a higher order of time delay embed-
ding dimension, due to an error in the WinBUGS application.
Another issue of the implementation was the difficulty in choos-
ing initial values for the algorithm. The GOLD method also had
algorithmic limitations, as it is limited to the univariate case.
Another concern is related to the B-spline imputation. In gen-
eral using a large knot number K creates a large amount of noise
in the data, whereas a small value of K over-smooths the trajec-
tory. There is more research needed to explore how to select the
optimal number of knots for the B-spline imputation.
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