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The purpose of the study was to investigate how numeracy and acuity of the approximate
number system (ANS) relate to the calibration and coherence of probability judgments.
Based on the literature on number cognition, a first hypothesis was that those with
lower numeracy would maintain a less linear use of the probability scale, contributing
to overconfidence and nonlinear calibration curves. A second hypothesis was that also
poorer acuity of the ANS would be associated with overconfidence and non-linearity.
A third hypothesis, in line with dual-systems theory (e.g., Kahneman and Frederick,
2002) was that people higher in numeracy should have better access to the normative
probability rules, allowing them to decrease the rate of conjunction fallacies. Data
from 213 participants sampled from the Swedish population showed that: (i) in line
with the first hypothesis, overconfidence and the linearity of the calibration curves
were related to numeracy, where people higher in numeracy were well calibrated with
zero overconfidence. (ii) ANS was not associated with overconfidence and non-linearity,
disconfirming the second hypothesis. (iii) The rate of conjunction fallacies was slightly, but
to a statistically significant degree decreased by numeracy, but still high at all numeracy
levels. An unexpected finding was that participants with better ANS acuity gave more
realistic estimates of their performance relative to others.
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INTRODUCTION
Although typical judgment and decision making tasks have always
required participants to process numerical information, major
interest in how the ability to process numerical information affect
the ability to make judgments and decisions was sparked only
recently (see e.g., Peters et al., 2008). This interest has focused on
the concept of numeracy, typically defined as the ability to under-
stand and process numerical information (Reyna et al., 2009).
The research has for example suggested that people lower on
numeracy are more sensitive to framing effects in decision mak-
ing (Peters et al., 2006; Reyna et al., 2009), make less accurate risk
estimates (Black et al., 1995), and ignore sample size information
to a larger extent (Obrecht et al., 2009).

How numeracy affects the accuracy of probability judgments
has received less attention (but see, Dieckmann et al., 2009;
Lipkus et al., 2010). With a correspondence criterion, the accuracy
of probability judgments is evaluated by comparison to an inde-
pendently defined objective criterion, like the relative frequency
with which the event occurs. With a coherence criterion, probabil-
ity judgments are evaluated by the extent to which they obey the
rules of probability theory. In other words, the extent to which
they are internally consistent (Hammond, 1996; Nilsson et al.,
2013). The two studies that we know of that investigate the effect
of numeracy on coherence suggest divergent conclusions. Wedell
(2011) reported no significant relationship between numeracy
and rate of conjunction errors while Liberali et al. (2012) reported

that people with high numeracy made fewer conjunction (and
disjunction) errors. We know of no studies that investigate the
effect of numeracy on the correspondence of probability judg-
ments. Regardless of the criterion, previous research documents
extensive individual differences in the ability to make accurate
probability judgments and the studies often suggest divergent
conclusions.

In this study we investigate the effect of numeracy on both
the coherence and the correspondence of probability judgments.
We include two important features to obtain high generaliz-
ability. First, the way in which the task material is selected is
known to affect the normative evaluation of probability judg-
ments (Gigerenzer et al., 1991; Juslin, 1993; Björkman, 1994) and
therefore influences who is considered a “good” or a “poor” prob-
ability assessor. The probability estimation tasks were therefore
designed to meet the criterion of representative design (Brunswik,
1956; Dhami et al., 2004) to allow for conclusions that are not
driven by idiosyncrasies in the stimulus material and which gen-
eralize to the participants’ natural environment. Second, our
participants were recruited from randomly sampled data lists
from the population of Uppsala. While some previous studies
have used large samples of participants (e.g., Wedell, 2011), to
our knowledge no study has tried to incorporate a variability
that is approximately representative of the general population. In
the following, we first consider mechanisms by which individ-
ual differences in numerical ability can affect the ability to assess
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and integrate probabilities. Thereafter, we report data on how
numerical abilities relate to the correspondence and the coherence
of probability judgments.

CORRESPONDENCE AND COHERENCE OF PROBABILITY
JUDGMENTS
CALIBRATION (CORRESPONDENCE)
Calibration refers to the degree to which subjective probabili-
ties correspond to relative frequencies (Lichtenstein et al., 1982).
For example, across a set of questions, for which a judge assesses
the probability of being correct to 0.6, 60% should be correct.
The over/underconfidence bias is measured by the mean subjec-
tive probability minus the proportion correct (relative frequency).
A positive score is overconfidence, with too high confidence,
whereas a negative score indicates underconfidence (Lichtenstein
and Fischhoff, 1977). People are often reported to be overcon-
fident. The “overconfidence phenomenon” has been described
as a pervasive cognitive bias (Lichtenstein et al., 1982; Arkes,
1991; Baron, 1994) and as “ubiquitous” (West and Stanovich,
1997). De Bondt and Thaler (1995) argued that “Perhaps the
most robust finding in the psychology of judgment is that people
are overconfident.” These conclusions diverge from the “ecolog-
ical arguments” (Gigerenzer et al., 1991; Juslin, 1993; Björkman,
1994) suggesting that overconfidence is, at least in part, driven
by over-selection of tricky and unusual items that are exceptions
to the statistical regularities that obtain in the real-world. When
tested on item samples where the content is randomly sampled
from a natural environment, overconfidence is accordingly often
reduced or eliminated (see Juslin et al., 2000; see Moore and
Healy, 2008 and Koriat, 2012, for discussions of other causes of
overconfidence).

There are a number of studies of individual differences in
overconfidence, as measured by subjective probability calibra-
tion. West and Stanovich (1997) reported a significant, but low,
correlation between overconfidence in a general knowledge task,
and in a motor performance task. Bornstein and Zickafoose
(1999) likewise found correlations between performance in a
general knowledge task and performance in an eyewitness mem-
ory task. In Stanovich and West (1998a) overconfidence was
positively correlated with the false consensus effect and neg-
atively correlated with measures of cognitive ability. Klayman
et al. (1999) found stable individual differences, but substan-
tial variation in over/underconfidence depending on the question
type. Jonsson and Allwood (2003) found some individual stabil-
ity over time, but substantial individual differences across task
domains, and no correlation between need for cognition and
over/underconfidence. As noted, some inconsistencies might be
attributed to lack of control in the stimulus material. A person
that is overconfident with selected items may well be perfectly
calibrated with a representative sample of items. We know of no
study on individual differences in calibration with representative
general knowledge items.

In the tasks above, overconfidence means that participants
overestimate their own ability relative to an absolute norm.
Another version of overconfidence is in terms of “overplace-
ment,” or the “better-than-average effect” (Merkle and Weber,
2011), whereby participants overestimate how well they perform
in relation to others. In a typical setup, people are asked to judge

whether they are above or below average in a certain domain. In
other studies, participants specify the percentile of a distribution
that they believe themselves to belong to in regard to a particular
skill. The typical finding is that people rate themselves as being
better than they actually are relative to others. For example, most
people believe that they are a better driver than the average driver
(Svenson, 1981). Merkle and Weber (2011) concluded that results
within this paradigm showed “true overconfidence” appearing as
“a consequence of a psychological bias.” One criticism of this task
is that people may interpret the often vaguely defined skill dif-
ferently. If people rate different aspects of car driving, they may
actually be better than average when this is taken into account.
The effect may also stem from the use of sub populations as par-
ticipants. If students are used as participants, it is possible that
they actually perform at higher levels than the general population
at a particular skill (e.g., on an IQ test). In spite of this criticism,
we are not aware of a single study that has used a representative
sample of participants and instructions with an unambiguous and
exact definition of both the task and the comparison population.

THE CONJUNCTION FALLACY (COHERENCE)
When no “objective” probability exists, probability estimates can
be evaluated by the extent to which they cohere with the laws
of probability. Kahneman and Tversky (1982) presented partic-
ipants with a description of Linda, a stereotypical feminist, and
asked them whether she was more likely to be a bank-teller (A)
or a bank-teller and a feminist (A ∩ B). Almost 90% of the par-
ticipants committed the conjunction fallacy, by estimating that
she was more likely to be a feminist bank-teller (which is logically
impossible given that A ∩ B is a subset of A). Since then, numer-
ous studies have shown that the fallacy is robustly observed in a
range of different populations (e.g., Davidson, 1995; Adam and
Reyna, 2005) and different tasks (e.g., Zizzo, 2003; Nilsson, 2008;
Nilsson et al., 2009). In contrast to overconfidence, the conjunc-
tion fallacy does not appear to be reduced by use of representative
design (Nilsson et al., 2009).

Conjunction fallacies seem to be explained by two
mechanisms. First, people often combine the constituent
probabilities as a configural weighted average (Gavanski and
Roskos-Ewoldsen, 1991; Nilsson, 2008; Nilsson et al., 2009; Jenny
et al., 2014). Second, the rate of conjunction fallacies is mediated
by the inductive confirmation for the conjunction (Tentori
et al., 2013). The effect is thus affected by the believability of
the conjunctive event (Kahneman and Tversky, 1982; Tentori
et al., 2013) with the rate of fallacies dropping if the conjunctions
include contradictory conjuncts such as “Alan is bored with
music” and “Alan plays Jazz for a hobby.” It is moreover often
assumed that the responses are negotiated by two cognitive
systems. An intuitive system that tends to produce conjunc-
tion fallacies that is (imperfectly) monitored by an analytic
system with some insight about the rules of probability theory
(Kahneman and Frederick, 2002; Peters et al., 2006; Evans, 2008),
where the latter is partially tapped by numeracy (Liberali et al.,
2012).

Little attention has been given to individual differences.
However, in some studies high cognitive ability is correlated with
lower rates of fallacies (e.g., SAT-scores, Stanovich and West,
1998b; Feeney et al., 2007). In other studies there is no such
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relationship (Stanovich and West, 1998b; Feeney et al., 2007;
Wedell, 2011). Wedell (2011, p. 157) for example, concluded that
“Need for cognition and numeracy were only minimally related to
reasoning about conjunctions.” while Liberali et al. (2012) reported
a correlation between numeracy and the rate of conjunction
errors. One account of the different results could be that previous
studies have used different measures of numeracy and often mea-
sures with poor psychometric properties (see, e.g., Cokely et al.,
2012).

NUMBER PERCEPTION AND ABILITIES IN HUMANS
In the following section we give an overview of two basic numer-
ical abilities. The first, an innate ability for the understanding
of numerosities, is primarily concerned with the evaluation of
non-symbolic magnitudes and stems from an innate approxi-
mate number system. The second, a culturally acquired ability
for understanding numerical information, is concerned with the
manipulation and understanding of exact numbers.

Human adults, children, and non-human animals can repre-
sent numerical magnitudes without use of symbols (Feigenson
et al., 2004). The underlying system, known as the Approximate
Number System (ANS), represents numbers and magnitudes in
an analog and approximate fashion, with increasingly imprecise
representations as numerosity increases (Gallistel and Gelman,
1992, 2000). The increasing imprecision makes comparisons
between small magnitudes (e.g., 10 and 20) easier than com-
parisons between large magnitudes (e.g., 1010 and 1020).
Numerosities are thus scaled in a nonlinear fashion. The acu-
ity of the ANS is often conceptualized as the smallest change in
numerosity, as quantified by a Weber fraction (w) (Pica et al.,
2004; Halberda and Feigenson, 2008; Halberda et al., 2008, 2012;
Tokita and Ishiguchi, 2010), which can be detected. Several stud-
ies document considerable individual variation in ANS acuity
(Pica et al., 2004; Halberda and Feigenson, 2008; Halberda et al.,
2008; Tokita and Ishiguchi, 2012; Lindskog et al., 2013). A first
numerical ability thus involves a nonlinear, ordinal appreciation
for magnitudes.

Modern society increasingly requires use of number informa-
tion on the exact linear number scale. The ability to understand
and process numeric information, summarized in the concept of
Numeracy (Paulos, 1988; in analogy with literacy), has recently
attracted interest in research on decision-making (Reyna and
Brainerd, 2007; Peters and Levin, 2008; Peters et al., 2008; Reyna
et al., 2009). Although no consensus can be found on how numer-
acy should be defined (see Reyna et al., 2009 for a review) it often
refers to an understanding of, and an ability to process, numer-
ical concepts, particularly to comprehend risk and to transform
probabilities (Lipkus et al., 2001). A remarkable proportion of
even highly educated people apparently lack knowledge of basic
numeric concepts (Lipkus et al., 2001). A second numerical ability
thus refers to culturally acquired knowledge of the linear number
scale and the algebraic operations performed on it, including an
understanding of the notion of “probability” and at least some
rudimentary knowledge of the probability rules.

While ANS is mostly concerned with non-symbolic numeri-
cal magnitudes and numeracy refers to the manipulation of exact
numbers, several pieces of evidence suggest a link between the

two. First, previous studies suggest a relationship between ANS
acuity and math achievement that holds also when controlling
for other cognitive abilities (Halberda et al., 2008). Second, it has
been indicated that formal mathematics education might influ-
ence the acuity of the ANS (Nys et al., 2013). Finally, when
exact numbers are encoded on the internal number line, the log-
arithmic compression often becomes evident. For example, the
distance effect (Dehaene et al., 1990) and the size effect (Barth
et al., 2003) indicate an increasing inaccuracy of representations
for larger numbers. Tasks in which participants estimate the spa-
tial position of numbers on a line indicate that children show a
non-linear representation of numbers (Siegler and Opfer, 2003),
an effect that declines with age as people become “more linear.”
This suggests that the original non-linear representation coexists
with, rather than is replaced by, the linear representation acquired
later (Siegler and Opfer, 2003; Opfer and DeVries, 2008). The
latter develops from experience with numbers and mathematical
education, which is in part indexed by the person’s numeracy. A
more general notion of number perception holds that numerical
quantities in a diversity of formats are represented by a com-
mon “number sense” (Dehaene, 1992) that maps quantities onto
a common internal number line (Dehaene and Cohen, 1995). For
example, the Arabic digit (6), six squares, or six tones (all repre-
senting the quantity six) are all mentally represented by the same
position on the internal number line. The accuracy of this map-
ping may moreover be related to judgments and decisions. Schley
and Peters (2014), for example, found that the extent to which
people are linear on the above described number line task (Siegler
and Opfer, 2003) is related to the shape of their value function.

NUMBER PERCEPTION AND PROBABILITY
While numerical abilities have mainly been investigated in the
context of whole numbers, there is an increasing interest in how
people represent fractions or proportions (see Jacob et al., 2012;
Siegler et al., 2013), which is obviously connected to the ability
to represent and understand probability. While whole numbers
have a lower bound at zero and no upper bound, proportions
(probabilities) have both a lower bound (0) and a higher bound
(1). With whole numbers the standard finding is that people
discriminate better between low numbers that are close to the nat-
ural bound (0) than between high numbers (e.g., the difference
10–20 feels larger than the difference 1010–1020), often cap-
tured by assuming that the internal number line is logarithmically
compressed.

The corresponding finding with proportions is that the per-
ceived proportions1 are non-linear functions of the objective
proportions. There is often better discrimination between the
proportions close to 0 and 1 than between intermediate propor-
tions. This is perhaps most famously captured by the decision

1Here we are dealing with the perception of a stated proportion or percentage
per se and we will not distinguish between the case where the proportion refers
to a single event probability with a stochastic component or to a relative fre-
quency in a reference class, which need not have a stochastic component if no
random sampling is applied to the reference class. Therefore, we will use the
terms “proportion” and “probability” interchangeably in the following. From
other points of view there may although be important differences between
them.
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weighting function in prospect theory (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992). People find the difference
between stated proportions 0.99 and 1 “larger” and easier to dis-
criminate than the difference between stated proportions 0.50
and 0.51. A recent review (Zhang and Maloney, 2012) documents
that the nonlinearity introduced in the perception of proportions
(probabilities) is often well captured by a logit function. If we
express perceived proportion r as a function of stated proportion
p we have,

r
(
p
) = ek ∗ ln(p/(1 − p))

ek ∗ ln(p/(1 − p)) + 1′ (1)

where k is parameter that determines the non-linearity in the
perception of the proportions2. A person with k = 1 is able to
maintain a perfectly linear representation of the stated propor-
tion. This person weights the difference between 0.50 and 0.51
just as much as the difference between 0.99 and 1 in a judg-
ment or a decision. Most people are, however, likely to have a
slightly nonlinear representation of the proportions, with sharper
discrimination between proportions close to 0 and to 1 (see
Figure 1A for the examples of two persons with k = 0.75 and k =
0.5 respectively, as well as a person with k = 1, the identity line).

In the study reported in this article we rely on a half-range
probability scale where participants first decide on one of two
choice alternatives (True or False) and then make a confidence
assessment on a scale from 0.5 to 1 in steps of 0.1. Figure 1B pro-
vides a schematic illustration of the effect produced if the internal
confidence variable is mapped directly and proportionally to a
linear and to a nonlinear scale. For the same confidence, a per-
son with a nonlinear perception of the stated probability scale
(k < 1) will produce larger values on the probability scale in the
low range than a person with a linear perception of the probabil-
ity scale. In other words, perceiving little difference between the
lower stated probabilities on the confidence scale (0.5, 0.6, 0.7), a
person with k < 1 will “climb” more rapidly toward intermediate
confidence levels, introducing nonlinearity and overconfidence in
the calibration curve. The effect is that overconfidence is intro-
duced by the nonlinear perception of the probability scale and the
calibration curve, which plots the proportions correct against the
stated probability, will become curvilinear. Assuming a judge that
is perfectly calibrated with a linear scale (k = 1), the calibration
curves for k < 1 will look like the functions in the upper right part
of Figure 1A but with confidence on the x-axis and proportion
correct on the y-axis.

PURPOSE OF THE STUDY AND PREDICTIONS
In this study, we will submit a sample of participants that is
approximately representative of the population to two probability
assessment tasks that epitomize classical criteria of correspon-
dence and coherence, respectively: the calibration of subjective

2Equation 1 only takes the slope parameter k and not the intercept parameter
p0 into account, because in the data reported below the intercept parameter
is constrained to equal 0.5 by use of half-range probability assessments on the
interval 0.5–1. For the general version of the model, see Zhang and Maloney
(2012).

FIGURE 1 | (A) Linear and nonlinear perception of proportions (probability).
The solid identity line represents a perfectly linear representation of
proportion (k = 1), whereas the non-linear functions are two examples of
non-linear representations (k = 0.75 and 0.5). The upper right region of the
graph delineated by a square is the region of interest in half-range
probability judgment. (B) Schematic example of the direct and proportional
mapping from an internal confidence variable to a linear and a nonlinear
perception of the confidence scale in a half-range task.

probabilities and the obedience of the conjunction rule. The liter-
ature on numerical cognition, in conjunction with the literature
on the accuracy of probability judgments, suggests that the two
numerical abilities outlined above might independently affect the
extent to which probability judgments adhere to correspondence
and coherence criteria.

First, as we have seen, there is evidence that the representa-
tion of symbolic number is often distorted by the intrusion of
an underlying nonlinear representation (e.g., Siegler and Opfer,
2003; Schley and Peters, 2014) with poorer discrimination for
the numeric magnitudes that are distant from the scale bounds.
Hypothesis one was based on the assumption that people lower
in numeracy are less able to maintain a linear number repre-
sentation in their perception and use of the probability scale.
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We accordingly expected them to be more overconfident with a
more curvilinear calibration curve. Previous research indicates
that judgments can be influenced by ANS acuity (Peters et al.,
2008). However, the study by Peters et al. (2008) used a measure
of ANS acuity (numeric distance effect) that has been challenged
for its validity (Lindskog et al., 2013; Chen and Li, 2014; Inglis and
Gilmore, 2014). We consequently used a measure of ANS acuity
with better validity (Halberda et al., 2008; Lindskog et al., 2013).
To the extent that ANS acuity is expressed in the nonlinearity
of the calibration curve, the second hypothesis was that overcon-
fidence is expected to be negatively related to ANS acuity. In
regard to coherence, the third hypothesis was that people of higher
numeracy, that are more versed in the culturally acquired knowl-
edge of arithmetic operations, should be more likely to adhere to
the extension rule of probability theory and commit fewer con-
junction errors. By contrast, people of lower numeracy should
be more likely to use the default operation of taking a configu-
ral weighted average of the conjunct probabilities (Nilsson et al.,
2009), producing many conjunction errors.

In the following study we used a composite measure of numer-
acy consisting of an aggregate of previously used tests with known
psychometric characteristics3. ANS acuity was measured with a
standard numerosity dot comparison test with brief exposure
(Halberda et al., 2008). To control for the effects of general cog-
nitive ability the participants carried out a subset of Raven’s
progressive matrices. The participants also responded to single
and conjunctive statements to assess their general knowledge cal-
ibration and their susceptibility to conjunction errors, allowing
us to assess both the correspondence and the coherence of the
judgments as a function of the participants’ numeracy and ANS
acuity.

METHODS
PARTICIPANTS
A random sample of 2000 inhabitants of Uppsala, with the crite-
ria of obtaining an equal gender distribution, participants being
between 20 and 60 years, and living a maximum of 20 km from
the town center, was ordered from Statistics Sweden (a govern-
ment agency). Because Uppsala is a university town, student
dominated areas were excluded. The individuals were contacted
by post. Three hundred and thirty two responded to the letters.
Out of these, 213 participated in the study sessions (age: M = 39,
SD = 12). Sixty-two percent were women and 38% were men.
Self-selection resulted in an overrepresentation of women. The
sample was otherwise representative of the Swedish population
(population statistics from 2012 are valid for individuals between
16 and 65 years and were obtained from Statistics Sweden).
Thirty-four percent, 40, 21, and 5% reported elementary school,
high school, university and other, respectively, as highest level of
education (corresponding percentages in the total Swedish pop-
ulation are 35.3, 41.3, and 23.4%, respectively, for elementary

3Liberali et al. (2012) showed that objective and subjective numeracy tests
measure constructs that overlap, but are not identical. We chose to use a com-
posite measure that will tap numeracy in a broader sense, tapping both of
these constructs. Results for each separate tests were, however similar to those
presented here.

school, high school, and university). Eighty-six percent were born
in Sweden (corresponding percentages in the total Swedish pop-
ulation is 81%). The median monthly income was 25,000 SEK
(corresponding number in the total Swedish population is 25,400
SEK). In addition to the tasks reported here, participants car-
ried out a large battery of tasks over two laboratory sessions and
one online session4. For compensation, participants could choose
between a gift certificate with a value of 1000 SEK or donating the
same amount to an optional charity.

MATERIALS AND PROCEDURE
Subjective probability tasks
The general knowledge task from Nilsson et al. (2009) was used
to elicit subjective probability estimates and confidence ratings.
While the task is similar to the tasks typically used in the liter-
ature on calibration, it deviates from the tasks typically used in
the literature on the conjunction fallacy where most tasks are of
the “Linda-type” described above. There were three main reasons
for relying on this task. First, because the task involves factual
statements that can be either true or false it enables analyses of
both the coherence and the correspondence of the probability
estimates. Second, because stimuli are randomly sampled from
a real world environment it meets the criterion of representative
design (Brunswik, 1956), described above. Third, the large num-
ber of estimates and ratings provided by each participant ensures
high statistical power. Estimates and ratings were given to single
statements and conjunctive statements.

Single factual statements. In the general knowledge task the sin-
gle statements consisted of 100 propositions about geographical
facts that participants were to judge to be true or false, e.g.,
“France has a larger area than Costa Rica.” A base rate of 50%
propositions were true. Six different topics were used [Area/larger,
population (country)/larger, population (capital)/larger, latitude
(capital)/farther north, population density/more dense, and life
expectancy/higher]. The items were randomly sampled from a
database of world countries with the restriction of an even
number of items from each topic. After each question the par-
ticipant gave a confidence rating from 50 (guessing) to 100%
(absolutely certain) in the accuracy of their answer. A written
instruction presented a frequentist interpretation of the proba-
bility scale to participants (i.e., “For all answers where you have
given a 70% confidence rating 70% are expected to be correct in
the long run.”). All measures of overconfidence, miscalibration,
estimation, and placement (defined below) were calculated on
ratings from the general knowledge task in this single component
condition.

Conjunctive factual statements. The propositions from the single
component statements of the general knowledge task described
above were randomly divided into 50 pairs (hence, each compo-
nent was included in one pair). Sampling was restricted so that
each pair included two components with the same target variable.

Each pair was converted into a conjunction. For example, the
following two components: “France has more inhabitants than

4A comprehensive list of all tasks can be obtained from the authors.
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Peru” and “Sweden has more inhabitants than Estonia” would
occur with the conjunction “France has more inhabitants than
Peru and Sweden has more inhabitants than Estonia.” Thus, con-
junctive statements consisted of the same pairs of components
that were identical but for the word “and” inserted between the
components. Participants were told that they would be shown
statements about geographical facts. They were provided with an
example and told that for a conjunction to be true it is neces-
sary that both component propositions are true. Participants were
informed that the task was to judge whether the statement was
true or false and to rate the confidence in this answer on the same
scale as described above.

Numeracy. Participants completed (in the following order) the
Expanded Numeracy test (Lipkus et al., 2001), the Berlin Advanced
Numeracy Test (Cokely et al., 2012), and the Subjective Numeracy
Scale (Fagerlin et al., 2009). A composite measure of numeracy
was calculated by averaging these standardized measures. The
three tests each focuses on a fairly narrow part of the multifaceted
concept of numeracy. In an attempt to catch the effects of numer-
acy in general, rather than the effects of a subset of its sub dimen-
sions, the composite measure was calculated by averaging across
the three, significantly inter-correlated [Expanded Numeracy
test—Berlin Advanced Numeracy Test: r(211) = 0.44, p < 0.001;
Expanded Numeracy Test—Subjective Numeracy Scale: r(210) =
0.43, p < 0.001; Subjective Numeracy Scale—Berlin Advanced
Numeracy Test: r(212) = 0.35, p < 0.001], standardized measures.
Cronbach’s α for the composite measure was 0.67 and could not
be increased by exclusion of any of the three separate measures5.

Raven’s Advanced Progressive Matrices (RAPM). Participants
carried out a subset of Raven’s progressive matrices (Raven et al.,
1998) based on Stanovich and West (1998b). This test is gener-
ally used as a proxy to fluid intelligence. Participants were first
instructed on the task. They were then allowed two of the 12 test
items before completing 18 of the test items (items 13 through
30) with a 15 min time limit. Participants were instructed to try
to complete all 18 items within the time limit.

ANS—non-symbolic numerosity discrimination task. On each
of the 100 trials in the task based on Halberda et al. (2008) partic-
ipants saw spatially intermixed blue and yellow dots on a monitor.
Exposure time (200 ms) was too short for the dots to be serially
counted. We used five ratios between the two sets of dots (1:2,
3:4, 5:6, 7:8, 9:10) with the total number of dots varying between

5Because of the fixed order in which the numeracy tests were performed, it is
possible that results on the Subjective Numeracy Scale were colored by par-
ticipants’ performance on the other numeracy tests. However, in a previous
study (Lindskog et al., submitted) with a Latin Square balanced order we
found overall comparable correlations [Expanded-Subjective r(119) = 0.47,
p < 0.001, Berlin-Subjective r(119) = 0.41, p < 0.001]. The correlations with
Subjective Numeracy and the other measures were also obtained when this
test was taken prior to the other numeracy tests [Expanded-Subjective: r(36) =
0.35, p = 0.03; Berlin-Subjective: r(36) = 0.36, p = 0.03]. Thus, whereas the
correlation between subjective numeracy and the other measures may have
been somewhat boosted by the fixed order in the present study, the correlation
per se is not an artifact due to this order.

11 and 30. One fifth of the trials consisted of each ratio. For half
of the trials, blue was the more numerous color, for the other
half, yellow. Dots varied randomly in size. To counteract the use
of perceptual cues we matched dot arrays either for total area or
for average dot size. The participants judged which set was more
numerous by pressing a color-coded keyboard button.

Modeling of ANS acuity. We used a classical psychophysics model
that relies on a linear form of the ANS, to model performance
in the ANS acuity task. Earlier work (e.g., Halberda et al., 2008)
has shown this to be a plausible model of performance in numer-
ical discrimination tasks. Percentage correct was modeled as a
function of increasing ratio between the two sets of blue and
yellow dots [larger sample (n1)/smaller sample (n2)]. The two
sets are represented as Gaussian random variables with means
n1 and n2 and standard deviations w · n1 and w · n2, respectively.
Subtracting the Gaussian for the smaller set from that for the
larger set returns a new Gaussian that has a mean of n2 − n1 and

a standard deviation of w
√

n2
1 + n2

2. Percentage correct is then

equal to 1—error rate, where error rate is defined as the area
under the tail of the resulting normal curve computed as follows

1

2
erfc

⎛
⎝ |n1 − n2|√

2w
√

n2
1 + n2

2

⎞
⎠ , (2)

where erfc is the complementary error function. This fits percent-
age correct in the ANS acuity task as a function of the Gaussian
approximate number representation for the two sets of dots
with w as a single free parameter. The individual Weber fraction
obtained from such a model fit describes the standard deviations
for the Gaussian representation of the ANS acuity, thus describing
how much the two Gaussian representations overlap and thereby
predicting an individual percentage correct on a numerical dis-
crimination task. We used this model to find the best fit for each
individual separately. All participants took part in the tasks above
in the same order as follows; RAPM, ANS-task, Berlin advanced
numeracy test, Expanded Numeracy test, Subjective numeracy
scale, general knowledge task.

DEPENDENT MEASURES
OVERCONFIDENCE AND SOURCES OF MISCALIBRATION
In studies with general knowledge items, the participants are typ-
ically given a choice between two alternatives and have to indicate
their confidence in this choice as a subjective probability in the
interval 0.5 (guessing) and 1.0 (certain). For each participant,
confidence ratings are obtained for a large number of items.
The participants are said to be calibrated if in the long run the
subjective probabilities are matched by the corresponding rela-
tive frequencies, that is, they have XX% correct answers in the
confidence category with subjective probability .XX. The calibra-
tion score C is defined by the mean square deviation between
confidence xt and the corresponding proportion correct ct ,

C = 1

N

T∑
1

nt(xt − ct)
2 (3)
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where nt refers to the number of confidence judgments in con-
fidence category t (t = 1..T), N refers to the overall number of
confidence judgments, and T to the number of confidence cate-
gories available (see Lichtenstein et al., 1982). When the propor-
tions correct equal the subjective probabilities at each confidence
level, the participant is perfectly calibrated with a calibration score
of 0. The over/underconfidence bias is measured by the difference
between the mean confidence, x̄, and the overall proportion cor-
rect, c̄, where x̄ − c̄ > 0 indicates overconfidence and x̄ − c̄ < 0
is underconfidence. For instance, if the mean confidence is 0.8
but the overall proportion correct is 0.7, there is overconfidence
0.1. Resolution (Murphy, 1973) measures the ability of judges to
distinguish incorrect from correct responses via confidence judg-
ments. This variable is defined as the variance of proportion
correct over confidence categories;

R = 1

N

T∑
1

nt(ct − c̄)2. (4)

A high score of resolution reflects better performance than a low,
with 0 as the worst possible value and the best value depends on
the variance of proportion correct.

The calibration score C can be decomposed into three additive
components (see Björkman, 1992);

C = D2 + R2 + L (5)

where D = x̄ − c̄, R2= sx − sc (the standard deviation of confi-
dence minus the standard deviation of proportion correct) and L
is 2sxsc(1 − rxc) where rxc is the correlation between confidence
and proportion correct. The first component, D2, measures the
extent to which over/underconfidence contributes to poor cal-
ibration. The second component, R2, measures the degree to
which poor discrimination between confidence categories con-
tributes to poor calibration. L, or linearity, measures the degree
to which the calibration curve is linear. That is, how much lack
of linearity contributes to poor calibration. The linearity compo-
nent is of particular interest in the following analyses given the
discussion above about non-linearity in probability judgments.

Over/underestimation
Over/underestimation was measured by asking participants to
estimate the number of questions that they believe they have
answered correctly. The question was phrased: “In the previ-
ous task, how many out of the x (actual number) items do you
think you answered correctly?” The measure of overestimation
is the rated number of questions minus the observed number
of questions, where a positive number indicated overconfidence
(overestimation).

Overplacement
Overplacement was measured by asking participants to estimate
the percentile rank of their performance (number of correctly
answered questions in the general knowledge task they just had
performed) relative to a random sample of participants with
the characteristics of the actual comparison sample presented
to them. The term percentile rank was carefully explained in a

detailed way with examples in order for all participants to fully
understand what they were rating. We used two measures of
overplacement. The numeric overplacement measure is the actual
percentile in performance on the general knowledge task sub-
tracted from the estimated percentile, where a positive value
indicates overconfidence. We also used a second non-numeric
overplacement measure because even in spite of careful instruc-
tions, some participants may find the concept of percentiles hard
to grasp. The non-numeric measure was constructed by asking
participants to place their performance in one of four quartiles,
described by the non-numeric labels “Definitely above the aver-
age,” “Slightly above the average,” “Slightly below the average,”
and “Definitely below the average.” The measure was calculated
as the numeric measure, by subtracting the actual quartile perfor-
mance on the general knowledge task from the estimated quartile,
where a positive value indicates overconfidence.

Conjunction fallacy
A conjunction fallacy occurs when the assessed probability of a
conjunctive proposition P(A ∩ B) is judged higher than at least
one of the constituents (i.e., P(A) or P(B)).

RESULTS
Descriptive statistics for the dependent variables in the study
are summarized in Table 1. In most regards, the data for this
approximately population representative sample of citizens of
Uppsala (save for the overrepresentation of women) are simi-
lar to the results from previous studies. For example, there is a
minor overall overconfidence bias of 0.03, which is the standard
finding when the proportion correct (0.67) for the item sam-
ple is slightly below the midpoint (0.75) of the confidence scale
(Juslin et al., 2000). The participants moreover underestimate the
number of correctly solved questions when asked for this num-
ber after responding to them (51 vs. 67, see Gigerenzer et al.,
1991). In contrast to the common finding, the participants in this
study underestimate their relative standing in the population (see
“Placement”).

Table 1 | Means (m), Standard Deviations (s), and Number of

Participants (N) for the dependent measures for the sample in the

study (differing Ns are due to missing data).

Measure m s N

Numeracy (expanded test) 9.34 2.14 211

Numeracy (subjective) 3.93 0.98 212

Numeracy (BANT) 2.46 1.03 213

ANS (w) 0.25 0.09 213

RAPM 6.99 3.49 205

Prop. correct items 0.67 0.07 213

Confidence 0.70 0.09 213

Over/underconfidence bias 0.03 0.09 213

Calibration 0.02 0.02 213

Estimated correct questions (out of 100) 50.84 20.51 213

Proportion conjunction fallacies 0.50 0.15 211

Placement (non-numeric) −0.02 0.29 213

Placement (numeric) −0.07 0.28 213
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Correlations between the main independent variables,
dependent variables, and demographic variables in the entire
sample can be found in Table 2. The correlation between ANS
acuity measured by the weber fraction and the composite
numeracy measure was low and non-significant [r(212) = −0.10,
p = 0.166]. ANS was significantly correlated with age, replicating
the finding of a declining ANS acuity after 30 years of age
(Halberda et al., 2012). Numeracy was slightly, but signifi-
cantly, lower for women than for men. The correlation between
Numeracy and the RAPM was strong, indicating that these mea-
sures overlap. RAPM correlated negatively with age, reproducing
the well-known decline in fluid intelligence over the lifespan
(e.g., Cavanaugh and Blanchard-Fields, 2006).

When not stated otherwise, the analyses below are performed
as hierarchical multiple regression analyses with potentially con-
founding variables of gender, IQ (RAPM), proportion correct
answers in the knowledge test6, and age entered at Stage 1 and
the independent variables ANS acuity and Numeracy entered
together at Stage 2. This was done to establish the independent
contribution of the variable in question (ANS/numeracy). In the
figures we will illustrate the main effect for the quartiles by using
means adjusted for the potential contribution of these extra-
neous variables (both numeracy and ANS acuity were entered
as continuous variables in the regressions). All full models are
summarized in Table 3.

6Because of the possible linear dependency between proportion correct and
the various dependent measure (see e.g., Juslin et al., 2000), this variable was
used as a potentially confounding variable. For example, overconfidence is
the difference between proportion correct and mean confidence. As a conse-
quence, those performing at poor levels may look overconfident due to mere
regression effects or scale-end effects. We wanted to avoid this possibility and
investigate metacognitive effects independent of performance level. As a con-
sequence, the resulting analyses will reveal more pure effects, but probably at
the cost of being quite conservative.

THE EFFECTS OF NUMBER KNOWLEDGE ON CORRESPONDENCE
IQ (RAPM), age, gender, and proportion of correctly solved
items were entered in the first stage of a hierarchical multi-
ple regression with calibration as the dependent variable. In
the second stage, ANS acuity and Numeracy were entered. The
potentially confounding variables entered at stage one con-
tributed significantly to the regression model, [F(4, 200) = 6.23,
p < 0.001] and R2 = 0.11. Introducing the independent vari-
ables of main interest resulted in a significant change in R2,
Fchange(2, 198) = 5.9, p = 0.003. Of these, the β-weight for ANS
(−0.04) was not significant (p = 0.55) whereas the effect of
Numeracy was (β = −0.26, p < 0.001). The effect of Numeracy
and ANS on over/underconfidence was analyzed in a two
stage hierarchical multiple regression as detailed above with
over/underconfidence as dependent variable. Introducing the
independent variables in the second stage resulted in a sig-
nificant change in R2, Fchange(2, 198) = 5.75, p = 0.004. The β-
weight for w (β = −0.108) failed to reach statistical significance
(p = 0.086) but for Numeracy it was significant (β = −0.212,
p = 0.003). For Murphy Resolution, the β-weight for Numeracy
was significant (β = 0.17, p = 0.043), but the corresponding
weight for w was non-significant (β = 0.02, p = 0.82). The lin-
earity component (L) of the additive model of the calibration
measure (Björkman, 1992) was used as a dependent variable
in a hierarchical regression. Adding w and Numeracy in Step
2 significantly increased the R2 of the model [Fchange(2, 198) =
10.25, p < 0.001]. The weight for w was not significant (β =
0.06, p = 0.39), but the weight for numeracy was (β = −0.345,
p < 0.001), indicating poorer linearity for those with lower
numeracy.

The above analyses of calibration, overconfidence, resolution,
and of the linearity component showed significant effects only of
numeracy on the calibration of subjective probabilities. Because
of this, a more detailed analysis involving calibration curves was

Table 2 | Zero-order correlations between the independent [1–5: Numeracy (NUM), ANS acuity (ANS), Ravens’ Advanced Progressive Matrices

(RAPM)] and Dependent Measures (6–13) included in the study.

Measure

1 2 3 4 5 6 7 8 9 10 11 12

1. Gender

2. Age −0.10

3. RAPM −0.06 −0.28**

4. ANS −0.07 0.24** −0.13

5. NUM −0.14* −0.07 0.46* −0.10

6. Over/underconfidence −0.15* −0.02 −0.23* −0.02 −0.33**

7. Calibration −0.09 0.04 −0.22* 0.01 −0.33** 0.65**

8. Resolution −0.13 0.05 0.08 0.02 0.18* 0.02 −0.14*

9. Linearity −0.02 −0.11 −0.08 0.03 −0.32** 0.22* 0.47** 0.06

10. Over/underestimation −0.21* 0.09 0.09 −0.05 0.08 0.34** 0.18* 0.08 −0.04

11. Overplacement (numeric) 0.07 −0.14* −0.07 −0.02 −0.15* 0.50** 0.27* 0.03 0.09 0.31**

12. Overplacement (non-numeric) 0.01 −0.12 −0.13 −0.03 −0.27** 0.57** 0.31* −0.05 0.09 0.30** 0.83**

13. Conjunction fallacy −0.11 0.08 −0.14 −0.05 −0.21* 0.39** 0.17** 0.10 0.19* 0.24** −0.06 0.05

Gender is so that a positive point biserial correlation indicates higher values for women than for men. Lower values of ANS acuity indicates better performance.
*p < 0.05, **p < 0.001.
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undertaken with only this measure as an independent variable.
Figure 2 shows calibration curves where proportions correct are
plotted against confidence, for the single statements for partic-
ipants in the four numeracy quartiles. The calibration curves
are steeper and more linear for participants with higher numer-
acy than for participants with lower numeracy, which show
curves indicative of overconfidence. The proportions correct in
Figure 2 were subjected to a split-plot ANOVA, with confidence
as within-subjects independent variable and numeracy quartile
as between-subjects independent variable. There was a signifi-
cant main effect of confidence [F(5, 880) =137.61, MSE = 0.019,
p < 0.001, partial η2 = 0.439] and of numeracy [F(5, 880) =
12.4, MSE = 0.032, p < 0.001, partial η2 = 0.174], and a signifi-
cant interaction [F(5, 880) = 2.5, MSE = 0.019, p = 0.001, partial
η2 = 0.041]. To probe the nature of the significant interaction
with reference to our hypothesis we entered a contrast for steeper
calibration curves at higher numeracy (crossing a linear trend
for numeracy with a linear trend for confidence) and for more
curvilinear calibration curves at higher numeracy (crossing a lin-
ear trend for numeracy with a quadratic trend for confidence).
The calibration curves were significantly steeper at high numer-
acy [F(1, 176) = 16.1, MSE = 0.015, p < 0.001] and significantly
more nonlinear at lower numeracy [F(1, 176) =3.99, MSE = 0.018,
p = 0.047]7 . As predicted if people with lower numeracy are
less able to maintain a linear scale, lower numeracy is associated
with less step and nonlinear calibration curves. The correla-
tion between proportion correct and over/underconfidence was
−0.41, although this is partially an artifact of the linear depen-
dency between the measures (i.e., over/underconfidence bias is
defined as mean confidence minus proportion correct; see Juslin
et al., 2000). However, the pattern of overconfidence bias in the
adjusted means was the same as in the raw means in Figure 3,
with the 95% confidence intervals for the adjusted mean over-
confidence deviating distinctly from 0 in numeracy quartiles 1
and 2, but not in quartiles 3 and 4 (see the inserted panel in
Figure 3)8.

A measure of over/underestimation in the frequency estimates
was calculated from estimates made of the number of correct

7The corresponding contrast analysis of the main effect of confidence revealed
a significant linear trend [F(1,176) = 877.189, MSE = 0.015, p < 0.001], but
no significant quadratic (nonlinear) trend [F(1, 176) = 1.470, MSE = 0.018,
p = 0.227]. For the numeracy quartile there was likewise a significant lin-
ear trend [F(1, 176) = 37.051, MSE = 0.015, p < 0.001], but no quadratic
(nonlinear) trend [F(1, 176) = 0.233, MSE = 0.018, p = 0.630].
8It is of, course, also possible to compute the overconfidence bias across
the conjunctive statements. We performed repeated measures ANOVA with
numeracy quartile as the independent variable and overconfidence for sin-
gle statements and for conjunctive statements as dependent variables. There
was a significant main effect of single or conjunctive statement [F(1, 206) =
71.383, MSE = 0.005, p < 0.001, partial η2 = 0.257], with more overconfi-
dence for the conjunctive than for the single statements (overall means of
0.096 vs. 0.0.035). There was also a significant main effect of numeracy quar-
tile [F(3, 206) = 8.205, MSE = 0.018, p < 0.001, partial η2 = 0.107], with
more overconfidence for the participants with low rather than high numer-
acy. There was no significant interaction between statement and numeracy
[F(3, 206) < 1, MSE = 0.005, p < 0.543, partial η2 = 0.010]. In short: there
was more overconfidence with the conjunctive statements, but the same effect
of numeracy.
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FIGURE 2 | Proportion correct plotted as function of confidence category (calibration curves) for the single statements in each of the numeracy

quartiles. The dotted identity line is perfect calibration.

answered questions in the general knowledge task. At all levels of
numeracy, participants significantly underestimated the propor-
tion of correctly solved items, but those with higher numeracy did
so to a lesser extent. A single sample t-test shows that the mean
(−0.16) significantly deviates from zero [H0 = 0, t(212) = 12.45,
p < 0.001]. Adding the independent variables at Step 2 did not
contribute with improved statistical significance [Fchange(2, 198) =
1.04,= 0.35]. Neither the effect of w (β = −0.09, p = 0.21)
nor the effect of Numeracy (β = 0.05, p = 0.51) was statistically
significant.

As for over/underplacement, participants underestimated
their performance relative to others (average rated per-
centile = 43.5). The mean (−0.06) significantly deviates from
zero [H0 = 0, t(212) = 3.5, p < 0.001] for the numeric measure.
For the non-numeric measure, the mean (−0.02) is slightly, but
not to a statistically significant degree, different from zero [H0 =
0, t(212) = 1.1, p = 0.26]. A hierarchical regression analysis with
the non-numeric measure of over/underplacement as depen-
dent variable showed that adding the independent variables

at Step 2, did contribute with increased statistical significance
[Fchange(2, 198) = 3.25, p = 0.041]. The effect of w was statistically
significant (β = −0.12, p = 0.02) whereas the effect of Numeracy
(β = −0.06, p = 0.29) was not significant. The corresponding
analysis with the numeric measure of over/underplacement as
dependent variable showed that adding the independent variables
at Step 2, did contribute with increased statistical significance
[Fchange(2, 198) = 3.8, p = 0.024]. The effect of w was statistically
significant (β = −0.09, p = 0.04) whereas the effect of Numeracy
(β = 0.09, p = 0.07) was not significant. As can be seen in
Figures 4A,B, those with poorer ANS acuity underestimate their
standing to a higher degree whereas those with more efficient
ANS have a more realistic appreciation of their ability for both
measures.

To summarize, the numeracy of the participants had signifi-
cant effects on the calibration of subjective probabilities. Those
higher in numeracy were generally better calibrated and obtained
close to zero over/underconfidence bias in the judgments. By con-
trast, those lower in numeracy had much higher overconfidence
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FIGURE 3 | (A) The mean over/-underconfidence score with 95%
confidence intervals plotted as function of the four numeracy quartiles. The
dotted line is zero over/underconfidence. The small inserted panel shows
the corresponding means with 95% confidence intervals, after adjustment
for the effects of potentially confounding variables (see the main text). (B)

The mean calibration score, where the areas indicate the portion of
miscalibration contributed by each of the three additive components of the
total Calibration score C (see Björkman, 1992).

and significantly larger deviations from a linear calibration curve.
When metacognitive performance was measured as frequency
estimates of correctly solved items, participants generally under-
estimated the proportion correctly solved items, but neither the
effect of ANS acuity nor numeracy was statistically significant.
When the metacognitive performance was measured by the rel-
ative standing compared to a defined population, again, partici-
pants underestimated their relative standing and there was only a
significant effect for ANS acuity.

THE EFFECT OF NUMBER KNOWLEDGE ON COHERENCE
A hierarchical regression analysis with the conjunction fallacy
as dependent variable showed that adding ANS acuity and
Numeracy at Step 2, did contribute with a statistical sig-
nificance increase in R2 [Fchange(2, 196) = 5.7, p = 0.004].

FIGURE 4 | Placement plotted as function of ANS Acuity Quartile for

the numeric (A) and non-numeric measure (B). Square symbols depict
means adjusted for the effects of potentially confounding variables (gender,
age, IQ, and proportion of correct answers).

The effect of w was not statistically significant (β = −0.06,
p = 0.36) whereas the effect of Numeracy (β = −0.26,
p < 0.001) was.

In Figure 5, the proportion of conjunction errors is plot-
ted as a function of numeracy quartile. The average partic-
ipant committed 50% conjunction errors, which is close to
the 47% observed by Nilsson et al. (2009) in a student-
sample with an identical design. As is evident in Figure 5,
the proportion of conjunction errors is similar in all numer-
acy quartiles, though slightly lower for participants higher in
numeracy.

DISCUSSION
The present study contributes to the recent interest in how indi-
vidual differences in numerical abilities are related to individual
abilities in judgment and decision-making tasks in general (see
e.g., Peters et al., 2008; Reyna et al., 2009; Liberali et al., 2012;
Schley and Peters, 2014) and in particular to judgment tasks
including probability judgments (e.g., Dieckmann et al., 2009;
Lipkus et al., 2010). More specifically, the study examines how
two separate (ANS acuity and Numeracy), but possibly related,
numerical abilities relate to the correspondence and coherence
of probability judgments. In addition, by using a representative
design and a representative sample of participants we extended
previous research concerned with the influence of individual
differences on probability judgments.

NUMERICAL ABILITIES AND CORRESPONDENCE
Our measurements related to the correspondence criteria of ratio-
nality consisted of tasks with three different types of potential
overconfidence; miscalibration, overestimation, and overplacement
(see Merkle and Weber, 2011 for this taxonomy). As for miscali-
bration, direct assessments of confidence analyzed with subjective
probability calibration were not related to ANS acuity but related
to the numeracy of the participants. The participants with higher
numeracy were better calibrated than those with lower numeracy.
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FIGURE 5 | Proportion of conjunction errors plotted as function of

Numeracy Quartile. Square symbols depict means adjusted for the effects
of potentially confounding variables (gender, age, IQ, and proportion of
correct answers).

This suggests that numeracy taps abilities beyond those strictly
required for rule-based analytic insights about probability, For
example, the ability to maintain a linear numerical scale. Note
also that this effect holds after controlling for proportion cor-
rect and RAPM. It is therefore not easily explained by differences
between the groups in knowledge and general cognitive ability.
Overconfidence in terms of miscalibration was statistically signif-
icant but small, as typically observed when the proportion correct
is 0.67, and confined to the less numerate.

We predicted with our first hypothesis that the effect of numer-
acy on miscalibration might primarily be expressed as a higher
degree of nonlinearity for less numerate participants. To inves-
tigate this possibility, we investigated the effect of numeracy on
the linear component of the additive model of the calibration
measure (Björkman, 1992). In accordance with our prediction,
this investigation revealed that there was an effect on linearity
(L), with more nonlinear calibration curves for less numerate
participants. This result is consistent with previous research sug-
gesting that performance in judgment and decision-making tasks
is related to the appreciation of linearity (e.g., Schley and Peters,
2014). It is, however, important to notice that while numeracy
was related to the degree of linearity, there was no effect of ANS
acuity on the same measure. This goes against our second stated
hypothesis. Schley and Peters (2014) found that a symbolic map-
ping measure, which is conceptually related to our ANS acuity
measure, was associated with the shape of the value function
but not with the shape of the weighting function. In that study,
numeracy was significantly related the shape of the value func-
tion. The effect, however, went away when controlling for the
symbolic mapping measure. Numeracy was not, however, related
to the shape of the weighting function. Thus, in contrast to pre-
vious findings (e.g., Schley and Peters, 2014), our results suggest
that the nonlinearity found in the representation of magnitudes
and numbers might not be responsible for a similar nonlinearity
in judgments and decisions. Instead, our results indicate that the

culturally acquired ability to understand and manipulate exact
numbers and/or perceptions of this ability and preference for
numbers can contribute to linearity in judgments and decisions.
It will be an important venue for future research to investigate
the unique and combined contributions of culturally acquired
and genetically predisposed abilities for understanding numerical
information on nonlinearity in judgments and decisions.

There was no overestimation of the number of correctly
solved items after completing the task. Instead there was strong
underconfidence. This format dependence mimics the previ-
ously shown confidence-frequency effect (Gigerenzer et al., 1991;
Schneider, 1995), but with a stronger underconfidence for fre-
quency estimates. To a certain degree, this effect is boosted by
the fact that some participants fail to appreciate that with a
forced choice two alternative task there is a 50% success rate, and
give very low estimates. This underestimation was neither related
significantly to numeracy nor to ANS acuity.

The present study used a randomly sampled stimulus mate-
rial, a locally recruited “quasi-random” sample of younger and
middle-aged adult participants and well-defined performance.
Under these conditions, we found no evidence indicating a “bet-
ter than average effect” in our participants. That is, there was no
indication of overplacement. In fact, with the numeric measure,
participants generally believed they performed worse than aver-
age participant. Underplacement has been found in some studies
with very easy tasks. Our task, however, had an intermediate level
of difficulty (67% correct), so this cannot be the reason for our
results. Benoît and Dubra (2011) criticized the entire paradigm
of overplacement. They argued that even though a large num-
ber of studies show that people rate themselves as above average,
this does not necessarily mean that people are overconfident.
Instead, the finding of overplacement is fully compatible with a
rational agent using Bayesian updating. Isolated findings (Merkle
and Weber, 2011) have suggested that overplacement might occur
even in designs robust to the critique by Benoît and Dubra (2011).
However, in our own research we have investigated overplacement
with other tasks (e.g., reasoning problems and numerosity judg-
ments) and found very little support for a “better than average
effect” with unambiguous skill definitions. Instead our data indi-
cate a strong tendency for people to rate themselves as closer to
the mean than they actually are.

The internal representation of magnitudes and numbers,
indexed by the acuity of the ANS, has been found to be inher-
ently nonlinear (Dehaene, 2009). In addition, previous research
has indicated that judgments requiring processing of numerical
information might be influenced by ANS acuity (Peters et al.,
2008). We therefore hypothesized that ANS acuity and overconfi-
dence could be negatively related. With respect to miscalibration
and overestimation there was no effect of ANS acuity. It is possi-
ble that the difference in results to previous studies (Peters et al.,
2008) is due to a difference in methodology. Peters et al. (2008)
used a measure of ANS acuity (numeric distance effect) that
been challenged for its validity (Lindskog et al., 2013; Chen and
Li, 2014; Inglis and Gilmore, 2014). For example, Chen and Li
(2014) found no correlation between the numeric distance effect
and math performance in a meta-analysis, and both Inglis and
Gilmore (2014) and Lindskog et al. (2013) report lack of positive

Frontiers in Psychology | Cognition August 2014 | Volume 5 | Article 851 | 12

http://www.frontiersin.org/Cognition
http://www.frontiersin.org/Cognition
http://www.frontiersin.org/Cognition/archive


Winman et al. ANS, numeracy and probability judgments

associations between weber fractions and the numeric distance
effect. We therefore used a measure that has been suggested to
have better validity (Halberda et al., 2008; Lindskog et al., 2013).
It is possible that the measure used by Peters et al. (2008) taps a
different construct than the measure used here and that that con-
struct is somehow related to judgments requiring processing of
numerical information. Another possibility is that the relation-
ship between ANS acuity and such judgments is too elusive to
be consistently captured, or that the varying results may be due
to low reliability of ANS measures9. Future research will need to
resolve this question.

The acuity of the ANS was, however, related to the measures
of over/underplacement. What is the reason for this effect? A
tentative, but admittedly post hoc explanation, may be that the
metacognitive ability involved in this task explicitly draws on
magnitude ordering in locating the order of one’s own perfor-
mance relative to others. It has been shown that both Rhesus
monkeys (Cantlon and Brannon, 2006) and 11-month-old chil-
dren (Brannon, 2002) have the ability to discriminate between
magnitudes in terms of relative order. This could mean that ordi-
nality is a basic property of the ANS. Lyons and Beilock (2011)
showed that symbolic number-ordering ability fully mediates
the observed relation between approximate number acuity and
mental arithmetic. They proposed that this indicates that rela-
tive ordering may be a stepping stone from approximate number
representation to mathematical competence. The neurological
underpinnings of such a system were recently identified by Knops
and Willmes (2013) who showed that corresponding areas in the
intra parietal sulcus and in the inferior frontal cortex were acti-
vated similarly when participants were involved in rank order
judgments and mental arithmetic. More research is clearly needed
to replicate and extend these findings. In the mean time we pro-
pose that ANS acuity influences metacognitive ability due to its
basic function as the building block of rank order judgments.

NUMERICAL ABILITIES AND COHERENCE
The coherence of participants’ probability judgments was eval-
uated by the extent to which they made the conjunction fallacy.
We predicted with our third hypothesis that people of higher
numeracy would be more likely to adhere to the extension rule of
probability theory and thus to commit fewer conjunction errors.
In line with this prediction we found that the rate of conjunction
fallacies was reduced by numeracy. However, unlike overconfi-
dence in subjective probability calibration, even those of higher
numeracy still committed a high degree of conjunction errors.
The results on coherence thus suggested that the rate of conjunc-
tion fallacies is not strongly mediated by the kind of analytical
insight captured by numeracy. Rather, if anything, they derive
from more general computation constraints that are not as easily

9We have no exact figure of the reliability of the ANS test used in the present
sample. However, we have reason to suspect reliability for the typical test in
general to be modest (Lindskog et al., 2013) both for numerosity discrimina-
tions, and the symbolic numeric distance effect. For example, Lindskog et al.
estimated a mere reliability of 0.4 for weber fractions obtained in the Halberda
et al. (2008) task [Halberda et al. (2012) reported reliabilities of 0.56 and 0.72
in two tasks with the same stimuli].

amended by culturally acquired knowledge of the analytical rules
of probability (Juslin et al., 2009, 2011; Nilsson et al., 2009).

Again, the results show (e.g., Nilsson et al., 2009) that it is not
necessary for a researcher to come up with imaginative scenarios
involving feminist bank clerks named Linda to observe the con-
junction fallacy. Conjunction fallacies will appear as frequently in
scenarios where there is no dependency between the conjuncts,
and when there is no sensible possibility at all for people to rely
on a “representativeness heuristic.” The apparent robustness of
this phenomenon to differences in stimulus material is another
piece of evidence as to the phenomenon’s roots in more general
psychological mechanisms.

The lack of previous research linking ANS acuity to judgment
and decision-making tasks made strong predictions about a pos-
sible relationship difficult. However, previous research indicating
a relationship between ANS acuity and math achievement (e.g.,
Halberda et al., 2008; Lindskog et al., 2013) has suggested, if any-
thing, that people with better ANS acuity would be more inclined
to appreciate the conjunction rule. Our results indicated no effect
of ANS acuity on the prevalence of conjunction errors. We have
previously proposed that although ANS acuity is related to perfor-
mance in basic arithmetic tasks, such as addition and subtraction,
the relationship might not extend to more advanced mathemat-
ics (Lindskog et al., 2013, 2014). That we failed to find and effect
of ANS acuity might therefore indicate that appreciation of the
conjunction rule requires computational skills and conceptual
understanding that goes beyond basic arithmetic.

CONCLUSIONS
In the present study we investigated how individual abilities
in understanding numerical information relates to probability
judgments. We extended previous research on how individual
differences influence probability judgments by using a sample
of younger and middle-aged adults recruited outside university
campus and by using a representative design. In general, our
results suggest that the culturally acquired ability of numeracy
and preference for numbers is related to both the coherence and
the correspondence of probability judgments. More specifically,
people higher on numeracy tend to be both more coherent in
their probability judgments and to give probability judgments
that are more in correspondence with the world than do peo-
ple lower on numeracy. We also found evidence that an innate
ability to understand magnitudes and numbers, captured by the
ANS, was related to one metacognitive type of judgment. Those
with better ANS acuity gave more realistic estimates of their
performance relative to others.

Measures that have traditionally been taken as relatively gen-
eral and unproblematic such as for example overconfidence,
conjunction fallacy and risk aversion may have to be reconsidered.
These measures, that have been viewed as tapping into a content-
independent rationality and associated judgment biases, may in
fact be confounded with a relatively specific and newly culturally
acquired skill involving the understanding and use of numbers.
This need not imply that these biases are any less important in
a world that makes increasing quantitative demands on human
cognition, but it suggests that one may need to exercise some cau-
tion in generalizing behaviors observed in these numerical tasks
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to behaviors in contexts less contingent on understanding and
using numbers. It may not primarily be the nature of the slow
and explicit cognitive processes in System II, approximated by
Numeracy in the present study, that are a remedy to the biases, but
rather the conceptual understanding of the content conveyed by
these processes. In the present study, however, even participants
high in numeracy were highly susceptible to the conjunction fal-
lacy. This suggests that System II might not be the default mode
of operation, even to the tutored mind.
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