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Recent debates regarding the primacy of
social interaction versus individual cog-
nition appear to be caused by the lack of
an integrative account of the multiple
scales at play. We suggest that recon-
ciling individual autonomy and dyadic
interactive viewpoints requires the tak-
ing into account of different time scales
(e.g., development, learning) and lev-
els of organization (e.g., genetic, neural,
behavioral, social). We argue that this
challenge requires the joint development
of tools for two-body and second person
neuroscience, along with the theoretical
concepts and methods of coordination
dynamics and systems biology. Such a
research program may be particularly
fruitful in deciphering complex socio-
developmental diseases that are known to
involve alterations on multiple levels.

THE ONTOGENY OF SOCIAL
COGNITION: A CHICKEN-EGG ISSUE?
Despite a propensity to interact with oth-
ers, our ability to socialize seems neither
given nor fixed once and for all (Dumas,
2011). As Sheets-Johnstone (2011) has
pointed out “we come into the world
moving; we are precisely not stillborn.”
The question of the ontogeny of social
cognition (mirror neurons included) is
grounded in our propensity to move.
This primacy of movement can even
be observed before birth: motorneurons
appear well before their sensory coun-
terparts in embryo; a large repertoire
of spontaneous (thus self-organized)

movements—e.g., making a fist, kick-
ing, sucking—already exists (Kelso, 2002;
Piontelli, 2010). Even twin fetuses demon-
strate distinctive movements directed to
each other (Castiello et al., 2010). At this
stage, the “social events” are essentially
movements. Does this mean, however, that
there is no element of “social cognition” in
such encounters? We think not.

Behavioral coordination acts as a pow-
erful linkage between persons, even early
in life. Infants are sensitive to contingent
movements of the mother (Nadel et al.,
1999) and the first dyadic interactions
already exhibit co-regulation, “a contin-
uous mutual adjustment of actions and
intentions” (Fogel and Garvey, 2007). The
disposition of human and monkey new-
borns to imitate (Meltzoff and Moore,
1983; Kugiumutzakis, 1993; Nagy et al.,
2005; Ferrari et al., 2006; Soussignan et al.,
2011) is not due to a passive coupling
of perception and action. Rather it is
an active attempt to adapt and gradually
refine their own movements with respect
to others. When imitated, human infants
and newborn macaques display affiliative
behavior toward the imitator (Paukner
et al., 2009), as do low-functioning chil-
dren with Autism Spectrum Disorder
(ASD) (Nadel et al., 2000). The two
facets of imitation, imitate and be imi-
tated, constitute dual roles that can
be traded, thereby allowing turn-taking
(Nadel-Brulfert and Baudonnière, 1982).
All that is needed is anticipation of the
partner’s next movement.

Here it seems we arrive at a cross-road:
key ingredients of social cognition already
appear to be present very early. Co-
regulation of synchrony, anticipation of
the other’s intentions, joint attention on
a physical target, are central facets of
social interaction. Does this mean they
all emerge from the developing Mirror
Neuron System (MNS)? Even if the early
capacity to couple perception and action
is associated with a proto MNS (Lepage
and Théoret, 2007), we appear to be con-
fronted with a circular logic problem: you
need a MNS for social interaction but you
need to interact to form a MNS. Although
there is limited evidence for mirror neu-
rons in early development (Catmur, 2013),
sensorimotor experience may indeed be
key to creating mirror neuron responses
through Hebbian learning (Keysers and
Perrett, 2004; see also Allen and Williams,
2011). See also the epigenetic view of
Ferrari et al. (2013).

The idea that the MNS underlies not
only motor exchanges but also high-level
social cognition is now challenged by
the proposal of a complementary role
for the “mentalizing network” (Keysers
and Gazzola, 2007; Uddin et al., 2007;
Sperduti et al., 2014). A main task
is to decipher possible top-down and
bottom-up processes in social cogni-
tion. Such an endeavor requires, at the
very least, joint investigation of behav-
ioral and neural dynamics during real
social exchanges (Hari and Kujala, 2009;
Schilbach, 2014).
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THE RISE OF TWO-BODY AND
SECOND-PERSON NEUROSCIENCE
Although social neuroscience has gathered
a lot of data on how individual human
beings perceive social stimuli, a truly inter-
active social neuroscience still lags behind.
The community seems to have reached a
consensus on the importance of investi-
gating social situations that involve recip-
rocal exchange and mutual engagement
(Hari and Kujala, 2009; Schilbach et al.,
2013). Technological developments such
as hyperscanning (Tognoli et al., 2007;
Dumas et al., 2010; Babiloni and Astolfi,
2012; Hasson et al., 2012; Konvalinka and
Roepstorff, 2012) and human-machine
interfaces (Kelso et al., 2009; Pfeiffer et al.,
2011) have greatly helped operationalize
various aspects of real-time social interac-
tion, thereby narrowing the gap between
what we know about off-line and on-
line social cognition (Schilbach, 2014).
The former not only involve the same
brain structures identified in research
on isolated individuals (Sperduti et al.,
2014); the brain dynamics vary accord-
ing to social context, e.g., spontaneous
vs. instructed interaction (Dumas et al.,
2012a; Guionnet et al., 2012; Sänger et al.,
2012) and social role, e.g., leaders vs. fol-
lowers (Dumas et al., 2012a; Sänger et al.,
2013; Konvalinka et al., 2014).

A further challenge concerns the
structure and timing of inter-individual
coordination and its relationship with
intra-individual processes. Functional
magnetic resonance imaging (fMRI)
hyperscanning first showed strong
anatomical and functional similarities
across different individuals responding
to the same perception, especially if it is
social (Hasson et al., 2004). This find-
ing extends to interactive contexts where
inter-brain synchronization emerges in
multiple frequency bands (Dumas et al.,
2010; Müller et al., 2013). The related
symmetrical and asymmetrical inter-brain
patterns reflect how social interaction goes
beyond a simple mirroring of the other
and relies both on grasping other indi-
viduals’ motor goals and inferring their
intentions (Nadel and Dumas, 2014).
Moreover, unlike intra-brain dynamics
which primarily involves high frequency
rhythms, the inter-brain dynamics appear
to operate at lower frequencies (Müller
et al., 2013). Thus, the temporal interplay

between brain networks involved in social
interaction, such as the so-called mirror
and mentalizing systems, may be mod-
ulated by dynamics at the dyadic level,
as in turn-taking (Wilson and Wilson,
2005). Moreover, social cognition cannot
be understood only on the bases of intra-
or inter-personal dynamics but rather in
their common hyper-brain space includ-
ing both intra- and inter-brain coupling
dynamics (e.g., Montague et al., 2002; De
Vico Fallani et al., 2010; Sänger et al., 2012,
2013; Müller et al., 2013).

SOCIAL DYNAMICS AS A BRIDGE
BETWEEN SCALES
Cognition is constantly evolving during
interactions with the environment and
others. In order to sustain covariation,
members of a social interaction must
engage in active co-regulation (Fogel,
1993) and co-anticipation (Nadel and
Dumas, 2014), potentially leading to the
co-ownership of the action (Dumas et al.,
2012a). Such genuine sharing of the inter-
action with others has been proposed as
participatory sense-making (De Jaegher
and Di Paolo, 2007) where social inter-
action plays a constitutive role for indi-
vidual cognition (De Jaegher, 2009; Froese
et al., 2014). The chicken-egg paradox here
vanishes since both interactive and non-
interactive mechanisms co-develop and
mutually shape each other’s development
(Di Paolo and De Jaegher, 2012). Although
still debated (Gallotti and Frith, 2013), this
proposal is now supported by both mod-
eling (Froese and Di Paolo, 2010; Froese
et al., 2013) and experimental research
(Auvray et al., 2009; Froese et al., 2014).
In studies that have assessed the emer-
gence of collective intelligence through
dialog (Bahrami et al., 2010; Bang et al.,
2014) interaction has been shown to con-
strain individual information processing
(Fusaroli et al., 2014).

Social cognition thus relies on a braid-
ing of neural, behavioral, and social pro-
cesses (Hari and Kujala, 2009; Kelso
et al., 2013). Neurobiological models
of socio-cognitive functions have already
been proposed (Gallese et al., 2004;
Keysers and Perrett, 2004; Friston et al.,
2011), though the dynamical components
of human interaction are still largely
missing (Adolphs, 2003). The theoretical
and empirical framework of coordination

dynamics has shown that neural, behav-
ioral, and social scales may be studied and
understood from a common perspective
(Kelso, 1995; Kelso et al., 2009, 2013). As in
other theories that aim to elaborate math-
ematical formalisms for cognition (e.g.,
Tononi, 2008; Friston, 2010), the objec-
tive of coordination dynamics is to identify
general principles, the mechanistic realiza-
tions of which may be found in a variety
of different systems at multiple levels of
description. To be more than just words,
coordination dynamics had to establish
experimentally that criterial features of
self-organization (e.g., order parameters,
control parameters, stability, instability)
actually existed in human behavior and
that they could be mapped explicitly
on to a theoretical model of the self-
organizing dynamics. Then it had to show
how information (e.g., about goals, inten-
tions, the environment, etc.) shapes and
is shaped by the self-organizing dynamics.
Coordination dynamics relies on the same
concepts and mathematical formalisms
across different time scales and organi-
zational levels and thus potentially offers
inroads into a multi-scale account of social
cognition.

In physics, multi-scale approaches have
already uncovered universal principles,
especially when matter undergoes phase
transitions (Wilson, 1979). At the neural
level, non-linear cross-scale interactions
have been demonstrated experimentally
(Le Van Quyen, 2011; see also Plenz
and Niebur, 2014). In social neuroscience,
nonlinearities are omnipresent in the
underlying neural and social dynamics.
Since functional networks display similar
behavior across time-scales (Kelso, 1995;
Bressler and Tognoli, 2006), a parsimo-
nious account may be possible. Beyond
the quest for parsimony and semantic
clarity, having a mathematical formal-
ism enables one to ask computation-
ally relevant questions. For example, in
the case of social neuroscience, neuro-
computational modeling shows that the
anatomical structure of the human brain
favors both the complexity of intra-
individual dynamics and the coupling in
inter-individual dynamics (Dumas et al.,
2012b). Regarding the debate about the
constitutive role of social interaction,
future computational studies can quan-
tify macro-to-micro causal effects ranging

Frontiers in Psychology | Cognitive Science August 2014 | Volume 5 | Article 882 | 2

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Dumas et al. Multiscale approaches of social cognition

from dyadic to individual processes (Hoel
et al., 2013).

CONCLUSION
Social interaction challenges the
boundaries between the field of cognitive
science and how to divide observations
across distinct time scales and organi-
zational levels. Social neuroscience is
taking up this challenge at both theo-
retical and methodological levels. Here we
have argued that three major dimensions
are of potential significance: integrating a
developmental perspective, investigating
real-time social interaction with a two-
body or second person neuroscience, and
adopting a multi-scale approach through
complex systems’ perspectives, in partic-
ular the concepts, methods and tools of
coordination dynamics. These develop-
ments have already begun and should help
further an understanding of disorders of
social interaction such as autism.

As Abney et al. (2014) have remarked,
in cognitive science “multiple theo-
ries should interact when describing
the same phenomenon.” In social cog-
nition, the case of autism provides a
test bed for an integrative approach.
Developmental psychopathology has
uncovered a wide range of behavioral
peculiarities of persons with autism
(Burack et al., 2002); cognitive neuro-
science has identified many biomarkers
at both structural and functional levels;
and systems biology has begun to relate
genetic variants associated with cellu-
lar and metabolic pathways to individual
behavior (Randolph-Gips, 2011). The next
logical step is to bridge the gap between
multiple levels (and disciplines). Two-
body or second-person approaches have
already drawn some connections between
neural and social dynamics in neurotypical
populations, and provide potentially pow-
erful tools for the investigation of autism.
Hyperscanning techniques, for instance,
can be used to uncover relationships
between phenotypes at the behavioral
level and endophenotypes at neural levels.
Inter-individual computational models
combined with hyperscanning data could
help elucidate causal relationships between
structure and dynamics. Differences in
brain anatomy may impact the abil-
ity of persons with autism to couple
with others early in life thus decreasing
their propensity to develop social skills

(Dumas et al., 2012b). Computational
neurogenetic approaches can help model
the relationship between the genetics of
autism and brain dynamics (Benuskova
and Kasabov, 2008). Such integration of
neurogenetics and systems biology may
soon aid in tackling the heterogeneity
observed in autism across genotype, neu-
ral endophenotype, and socio-behavioral
phenotype levels.
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