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The popularity of non-invasive brain stimulation techniques in basic, commercial, and
applied settings grew tremendously over the last decade. Here, we focus on one
popular neurostimulation method: transcranial direct current stimulation (tDCS). Many
assumptions regarding the outcomes of tDCS are based on the results of stimulating
motor cortex. For instance, the primary motor cortex is predictably suppressed by cathodal
tDCS or made more excitable by anodal tDCS. However, wide-ranging studies testing
cognition provide more complex and sometimes paradoxical results that challenge this
heuristic. Here, we first summarize successful efforts in applying tDCS to cognitive
questions, with a focus on working memory (WM). These recent findings indicate that
tDCS can result in cognitive task improvement or impairment regardless of stimulation
site or direction of current flow. We then report WM and response inhibition studies
that failed to replicate and/or extend previously reported effects. From these opposing
outcomes, we present a series of factors to consider that are intended to facilitate
future use of tDCS when applied to cognitive questions. In short, common pitfalls include
testing too few participants, using insufficiently challenging tasks, using heterogeneous
participant populations, and including poorly motivated participants. Furthermore, the
poorly understood underlying mechanism for long-lasting tDCS effects make it likely that
other important factors predict responses. In conclusion, we argue that although tDCS
can be used experimentally to understand brain function its greatest potential may be in
applied or translational research.
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INTRODUCTION
Studies applying transcranial direct current stimulation (tDCS)
are growing in frequency due to appealing safety profiles, reason-
able cost, and promising findings both for investigating cognition
and as a therapeutic intervention. Indeed, a coarse PubMed search
combining the search terms of tDCS and publication year 2000
produced four articles, whereas the search in 2013 produced 370
references. TDCS is in wide use in clinical populations such as
stroke (Fregni et al., 2005; Hummel et al., 2005; Boggio et al.,
2007b; Jo et al., 2009; Kang et al., 2009; Baker et al., 2010;
Lindenberg et al., 2010; Chrysikou and Hamilton, 2011; Hamilton
et al., 2011), Parkinson’s (Boggio et al., 2006; Fregni et al., 2006c),
Alzheimer’s (Boggio et al., 2011, 2012), depression (Fregni et al.,
2006b; Ferrucci et al., 2009; Loo et al., 2010; Kalu et al., 2012),
and chronic pain (Fregni et al., 2006a; Lefaucheur et al., 2008).
It is also applied to healthy participants in cognitive domains
such as working memory (WM) (Marshall et al., 2005; Ohn
et al., 2008; Berryhill et al., 2010; Andrews et al., 2011; Mulquiney
et al., 2011; Berryhill and Jones, 2012; Jeon and Han, 2012; Jones
and Berryhill, 2012; Hoy et al., 2013), episodic memory (Ross
et al., 2010, 2011; Javadi and Walsh, 2012; Javadi and Cheng,
2013), perception (Antal et al., 2001, 2003, 2004, 2006; Antal
and Paulus, 2008; Bachmann et al., 2010; Bolognini et al., 2011;
Borckardt et al., 2012), and motor processing (Nitsche et al.,

2005, 2007; Boros et al., 2008; Hunter et al., 2009; Antal et al.,
2011).

However, emerging techniques require some measure of trial
and error to determine when, where, and how they are best
applied. In particular, tDCS faces a number of unknowns with
regard to mechanism and implementation that can make exper-
imental design challenging. For instance, short- and long-term
mechanisms of tDCS remains poorly understood. Furthermore,
there is no standard stimulation protocol intensity or duration
(see Nitsche et al., 2008). Thus, the pattern associated with cog-
nitive studies using tDCS is haphazard and difficult to patch
together to create a comprehensive snapshot of the literature in
a particular domain. In addition, the file-drawer problem may be
a particular issue with regard to tDCS. Considerable knowledge
may be gained from a more complete airing of these data. The
purpose of the present paper is two-fold. In Part 1, we focus on
our primary research area, WM, and summarize what WM-tDCS
approaches have been successful. Next, we broaden these findings
slightly to cognition more generally, although patterns are less
clear and the diversity of paradigms and protocols more broad.
These collective findings bring several factors to light when con-
sidering the use of tDCS to study cognitive questions. In Part 2,
we present several studies, both including WM components, one
with a primary focus in response inhibition, in which we failed to
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consider one or more of these factors and failed to observe signif-
icant effects. The goal of this article is to facilitate tDCS research
in cognition in healthy individuals by sharing what has worked
reliably, what has failed, and what lessons we have extracted.

PART 1: tDCS SUCCESSES
WHAT WORKS IN WORKING MEMORY?
WM plays a significant role in many cognitive tasks and is
controlled by broad frontoparietal networks accessible to tDCS.
These features have made it attractive to researchers interested in
applying tDCS to studies of cognition. This approach has been
successful. The most consistent set of WM data comes from the
use of n-back tasks paired with left dorsolateral prefrontal cor-
tex (DLPFC) stimulation in healthy (Ohn et al., 2008; Andrews
et al., 2011; Mulquiney et al., 2011; Zaehle et al., 2011) and
special populations (Boggio et al., 2006; Jo et al., 2009); for a

recent meta-analysis see (Brunoni and Vanderhasselt, 2014); see
Table 1. In short, these findings reveal a robust pattern: anodal
tDCS to the left DLPFC improves verbal n-back task performance
when compared to either sham or cathodal tDCS. This pattern of
tDCS-linked WM improvement remains constant across a variety
of stimulus intensities, durations, and participant populations.
Indeed, recent meta-analysis looking at these studies identified a
reliable reaction time improvement during active tDCS in those
studies using the n-back and stimulating the DLPFC (Brunoni
and Vanderhasselt, 2014, but see also Jacobson et al., 2012).

This consistency highlights at least one notable exception.
When we tested healthy older adults in a verbal and visual 2-back
task we replicated the anodal tDCS benefit, but only in those with
more education (Berryhill and Jones, 2012). Surprisingly, those
with less than a college-degree received no benefit from tDCS.
Instead their performance revealed a nearly equal and opposite

Table 1 | Peer-reviewed studies of WM paired with tDCS.

Authors Task N Site mA Dur (min) Comparison

IMPROVED WM AFTER ANODAL tDCS TO THE DLPFC: n-BACK TASK

Andrews et al.,
2011

2-, 3-bk, verbal, digit span 10 L DLPFC, during or
before task

1 10 During: digit span: A > S

Berryhill and
Jones, 2012

Visual, verbal 2-bk 12*, OA L, R DLPFC 1.5 10 L and R: A > S, in more
educated

Boggio et al., 2006 Verbal 3-bk 18, PD L DLPFC, M1 1, 2 20 DLPFC: 2 mA: A > S

Fregni et al., 2005 Verbal 3-bk 15 L DLPFC, M1 1 10 L DLPFC: A > S

Jo et al., 2009 Verbal 2-bk 10, R. stroke L DLPFC 2 30 Pre/post differences: A >

S

Hoy et al., 2013 Verbal 2-, 3-bk 18 L DLPFC 1, 2 20 RT: A > S: 2-bk: 1 mA
faster than 2 mA

Kim et al., 2014 Verbal 3-bk 9/8* L DLPFC 1 20 A > S: N = 9 benefited,
N = 8 no effect

Mulquiney et al.,
2011

2-bk, Sternberg 10 L DLPFC 1 10 2-back: A > S

Ohn et al., 2008 3-bk, Korean letters 15 L DLPFC 1 30 Pre/post: A > S

Zaehle et al., 2011 Verbal 2-bk 16 L DLPFC 1 15 A > C

IMPROVED WM AFTER ANODAL tDCS: MIXED SITES, TASKS

Boggio et al., 2009 Visual recognition 10, AD L DLPFC, L temporal 2 30 L DLPFC: A > S

Jones and
Berryhill, 2012

E1. WM Change
detection, sequential; E2.
WM Change detection

E1: 10*; E2: 14* R PPC 1.5 10 E1: High WMC: A,C > S
Low WMC; S > A,C; E2:
High WMC: A,C > S

Tanoue et al., 2013 Pre-cue, retro-cue WM 23 R PPC, R PFC 1.5 10 Pre-cue: S > C, PPC =
PFC; Retro-cue: S > C:
PPC > PFC

Tseng et al., 2012 Change detection 10* R PPC 1.5 15 Low WMC: A > S

IMPAIRED WM AFTER tDCS: MIXED SITES, TASKS

Berryhill et al.,
2010

Sequential WM,
recognition, recall

11 R PPC 1.5 10 Recognition: S > C

Ferrucci et al.,
2008

Sternberg 13 Cerebellum 2 15 S > A, C: Impaired
practice benefits

Marshall et al.,
2005

Sternberg 12 L, R DLPFC 260 μA P15 RT: Stim slower than
sham

Abbreviations: A, anodal; AD, Alzheimer’s disease; bk, back; C, cathodal; Dur, duration of stimulation in minutes; E, experiment; L, left; mA, tDCS strength in

milliamperes; N, number of participants; P, pulsed at 15 s on/15 s off, R, right; S, sham; OA, older adults; PD, Parkinson’s disease. All findings pertain to accuracy

unless reference to reaction time is noted. In cases where the between-subjects effects were significant, N refers to group size and is noted with an *.
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decrement in performance. Furthermore, regardless of whether
the stimuli were verbal or visual and whether stimulation site
were the left or the right the differences in education predicted
whether tDCS helped or hurt WM performance. This was the first
paper, to our knowledge, showing that an inhomogeneous popu-
lation significantly modulated tDCS effects in different directions.
A recent paper has used current modeling to clarify that partici-
pants only benefited on a verbal 3-back WM task when the tDCS
applying DLPFC during a verbal 3-back task current modeling
indicates that those who benefited showed significant modula-
tion in the DLPFC current, but those who did not improved did
not show significant DLPFC modulation (Kim et al., 2014). They
attributed these data to morphological differences in brain struc-
ture and where current flow went. This finding reveals the need
for refining stimulation targeting by registering an individual’s
MRI scans with tDCS electrode placement as is the practice in
TMS research. However, their data also showed that those who
started with higher WM performance garnered greater benefits
from tDCS.

There are several other papers pairing tDCS with different WM
tasks (e.g., old/new recognition, recall, change detection) and
parietal stimulation sites. These data are less clear. For example,
we found that anodal tDCS to the right posterior parietal cor-
tex (PPC: P4) selectively interfered with WM probed by old/new
recognition, but not with WM probed by recall (Berryhill et al.,
2010). We subsequently found that when participants performed
two WM tasks of different difficulty levels in the same session,
that tDCS effects were only apparent for the more challenging
task (Jones and Berryhill, 2012). Importantly, here, again, there
were significant and opposing patterns in the data such that young
adults with high WM span benefited but those with low WM span
performance was impaired after cathodal or anodal tDCS to the
right PPC. In contrast, a similar study also applying anodal tDCS
to the right PPC reported that those with low WM performance
on the sham day performed better during the anodal session on
a challenging change detection task (Tseng et al., 2012). However,
this study lacked an independent measure of WM capacity to seg-
ment their participants. Instead, behavioral performance during
the sham session was used. Thus, the observed effects are contam-
inated by regression to the mean because poor performers during
the sham session were likely to perform better at another session
regardless of tDCS presence. However, here, again are several data
points indicating that population differences predict the direction
and magnitude of tDCS effects on WM.

A second issue buried in these data is that effects are apparent
when tasks are difficult. Apart from the WM papers just noted
there is at least one other analysis that has found that tDCS effects
were apparent only when the task demands were difficult. More
specifically, in an associative memory task participants learned
face-name and place-name pairs and received left or right anodal
tDCS. In younger and older adults, tDCS provided a performance
benefit only when the participants struggled to produce the cor-
rect face or place name, as evidenced by long reaction times (Ross
et al., 2010, 2011). One way to think about this in terms of tDCS
is that the extra stimulation can serve as a tipping factor. This is
consistent with our understanding that tDCS induces changes the
changes in neuronal excitability—cells become more (anodal) or

less (cathodal) likely to fire action potentials. When tasks are easy,
the outcome is clear and the addition of tDCS does not change
performance. However, when tasks or even trials are very difficult,
tDCS effects emerge. When designing a task to pair with tDCS, it
is worth ensuring that the task demands are sufficiently challeng-
ing for participants and/or that the more challenging trials can be
isolated for separate analysis.

A third emerging issue that becomes more apparent when
reviewing the tDCS-WM papers is that the effect sizes tend to be
small and the studies are underpowered. For example, although
early studies report significant effects with 10 participants, more
recent papers tend to include 20 or more participants. One spec-
ulation is that early studies tapped homogeneous populations,
presumably available lab personnel, to participate and this meant
resulted in more consistent performance and tDCS patterns.

A related concern is that as laboratories become more com-
fortable with the tDCS technique they are subject to added noise
from poorly motivated participants. Although this is a problem
for many experimental techniques, it may be particularly relevant
if unmotivated participants do not engage during challenging
tasks or during challenging trials. As mentioned above, the sub-
tle response-shifts induced by tDCS may be particularly sensitive
to contamination from poorly motivated participants. However,
this notion must be considered as speculative because there are
no explicit data testing the role that motivation plays in tDCS
designs, although we are currently testing this hypothesis.

WHAT WORKS IN COGNITION?
Apart from WM, there is broad use of tDCS to investigate wide-
ranging cognitive topics (for a recent review see Coffman et al.,
2012). A real challenge is the diversity in experimental paradigms
and tasks makes it difficult to identify consistent patterns in the
tDCS literature. Furthermore, a recent review paper highlighted
“foundational” problems associated with tDCS and the impact
of variability across participants, issues associated with cognitive
set and performance, the reliability of effects over time and cur-
rent dynamics (Horvath et al., 2014; see also Lopez-Alonso et al.,
2014). However, in a few areas of upper-level cognitive domains
some consistency is beginning to emerge. In Table 2, we provide
an admittedly incomplete survey of cognitive studies employing
tDCS reporting significant effects in healthy adults. As in WM,
the majority of cognitive studies target frontal stimulation sites
and thus, it may not be surprising that the papers describing sig-
nificant effects of tDCS relate to upper-level cognitive tasks (e.g.,
response inhibition, memory, decision making). From these scat-
tered findings, it can be difficult to predict the direction of effects
in a tDCS study and it can be difficult to know why the effects
are as they are. As noted above, these are the studies with positive
findings and likely there are many other null findings that would
be informative for the research population. In the following sec-
tion, we raise several points to consider when developing tDCS
studies of cognition.

CONSIDERATIONS WHEN APPLYING tDCS TO COGNITIVE
QUESTIONS
Here, we summarize some of our observations as a set of fac-
tors to consider before using tDCS in a cognitive experiment.
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Table 2 | Peer-reviewed studies of cognitive questions in healthy adults paired with tDCS.

Authors Task N Site mA Dur (min) Comparison

ENHANCED PERFORMANCE AFTER tDCS

Cerruti and
Schlaug, 2009

Semantic memory
(verbal associates)

E1: 18; E2: 12 L, R DLPFC 1 20 L DLPFC A > C, S

Chi et al., 2010 Visual episodic memory 12* Bilateral R/L anterior T 2 13 L C/R A:>S

Fecteau et al.,
2007

Risk-taking E1: 10*; E2: 6* Bilateral oppositional
DLPFC;
E2 L DLPFC

2 15 Bilateral < S, unilateral
Lower risk taking

Fecteau et al.,
2012

Deception 12* Bilateral oppositional
DLPFC

2 20 RT: Active < S

Floel et al., 2008 Language learning 19 L A, C, sham
peri-sylvian

1 20 A > S

Iyer et al., 2005 Speed, emotion, verbal
fluency

E2: 43 (1 mA), 30 (2 mA) L DLPFC 1, 2 20 2 mA: A > S verbal
fluency

Jacobson et al.,
2011

Response inhibition 11 R and oppositional
bilateral inferior frontal
gyrus;

1 10 RT: A < S

Karim et al., 2010 Guilty Knowledge Test E1: 22; E2: 22 Anterior PFC 1 13 C > S, deceptive
behaviors

Kincses et al.,
2004

Probabalistic learning 22 L PFC, V1 1 10 A PFC > S, implicit
learning

Mameli et al.,
2010

Guilty Knowledge Task,
Visual Attention

20 Bilateral A DLPFC 2 15 RT: guilty knowledge: A
< S

Marshall et al.,
2004

Word-pair memory E1: 18 Bilateral A, sham PFC
during slow-wave
sleep

0.26 30 A > S

Ross et al., 2010 Face/Place-name
memory

15 L, R anterior T 1.5 15 R A > S: face/name pairs

De Vries et al.,
2010

Artificial grammar 19* Broca’s area 1 20 A > S

Penolazzi et al.,
2014

Retrieval induced
forgetting (RIF)

20* R DLPFC 1.5 20 C removed RIF

Mungee et al.,
2014

Conditioned fear memory 37* R PFC 1 20 A > S; stronger fear

IMPAIRED PERFORMANCE AFTER tDCS

Boggio et al., 2010 Gambling 9–10* Bilateral L/R DLPFC 2 15 L A/R: C > S riskier

Stone and Tesche,
2009

Local/global attentional
switching

14 L PPC 2 20 S > A, C

Tanoue et al., 2013 Pre-, retro- attentional
cueing

23 R PFC, PPC 1.5 10 S > C; Pre: PPC = PFC;
Retro: PPC > PFC

MIXED EFFECTS AFTER tDCS

Boggio et al., 2008 Response inhibition 14 L A T, R C T 2.0 13 Active vs. S: Women <

errors, Men: > errors

Boggio et al., 2009 Rating valenced images 23 L M1, DLPFC, occipital 2.0 5 L DLPFC: A < S pain
ratings

Bolognini et al.,
2010

Visual search 10* E1: R PPC; E2: L PPC 2.0 20 R PPC: A > S training
gains

Knoch et al., 2008 Ultimatum bargaining 30 C, 34 S R PFC 1.5 10 C > S: Reduced
punishment of unfair
behavior

Abbreviations: A, anodal; C, cathodal; Dur, duration of stimulation in minutes; E, experiment; L, left; M1, primary motor cortex; mA, tDCS strength in milliamperes;

N, number of participants; R, right; S, sham; T, temporal lobe; V1, primary visual cortex. All findings pertain to accuracy unless reference to reaction time (RT) is

noted. In cases where the between-subjects effects were significant, N refers to group size and is noted with an *.
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We also provide some rationales for strategically violating these
recommendations while remaining successful.

HOMOGENEOUS POPULATIONS
Equal and opposite effects in different populations can eas-
ily obscure effects. Researchers interested in relating structure-
function relationships can reduce the noise in their data by
targeting a homogeneous population. More practically, armed
with the knowledge that population differences are pertinent it
is advisable to include measures of relevant factors such as WM
capacity in a WM study. This permits incorporating some demo-
graphic or other factor in the analysis. This is particularly relevant
for applied and translational applications of tDCS in development
for general use. For this purpose, it is essential to identify popu-
lation differences and use that information to predict who will
garner the greatest benefit from tDCS.

LOW POWER
The effect sizes in cognitive studies of tDCS are modest. Thus,
it is important to counter low power by enrolling sufficiently
large cohorts. Because population differences have been reported
showing equal and opposite effects of tDCS, it is likely oth-
ers exist. Such differences may be adding significant noise and
obscuring positive findings.

CHALLENGING TASKS
The effects of tDCS are subtle. It is unlikely that tDCS could sig-
nificantly influence supraliminal response patterns. As such, it is
during near-threshold events that tDCS effect become apparent—
for instance, when the task is really difficult. Experimental design
should include tasks that are adaptive such that all participants are
performing an effortful task. Analyses should be designed to per-
mit separation of easy trials (e.g., high accuracy, fast responses)
from more difficult trials.

POOR MOTIVATION
This issue is related to the use of challenging tasks. We suspect that
tDCS is particularly sensitive to participants with low motivation.
This may be a particular problem when testing freely available
undergraduate volunteers who value course credit more than the
research. Low motivation may matter because tDCS effects are
subtle and seem to shape performance only over the range in
the heart of response functions where there is variability in the
response outcome. In other words, tDCS will not change some-
one’s response when it is 100%, but it may push responses from
49% in one direction to 52%.

PART 2: PROVING THE POINT
Below we give examples for which we have concluded our criteria
were not adequately met. We offer them in the hopes that our
missteps will permit others to avoid them.

GROUPING MECHANISMS IN VISUAL WM
Fault: poor motivation
One area of interest for tDCS relates to improving func-
tion, in particular visual WM (VWM). Some reports suggest
that VWM can benefit from Gestalt principles of grouping
(e.g., proximity, similarity, connectedness, common fate) as they

facilitate visual perception (Wertheimer, 1950; Palmer and Rock,
1994). Specifically, incorporating similarity, proximity, com-
mon fate, common region, or uniform connectedness improves
VWM performance in change detection tasks (Xu, 2002, 2006;
Woodman et al., 2003; Xu and Chun, 2007, 2009; Brady and
Tenenbaum, 2013; Peterson and Berryhill, 2013; Luria and Vogel,
2014). Moreover, a recent fMRI experiment found evidence that
grouped arrays were associated with lower amplitude responses in
the BOLD signal corresponding to the intraparietal sulcus (IPS)
during maintenance when compared to ungrouped items (Xu and
Chun, 2007). The inferior parietal regions that reflect increases in
set size up to VWM capacity limits (e.g., Todd and Marois, 2004,
2005; Xu and Chun, 2006) register grouped items as intermediate
steps rather than as full set size increases.

Consequently, we hypothesized that tDCS targeting the right
IPS would modulate grouping benefits associated with VWM per-
formance. Our previous work had already identified VWM dis-
ruption after cathodal tDCS (1.5 mA, 10 min) to this same pari-
etal site (Berryhill et al., 2010; Tanoue et al., 2013). Specifically,
we predicted that cathodal tDCS would interrupt VWM group-
ing. We also anticipated that the interruption would be more
pronounced in those with high WM capacity as preliminary
data showed that these individuals benefited from grouping
more than low WM capacity individuals. Furthermore, we
had previously identified enhanced tDCS effects for challeng-
ing tasks in high WM capacity individuals (Jones and Berryhill,
2012). Thus, we anticipated the possibility of observing dif-
ferent patterns of effects as a function of high or low WM
capacity.

METHOD
Participants and tDCS protocol
Thirty-three right-handed, neurologically intact graduate and
undergraduate students with normal or corrected-to-normal
vision participated in the current experiment (Mean age = 21.3,
25 female) and received $15 per hour. On separate days, partic-
ipants completed the VWM task after sham or cathodal tDCS
(right posterior parietal scalp site: P4, 10 min, 1.5 mA; Eldith
Magstim GMbH, Ilmenau, Germany). During the sham ses-
sion, current was ramped up and down for the first and last
20 s of the stimulation interval to mimic sensations associated
with current change. The anode was placed on the contralat-
eral cheek. Session order was counterbalanced across partici-
pants. Active/sham stimulation occurred prior to the task, while
participants completed practice trials. Electrodes were removed
prior to the start of the task. All experimental protocols were
approved by the Institutional Review Board of the University of
Nevada.

Stimuli
The task design slightly modified a paradigm previously pub-
lished that showed significant VWM grouping benefits (Xu
and Chun, 2007). We summarize these methods here. Stimuli
were gray, symmetrical novel shapes (2.6 × 2.6◦ visual angle)
presented on black rectangles (6.9 × 18◦ of visual angle) against
a gray background. There were three experimental conditions
varying the stimulus grouping: 2-ungrouped (2 shapes in
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separate black rectangles), 3-ungrouped (3 shapes in separate
black rectangles), and 3-grouped (2 shapes in one black rectangle
and one in a separate rectangle). The stimuli were presented at
57 cm using EPrime® (Psychology Software Tools, Sharpsburg,
PA) software running on a Dell © desktop computer and were
presented on a 20.5′′ by 13′′ widescreen monitor running at a
refresh rate of 60 Hz.

Procedure
To insure focused attention, trials began with a fixation task
(1000 ms), in which participants viewed a rapidly changing shape
(e.g., triangle, circle, square, diamond, 200 ms/item) and were
required to make a key press response each time the diamond
shape appeared; see Figure 1. Next, the stimulus display of the
VWM task appeared (200 ms), followed by a delay (1000 ms),
and finally a single probe item (2500 ms). Participants were
instructed to press the “o” key if the probe item had been shown
in the same location during the stimulus array (50%) and the “n”
key if the probed item changed from sample to test. A feedback
display followed (1300 ms: “Correct” in blue font, “Incorrect”
or “No Response Detected” in red font). Participants completed
15 practice trials to familiarize themselves with the task prior
to beginning the experiment and completed 150 experimental
trials (50 trials per condition). During the sham session, the
forward and backward digit spans were administered as an
independent measure of WM capacity (e.g., combined digit span
score; WAIS-IV, Wechsler, 2008). The experimental task lasted
approximately 20 min.

RESULTS
For each condition and each participant we estimated WM capac-
ity by calculating Cowan’s K: [K = set size∗ (hit rate—false alarm

FIGURE 1 | Experiment 1 task design. After 10 min of sham or 1.0 mA
anodal tDCS to the right PPC (P4), the experimental task began.
Participants viewed three types of arrays: 2 items (2-ungrouped), 3 items in
two boxes (3-grouped), or 3 items in three boxes (3-ungrouped). After a
WM delay period (1000 ms), a single probe item appeared and participants
indicated whether that stimulus had previously appeared in that location.

rate)]. The first question was to determine whether cathodal
tDCS to the right parietal lobe interfered with WM grouping
mechanisms. The K-values were subjected to repeated-measures
ANOVA with the factors of condition [2-ungrouped (2-UG), 3-
grouped (3-G), 3-ungrouped (3-UG)] and tDCS session (active,
sham). The data replicated the expected behavioral grouping
benefit [F(2, 64) = 5.39, p = 0.007, η2

p = 0.14, β = 0.83] such
that capacity was significantly larger in the 3-G condition com-
pared to the 2-UG condition (3-G = 1.49, 2-UG = 1.29, p =
0.004, Bonferroni corrected here and throughout); see Figure 2.
Additional pairwise comparisons indicated that there were no
differences between the 2-ungrouped and 3-ungrouped condi-
tions (3-UG = 1.38, p = 0.26) or between the 3-ungrouped
and 3-grouped conditions (p = 0.44). In other words, grouping
numerically enhanced performance on the 3-grouped condition,
but not significantly. However, the answer to the primary ques-
tion was that there was no significant effect of tDCS on VWM
performance as there was no main effect of tDCS [F(1, 32) =
0.07, p = 0.79] and no significant condition × tDCS interaction
[F(2, 64) = 0.18, p = 0.83].

Our concerns regarding participant homogeneity prompted
dividing participants into high and low WM capacity groups
based on the independent WM measure of combined forward +
backward digit span scores (high N = 16: combined digit
span score >13; low N = 17: combined digit span score <13).
The inclusion of WM capacity in the ANOVA did not change
the pattern of the results. The grouping benefit remained
[F(2, 62) = 5.26, p = 0.008, η2

p = 0.15, β = 0.82]. As before,
pairwise comparisons reveled significant differences between
the 2-ungrouped and the 3-grouped condition (p = 0.005), but
not between the 2-ungrouped and the 3-ungrouped conditions
(p = 0.26) or between the 3-grouped and the 3-ungrouped

FIGURE 2 | VWM performance in Experiment 1. The three experimental
conditions are displayed along the abscissa, while estimated capacity
(based on Cowan’s K formula, 2001) is depicted along the ordinate. The
error bars represent the standard errors of the means in each condition for
each tDCS session.
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conditions (p = 0.47). As before, there was no main effect of
tDCS [F(1, 31) = 0.05, p = 0.83], and no two- or three-way inter-
actions (all p’s > 0.13). In summary, there was no difference in
VWM performance in response to grouping via common region
between high and low WM capacity individuals. Additionally,
diverging from our predictions, there was no effect of cathodal
tDCS relative to sham tDCS.

DISCUSSION
Here, we tested the hypothesis that cathodal tDCS targeting pari-
etal regions involved in grouping processes would disrupt these
processes. Contrary to our predictions, tDCS did not modulate
grouping benefits in VWM. Furthermore, WM capacity did not
contribute to the current results as cathodal tDCS failed to inter-
rupt grouping benefits to WM performance in either high or
low WM capacity participants. These findings were unexpected
because we previously interrupted WM using cathodal tDCS to
the right parietal lobe in a VWM recognition task (Berryhill et al.,
2010). One possibility to account for these null results is that par-
ticipants may not have been effortfully engaged in the task. This
interpretation is supported by low VWM performance (e.g., mean
K-values for the 2-UG, 3-UG, 3-G conditions: 1.29, 1.38, 1.49
items compared to the ∼1.9, 2.3, 2.6 items per condition reported
by Xu and Chun, 2007). Anecdotally, in our previous success-
ful study, the participants were largely graduate students known
to the experimenter, rather than undergraduates interested in
obtaining course extra-credit.

Alternatively, previous fMRI findings revealed bilateral IPS
activity during this task (Xu and Chun, 2007). Thus, some might
argue that a unilateral stimulation protocol might not have suffi-
cient power to prevent some contralateral compensatory mecha-
nism. However, we think that this is unlikely for several reasons.
First, there is evidence supporting right IPL in attending to stim-
uli across both visual hemifields (e.g., Sheremata et al., 2010;
Szczepanski and Kastner, 2013), making it more likely to see
disrupted performance in the VWM task after right lateralized
stimulation. Second, and perhaps of greater relevance, we pre-
viously interrupted VWM using the identical tDCS protocol but
different VWM tasks (Berryhill et al., 2010; Tanoue et al., 2013).
Thus, we suspect that participants’ engagement was the most
important factor in this particular experiment.

REDUCING ADHD IMPULSIVITY
Faults: low power, heterogeneous population, low task difficulty
The familiar symptoms of attention deficit hyperactivity dis-
order (ADHD) include impulsivity, restlessness, and difficulty
concentrating (Faraone and Biederman, 2005). Recent findings
suggest that there is abnormal brain structure and function in
the pre-supplementary motor area (pre-SMA) in ADHD. When
people with ADHD perform tasks requiring response inhibition
they have smaller activations in the pre-SMA (Mulligan et al.,
2011). These findings suggest that the pre-SMA is not sufficiently
activated during response inhibition tasks. Recently, in healthy
adults response inhibition was predictably modulated by tDCS
to the pre-SMA: anodal improved performance whereas catho-
dal tDCS impaired performance (Hsu et al., 2011). Other reports
show tDCS-linked improvement in response inhibition tasks in

those with major depressive disorder (Boggio et al., 2007a) and
stroke (Kang et al., 2009). Thus, we tested whether directing
anodal tDCS to the pre-SMA would modulate performance in
a response inhibition task, the Go/No-Go task. First, based on
the logic just described, we anticipated that anodal tDCS would
improve Go/No-Go task performance in young adults with low
or high ADHD symptomology, and thereby replicating the Hsu
et al. findings in healthy young adults using the stop-signal task
(Hsu et al., 2011). We anticipated an interaction such that those
with high symptomology would garner greater tDCS benefits
than the low symptomology group. We also completed two WM
tasks: the operation span task and a spatial n-back task. These
tasks were included to clarify the specificity of tDCS influences.
Both WM tasks engage frontoparietal networks, but were not
expected to show modulation by tDCS to the pre-SMA. Here,
we tested an unmedicated undergraduate population to look at
ADHD symptomology because we do not apply tDCS to people
taking stimulants or anti-depressants (e.g., those prescribed for
ADHD).

METHOD
The University Institutional Review Board approved all proto-
cols. Volunteers completed the Adult ADHD Self-Report Scale
(ASRS—v1.1; Kessler et al., 2005). This short screen was devel-
oped to identify ADHD symptomology in adults and has been
validated in adult (Adler et al., 2006) and college-aged (Fuller-
Killgore et al., 2013) populations. Scores were derived from the
six-screener questions in Part A of the ASRS, the most pre-
dictive of ADHD. Questions probed the frequency with which
participants forgot appointments, completed tasks, or felt dis-
tracted Responses were converted from verbal labels (e.g., “never,”
“sometimes,” “rarely,” “often,” “very often”) to point values (1–5).
Questions 1–3 required doubling the point value when answers
of “sometimes,” “often,” or “very often” were recorded; questions
4–6 required doubling the point value when answers “often” or
“very often” were recorded. Four or more answers requiring dou-
bling meet the criteria for “high likelihood” of ADHD (Kessler
et al., 2005). To identify participants we recruited participants
high (ASRS scores 39–58) and low (ASRS scores <19) in ADHD
symptomology. This high ADHD group met the criteria of high
likelihood of ADHD. Thirty-six right-handed, normal, neurotyp-
ical participants were subsequently enrolled (age 18–37, 14 male).
Participants were screened to ensure they were not taking medica-
tions that modulate the excitability of the brain (e.g., stimulants).
Participants completed anodal, cathodal and sham tDCS sessions,
in counterbalanced order across 3 separate days with a minimum
washout period of 24 h. Current was administered using a com-
mercial stimulator (Eldith Magstim GMbH, Ilmenau, Germany).
To target the right pre-SMA, we placed the electrode 2 cm to
the right of FZ (10–20 system) and the reference electrode was
placed on the contralateral cheek. Participants received 10 min
of 1.5 mA tDCS during anodal and cathodal sessions and during
sham stimulation current was ramped up and down for the initial
and final 20 s of the period. Participants completed practice tri-
als of each task during stimulation and after the electrodes were
removed, they began the experimental trials of the tasks described
below.
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Behavioral tasks
Go/No-Go Task. In this measure of response inhibition and
impulsivity participants view a letter stream (400 ms) and
respond when they see a target letter (“x” or “y”) unless the
same target preceded the current target letter. In other words,
in the sequence “x-t-c-b-x-g-y,” the first “x” and the “y” require
responses, but the second “x” requires response inhibition. One
to six distractor letters were presented between each target letter.
There were 440 target letter trials and the task lasted approxi-
mately 12 min.

Automated Operation Span (OSpan). The OSpan requires par-
ticipants to solve arithmetic problems while also maintaining
letters in WM (Unsworth et al., 2005). Participants report remem-
bered letters after completing arithmetic problems. The task
consisted of 9 sets of letters and arithmetic problems and lasted
approximately 10 min.

Spatial 2-back. Participants completed a spatial 2-back WM task
in which a green circle (4.8◦, 500 ms, ITI: 1500 ms) was presented
in 9 possible locations. Participants reported whether the current
item matched what was shown two-items previously via button
press (match: “j,” non-match: “f”). Participants completed 450
trials (150 match; 300 non-match), which lasted approximately
15 min.

RESULTS
Performance on each task was subjected to a 2 ADHD group
(low, high symptomology) × 3 tDCS condition (sham, anodal,
cathodal) repeated measures ANOVA. Performance accuracy on
the Go/No-Go task revealed no significant main effect of group
[F(1, 17) = 1.01, p = 0.33], no main effect of tDCS [F(2, 34) =
0.996, p = 0.38], and no interaction [F(2, 34) = 1.145, p = 0.33];
see Figure 3A. The reaction time data were also analyzed and
they followed the same pattern of null results {group [F(1, 17) =
0.246, p = 0.626]; tDCS [F(2, 34) = 0.060, p = 0.942], interaction
[F(2, 34) = 1.643, p = 0.208]}. Four participants were eliminated
from the OSPAN and 2-back WM tasks because they pressed
the same button for all responses. Performance on the OSPAN
task followed the same pattern, with no significant main effects
of group [F(1, 15) = 1.635, p = 0.22], or tDCS [F(2, 30) = 0.151,
p = 0.860], and no interaction [F(2, 30) = 0.213, p = 0.810]; see
Figure 3B. This pattern was also true for performance accuracy
on the spatial 2-back WM task. There were no main effects of
group [F(1, 15) = 0.015, p = 0.904] or tDCS [F(2, 30) = 0.466,
p = 0.632] and no significant interaction [F(2, 30) = 0.750, p =
0.481]; see Figure 3C.

DISCUSSION
Here, we failed to replicate an anodal tDCS benefit on a response
inhibition task performance after stimulation to the pre-SMA
(Hsu et al., 2011), and to extend it into those with high/low
ADHD symptomology using the go/no-go task. Others have had
luck with response inhibition and tDCS, particularly in suppress-
ing responses (reviewed in Juan and Muggleton, 2012). We may
have tapped a particularly heterogeneous population and used
an insufficiently difficult response inhibition task that did not

FIGURE 3 | Experiment 2 performance per task as a function of tDCS

condition and ADHD symptomology: (A) Go/No-Go, (B) OSPAN, and

(C) Spatial 2-back task. Error bars represent the standard error of the
mean.

allow us to discriminate between easy and challenging trials. We
may have selected a stimulation site that was too lateralized and
an intensity that did not effectively reach the pre-SMA. These
issues may have clouded tDCS effects. Future studies should
include a more difficult response inhibition task, as participants
approached ceiling. In the Hsu et al. (2011) paper, the stop-signal
task they employed required more finely titrating the timing of
the stop signal to ensure that the task difficulty was tailored to
the participant. Finally, because the participants completed a self-
assessment rather than complete a clinical interview and ADHD
diagnosis, a different pattern of results may emerge in a clinically
diagnosed ADHD population.

In the two WM tasks, the OSPAN and spatial 2-back tasks, like-
wise, we did not observe any significant modulation after tDCS.
These later results were expected, but difficult to interpret as
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site-specific tDCS effects given the null findings in the primary
task of interest, the go/no-go task.

GENERAL DISCUSSION
Neurostimulation via tDCS is a useful tool for investigating
aspects of cognition. As with any tool there are some things that
work better than others, and a set of appropriate situations for
a given tool. Here, we have summarized some findings demon-
strating successful applications of tDCS in studies of WM (see
Table 1) and other cognitive modalities (see Table 2). Although
these studies all report positive findings there is still consider-
able variability in terms of the pattern of effects, paradigms used
and tDCS parameters. For instance, stimulus intensity, duration,
tDCS electrode montage are inconsistent. The most consistent
pattern in the published literature has been to report significant
improvements in WM tested in verbal n-back tasks and anodal
tDCS to the left DLPFC. In other cognitive realms a patchwork
of findings is emerging revealing consistent effects in memory,
deception, and cognitive control. However, there are exceptions
and forays into different tasks, populations, and parameters have
produced different patterns of results. We also note that the pro-
liferation of neurostimulation effects (e.g., tACS, TRNS) will be
certain to raise additional issues to maximize their experimental
and applied usefulness (for a recent review see Kuo and Nitsche,
2012; see also Snowball et al., 2013).

We think the file-drawer problem is a particular challenge here.
We offered several of our own missteps and several factors to con-
sider when applying tDCS to cognitive questions. We believe that
appropriate consideration of these factors will facilitate future
experimental design and serve to increase interpretable outcomes.
Ideally, the following is available: a homogenous, highly moti-
vated, large population engaging in a challenging cognitive task
that permits selective identification and analysis of the most diffi-
cult trials. When one or more of these factors is overlooked there
may be little to report.

WHAT DO THESE CONSIDERATIONS REVEAL ABOUT tDCS?
The considerations we noted above point us toward an emerg-
ing research question. Why do group differences matter? The
underlying mechanism of tDCS remains unclear, although long-
term neuroplasticity is indicated (Rosenkranz et al., 2000; Nitsche
et al., 2003). Some pharmacological work in humans indicates
that blocking sodium or calcium channels prevents longer-lasting
effects of anodal tDCS and antagonizing NMDA receptors pre-
vents longer-lasting effects of anodal or cathodal tDCS, at least
in motor cortex (Nitsche et al., 2003). Furthermore, at a larger
scale, the way current flows through a particular individual’s brain
certainly varies and has tremendous implications for applied and
experimental use of tDCS (Bikson et al., 2013). Incorporating
other variables, including the structural and functional connec-
tivity of stimulated networks and their temporal dynamics will
also improve experimental success when applying tDCS. We sus-
pect that the answers to these questions will also clarify why some
groups benefit more than others and why homogeneous groups
provide more consistent data. For an individualized approach to
tDCS application, the underlying molecular mechanism must be
fully clarified and this in turn will advance our understanding at

the network level. At this point, another way to counter these dif-
ferences is simply through brute power and by running sufficient
participants.

The role of task difficulty is important. As noted in the intro-
duction, when a participant knows the answer definitively tDCS
is unlikely to have an effect. This means tasks that are too easy
do not show any effect of tDCS. It is only in the challenging, bor-
derline cases where tDCS serves as a tipping factor. As we age, we
encounter more of these near-threshold cases and this population
may be the one to benefit most from tDCS-linked cognitive inter-
ventions. In particular, in the realm of WM, small improvements
can benefit quality of life and are worth the effort to gain them.

CONCLUSIONS
tDCS is a safe, affordable neurostimulation technique that is well-
tolerated in healthy and special populations. Regular tDCS is
not well-positioned to target carefully defined cortical regions
for studies of structure-function relationships. The current arti-
cle provided several considerations for review when preparing a
tDCS study. Because tDCS provides the greatest effect at thresh-
old level decisions, challenging tasks are necessary. Participants
must be sufficiently engaged and motivated. Finally, the nature
of the participants also should be carefully considered as group
differences can predict nearly equal and opposite responses to
tDCS. Furthermore, whereas early tDCS studies often targeted
motor and visual regions, studies of cognition require sufficient
power and larger numbers of participants. When these consid-
erations were sufficiently weighed, we have succeeded. We offer
several cautionary tales detailing our failed efforts when these
considerations were ignored. Finally, in conclusion, the best use
of tDCS may well be in translational and applied settings. In
this arena, tDCS already shows promise as a way to maintain
and/or restore cognitive function across various populations.
Clearly, there is great interest in effective cognitive interventions
as the aging population grows and tDCS may be a part of the
answer.
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