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Obesity as a result of overeating as well as a number of well described eating disorders
has been accurately considered to be a world-wide epidemic. Recently a number of
theories backed by a plethora of scientifically sound neurochemical and genetic studies
provide strong evidence that food addiction is similar to psychoactive drug addiction.
Our laboratory has published on the concept known as Reward Deficiency Syndrome
(RDS) which is a genetic and epigenetic phenomena leading to impairment of the brain
reward circuitry resulting in a hypo-dopaminergic function. RDS involves the interactions
of powerful neurotransmitters and results in abnormal craving behavior. A number of
important facts which could help translate to potential therapeutic targets espoused in this
focused review include: (1) consumption of alcohol in large quantities or carbohydrates
binging stimulates the brain’s production of and utilization of dopamine; (2) in the meso-
limbic system the enkephalinergic neurons are in close proximity, to glucose receptors; (3)
highly concentrated glucose activates the calcium channel to stimulate dopamine release
from P12 cells; (4) a significant correlation between blood glucose and cerebrospinal fluid
concentrations of homovanillic acid the dopamine metabolite; (5) 2-deoxyglucose (2DG),
the glucose analog, in pharmacological doses is associated with enhanced dopamine
turnover and causes acute glucoprivation. Evidence from animal studies and fMRI in
humans support the hypothesis that multiple, but similar brain circuits are disrupted
in obesity and drug dependence and for the most part, implicate the involvement of
DA-modulated reward circuits in pathologic eating behaviors. Based on a consensus of
neuroscience research treatment of both glucose and drug like cocaine, opiates should
incorporate dopamine agonist therapy in contrast to current theories and practices that
utilizes dopamine antagonistic therapy. Considering that up until now clinical utilization of
powerful dopamine D2 agonists have failed due to chronic down regulation of D2 receptors
newer targets based on novel less powerful D2 agonists that up-regulate D2 receptors
seems prudent. We encourage new strategies targeted at improving DA function in the
treatment and prevention of obesity a subtype of reward deficiency.
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Reward Deficiency Syndrome (RDS; Blum et al., 1996) caused by a
Brain Reward Cascade dysfunction is linked to polymorphisms in
the Dopaminergic system that cause hypo-dopaminergic function
and result in abnormal craving behavior (Zhu and Shih, 1997).
Dopamine, a very powerful neurotransmitter, controls feelings
of well-being. The complex interactions of powerful neurotrans-
mitters like serotonin, enkephalins, and GABA that ultimately
regulates dopaminergic activation of the Reward Center of the
brain has been characterized by Blum as “The Brain Reward
Cascade” (Blum and Kozlowski, 1990; Blum et al., 2000).

While, for example, high levels of enkephalins are associated
with pain suppression and low serotonin levels with depression,
an individual with the Taq1 A1 allele of the Dopamine Receptor
Gene (DRD2), lacks enough dopamine receptor sites to release
the normal amount of dopamine into the Reward Center of the
brain and dopamine function is reduced (Noble et al., 1991; Delis
et al., 2013). Humans possessing the A1 variant crave and seek

substances and behaviors known to cause dopamine release prefer-
entially at the nucleus accumbens (NAc) in the meso-limbic system
(Stice and Dagher, 2010). They may become serious cocaine
abusers or have unhealthy appetites, which lead to, eating dis-
orders like obesity, overeating or at the other extreme, anorexia
nervosa (AN), they also suffer from high levels of stress over an
extended period of time. To activate their dopaminergic pathways,
a self-healing process to offset their low D2 receptors, individ-
uals are driven to engage in activities which will increase brain
dopamine function (Noble et al., 1991, 1993; Delis et al., 2013).
The consumption of alcohol in large quantities or carbohydrate
binging stimulates the brain’s production of and utilization of
dopamine (Blum et al., 1996, 2000). So too does the intake of crack
cocaine, cocaine, opioids, and the abuse of nicotine. Aggressive
behavior has also been associated with this genetic abnormality
which also stimulates the brain’s use of Dopamine (Blum et al.,
2000).
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Reward deficiency syndrome manifests as a form of sen-
sory deprivation the pleasure or reward mechanisms and can be
relatively severe or mild, a consequence of an individual’s neu-
rochemical inability to derive pleasure from ordinary, everyday
activities. The A1 variant of the DRD2 gene generates an alteration
in the reward pathways and has been associated in neurogenetic
research with a spectrum of addictive, compulsive and impulsive
behaviors. The RDS concept unites these disorders and may help
to explain how simple genetic anomalies can give rise to complex
aberrant behavior (Noble et al., 1991, 1993; Blum et al., 1996, 2000;
Delis et al., 2013).

One notable study from Thanos et al. (2001) provides support
for the role of the DRD2 gene in alcohol intake in rats. Utilizing
a cDNA construct, a precursor of the DRD2 gene, was implanted
into the NAc of rats. After 4 days of treatment, dopamine D2
receptors increased above pretreatment levels by 150% and alcohol
drinking was halved. After 8 days in total, D2 receptor densities and
alcohol drinking returned to pretreatment levels. Second injec-
tions of the same construct 24 days later, similarly increased DRD2
density, this time, with a twofold decrease in drinking (Thanos
et al., 2001). This phenomenon had also been observed for cocaine
dependence (Thanos et al., 2008b). In another study the same
group (Wang et al., 2001) using positron-emission tomography
(PET) scanning techniques, reported low D2 receptor density
in the obese subjects compared to non-obese controls. The D2
receptor paucity also correlated with high body mass index (BMI).

In another study, Hamdi et al. (1992) found that dopamine D2
receptor availability in the striatum was significantly lower in obese
Zucker rats than in lean non-Zucker controls. Moreover, others
have shown the availability of the dopamine striatal dopamine
transporter was negatively correlated with BMI in healthy vol-
unteers (Chen et al., 2008), suggesting that the dopamine system
regulates BMI. Thus, in obese subjects dopamine deficiency may
promote compensatory pathological eating to activate reward cir-
cuits. Strategies with the goal of improving dopamine function
may be of benefit in treating obese individuals (Curtis and Davis,
2014).

To understand the important relationship between dopamine
and glucose, it is beneficial to realize that, in the meso-limbic sys-
tem the enkephalinergic neurons are in close proximity, to glucose
receptors. There are other important connections in the substa-
tia nigra (SN), tuberoinfundibular neurons, globus pallidus, and
other brain regions (Haltia et al., 2007).

It is well known that glucose by the actions of an ATP-sensitive
potassium channel modulates GABA terminal transmitter release
and SN dopamine neuronal activity. In a study, Levin et al. (2001)
placed microdialysis probes into both the SN and striatum of
male rats to assess the effect of altered SN glucose levels on stri-
atal dopamine release. Striatal DA efflux transiently increased
by 50% during 50 mM glucose infusion, returning to baseline
after 60 min. Moreover, when GABA (A) antagonist bicuculline
was added the efflux increased by a further 30%. Furthermore,
nigral bicuculline alone raised striatal dopamine efflux by 31%
above basal glucose levels supporting the well-known tonic GABA
inhibitory input to the DA neurons. Thus changing SN glucose lev-
els effects striatal dopamine release. Levin and associates suggest
that this response may reflect the known effect of glucose on GABA

axon terminals in the SN and SN Dopamine neurons, via K(ATP)
channel activity and could be the mechanism by which glucose
modulates the motor activity involved in food intake (Levin, 2000).
Koshimura et al. (2003) found that long – term incubation with
a high concentration of glucose increased the capacity of calcium
uptake to enhance depolarization-induced dopamine release from
Pheochromocytoma 12 (P12) cells. Taken together, these data sug-
gest that highly concentrated glucose activated the calcium channel
to stimulate dopamine release from P12 cells.

Bello et al. (2003) found that the rat dopamine transporter was
up-regulated in the ventral tegmental area and the NAc of the
brain when feeding was restricted with scheduled sucrose access.
Moreover, Lee et al. (1988) found that dopamine can lower glucose
uptake into rat white adipocytes that do not have dopaminergic
receptors, by activating B3 adrenoreceptors. Glucose utilization
in the direct and the indirect pathways, of the rat basal ganglia
is affected by injection of intrastriatal D1 and D2 dopamine ago-
nists (Conti et al., 2001). Depending on dosage and time after
treatment fat intake in rats can be altered by dopamine receptor
antagonism. In this regard, both D1 and D2 receptor co-activation
significantly increased protein mass while reducing body fat, body
weight, food consumption and serum concentrations of triglyc-
erides, free fatty acid glucose, and insulin (Cincotta et al., 1997).
Blood glucose studies found a significant correlation between
blood glucose concentrations and cerebrospinal fluid concentra-
tions of homovanillic acid the dopamine metabolite (Umhau et al.,
2003).

The RDS hypothesis (Blum et al., 1996), embraces the concept
that a genetic commonality exists between dopamine activating
substances like alcohol, the opiates and even glucose. Evidence
now exists that excessive sugar intake, if intermittent, can induce
endogenous opioid dependence. In rats, following repeated intake
of excessive sugar an opioid antagonist induced neurochemi-
cal and behavioral signs of opioid withdrawal. The indices of
dopamine/acetylcholine (Ach) imbalance and anxiety were similar
in quality to withdrawal from nicotine or morphine, suggest-
ing that the rats had become sugar-dependent (Colantuoni et al.,
2001).

In terms of understanding the brain reward cascade there is evi-
dence that serotonergic activation may also influence dopamine
D2 receptor function. This is of interest when we consider the
so-called “sweet tooth” which has predominantly been associated
with serotonin. The work by Kogan et al. (2002) confirmed that
DR4004, a putative 5-HT7 receptor antagonist, has functionally
activated the dopamine D2 receptor. Neuroanatomical data sug-
gest that there may be an interactive role between NAc Ach and
dopamine. There is evidence that NAc Ach is related to natural
consummatory behavior, like feeding, as well as, the neural pro-
cesses that elicit reward from psychostimulants. In this regard,
Hajnal et al. (2000) found that cholinergic interneurons in the
accumbens have a role in body weight regulation and metabolism.
In this context, both stress and dopamine play an important part
in the Ach response.

It is well known that in preclinical studies 2-deoxyglucose
(2DG), the glucose analog, in pharmacological doses is associated
with enhanced dopamine turnover and causes acute glucopriva-
tion. In fact, indications from lines of evidence are that dopamine
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release is associated with a variety of metabolic stressors that
include acute glucose deprivation. Adler et al. (2000) using PET
found that synaptic dopamine concentrations were enhanced by
2DG administration. In healthy volunteers, the administration
of 2DG was associated with significant striatal dopamine release.
These data are important because it further ties glucose levels to
dopaminergic activity. Moreover, there is a relationship between
dopamine release and insulin levels in the tuberoinfundibular neu-
rons. This insulin effect is dependent on the CA++ ions, protein
kinase C Na (+) – H + exchange system. Additionally, when glu-
cose in the brain is lowered and leads to global cerebral transient
ischemia, monamine release of dopamine, especially, is inhib-
ited. In this regard, Trugman and James (1993) showed that D1
antagonists lowered glucose utilization by 24–28%; in the globus
pallidus, entopeduncular nucleus, subthalamic nucleus, SN, and in
the motor cortex, suggesting that by stimulation of the D1 recep-
tor, endogenous dopamine makes a contribution in these regions
to basal metabolism. In contrast with these results both D1 and
D2 agonists increase glucose utilization suggesting that stimula-
tion of D1 and D2 receptors is tied to feeding behavior. Thus, the
importance of the D1 and D2 functional linkage in the brain is
established by this metabolic evidence, which relates to overeating
(hyperphagia).

That dopamine induces hyperglycemia in both animals and
man is well known. The direct effects of dopamine on the release
of glucose from primary cultured rat hepatocytes were studied
in Japan by Shiroyama et al. (1998). The authors investigated the
effect of dopamine on glucose release through the gluconeogenic
and/or glycogenolytic pathways and found the main adrenergic
receptor type beta 2, involved in glucose release. The hypoth-
esis is that increasing the release of glucose from tissue would
reduce cravings for carbohydrates and glucose. In this regard
Shiroyama et al. (1998) supported this notion. Glycogen-rich and
gluconeogenic-depleted hepatocytes were prepared in order to
study glycogenolytic and gluconeogenic-depleted glucose release,
respectively. Dopamine was shown to cause the release of glucose
and the beta blocker propranolol was shown to inhibit this release.
The authors conclude that mediated by beta adrenergic receptors
dopamine has a direct effect on hepatocytes of increasing glucose
release in the glycogenolytic and gluconeogenic pathways.

Freeman et al. (2001) studied the effect of glucose on changes
induced in dopamine neuronal activity by anti-psychotic drugs
and suggested antipsychotic drug-induced changes in midbrain
dopaminergic neuron population activity may be influenced by
caloric intake. Glucose did, in fact, reduced significantly the
number of A9 and A10 dopaminergic cells that were sponta-
neously active per track in control rats, but attenuated significantly
the chronic haloperidol- and clozapine-induced reductions in
dopaminergic cells per track.

Certainly, the compulsion and the loss of control observed in
the drug taking behaviors of drug-addicted subjects is similar to
overeating by obese individuals. Although not well understood
the mechanisms of these behaviors were studied by Michaelides
et al. (2012) utilizing PET in drug-addicted subjects. Reductions
in striatal DA D2 receptors were documented. In pathologically
obese subjects, the same researchers found striatal DA D2 recep-
tors reductions similar to those found in drug-addicted subjects.

Moreover, DA D2 receptor levels were inversely related to the BMI
of the obese subjects. Michaelides et al. (2012) postulated that
decreased DA D2 receptors levels predisposed subjects to search
for reinforcers; drug of choice in the case of drug-addicted sub-
jects and food in the case of the obese subjects to compensate
temporarily for a decreased sensitivity of reward circuits regulated
by the activity of DA D2 receptors.

Discovery of strategies for the treatment of obesity will be
assisted by better understanding of the mechanisms involved in
food intake. Stice et al. (2010, 2012, 2013) and Stice and Yokum
(2013) researched these mechanisms and found that carriers of
the DRD2 A1 allele and other reward gene polymorphisms have
a blunted response to palatable food reward and carriers of D2
and D4 polymorphisms also gained weight in a 1-year follow-up.
Recent studies from Stice et al. (2013) showed an elevated brain
reward response to money cues in adolescents with a parental
substance use disorder, and they suggested support for the reward
surfeit model rather than the reward deficit model and as such
it is different from prediction of obesity. Stice et al. (2013) may
not have considered the role of supersensitive D2 high recep-
tors as suggested by Seeman and Seeman (2014). This is a very
complex mechanism involving epigenetic effects in cases of sub-
stance use especially in parental substance abuse. The well-known
high risk for relapse in carriers of the DRD2 AI allele (Dahlgren
et al., 2011) could be in part due to proposed dopamine recep-
tor supersensitivity (Blum et al., 2009). Furthermore, decreased
reward and negative eating behaviors in obesity are accompanied
by diminished dopaminergic neurotransmission. Bariatric surgery
the most successful therapy for obesity rapidly reduces hunger
and improves satiety, the mechanisms are unknown and little is
known about dopaminergic activity following this surgical proce-
dure. Dunn et al. (2010) has hypothesized that after Vertical Sleeve
Gastrectomy (VSG) or Roux-en-Y-Gastric Bypass (RYGB) surgery
dopaminergic neurotransmission would be affected, influence eat-
ing behaviors and would contribute to the positive outcomes from
bariatric surgery. The results of their study reported an expected
body weight decreased and a decrease in DA D2 receptor availabil-
ity after surgery. These changes were accompanied by significant
decreases in plasma insulin of (62%) and plasma of leptin (41%),
regional decreases in DA D2 receptors (mean ± SEM) were puta-
men 9 ± 4%, ventral striatum 8 ± 4%, caudate 10 ± 3%, amygdala
9 ± 3%, hypothalamus 9 ± 3%, substantia nigra 10 ± 2%, and
medial thalamus 8 ± 2%. Volkow and associates (Dunn et al., 2010)
point out that decreased DA D2 receptor availability followingVSG
and RYGB is most likely reflected in increased levels of extracellu-
lar dopamine. Although better dopaminergic neurotransmission
may improve eating behavior with improved satiety and reduced
hunger after bariatric procedures, in the longer term a decrease
in brain D2/D3 receptor availability may enhance addiction liabil-
ity and addiction transfer or even cross tolerance. The finding of
decreased D2/D3 availability may explain in part the increased risk
of drug seeking behavior reported following bariatric surgery. Our
hypothesis that the real culprit in obesity may be RDS is supported
by this finding (Blum et al., 2011a,b). Increased alcohol intake
following bypass surgery was reported by Hajnal et al. (2012)
and a reduced reward-related (e.g., striatal) neural activation has
been observed following bariatric surgery. Studies by Ochner et al.
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(2012) reveal that post-operatively reduced mesolimbic respon-
sively was associated with reductions in wanting, high-versus
low-calorie foods but not in liking for high caloric foods. These
findings support the hypothesized delineation between wanting
and liking; the idea that wanting, but not liking is a dopaminergic
reward pathway process (Blum et al., 2012a).

Interestingly, in animal models a predisposition in offspring
to food addiction was caused by feeding rat mothers fatty, sug-
ary, and salty snacks (junk food) during pregnancy and lactation.
Compared to controls rat offspring demonstrated an increase in
weight and BMI, their mothers displayed binge eating and junk
food overeating behaviors (Ong and Muhlhausler, 2011). These
observations may be of relevance to pregnant women with eat-
ing disorders and obese women treated with bariatric surgery, in
order for them to have healthy children with normal appetites and
weight. One must also consider the negative consequences of the
hypodopaminergic genetics involved in RDS including obesity.

In support of hypodopaminergic genetics and sugar addiction
Avena et al. (2012), found clear evidence that sugar shares the
characteristics of addiction neurochemicals, since, like addictive
substances, it releases both opioids and dopamine. These authors
Avena et al. (2013a,b) classified sugar as addictive, because it
follows the typical addiction pathway consisting of binging, with-
drawal, craving and cross-sensitization delineated by Blumenthal
and Gold (2010) and Blum et al. (2011a,b).

In fact, cross-sensitization was observed in rats showing the
movement from to sugar to drugs (Gosnell, 2005). Surprisingly
work by Cantin et al. (2010) on a comparative evaluation of the
large majority of rats with a history of cocaine addiction, cocaine
is valued similarly to the lowest concentrations of sweet water.
Additionally, all experiments from the previous 5 years were eval-
uated. The retrospective analysis revealed that most rats will give
up cocaine use in favor of saccharine, the non-drug alternative. A
minority, at the heaviest level of past cocaine use <15%, contin-
ued to take cocaine and in spite of being hungry, chose cocaine
rather than a natural sugar that could relieve their need for calo-
ries. Most importantly Cole et al. (1990) suggest that initiation
into addiction requires, sensitization and cross tolerance, thus, this
model fits for sugar. It is of interest that the withdrawal from sugar
induces imbalances in both Ach and dopamine similar to opiate
withdrawal. Specifically, Avena et al. (2008) using microdialysis
found an increase in extracellular Ach and a decrease in dopamine
release, in the NAc shell, in rats undergoing withdrawal from sugar
binging. This finding suggest that a state, that involves anxiety, an
altered accumbens dopamine and Ach balance is induced by inter-
mittent binging on sucrose and chow followed by fasting. This is
similar to withdrawal from opiates following naloxone and may
be a feature of some eating disorders.

While there are these similarities between the addictiveness of
food and drugs, its validity as a model of obesity has been ques-
tioned based on the idea that food is not a psychoactive drug
(Sansone and Sansone, 2013). With that said, at the Columbia
University Seminar on Appetitive Behavior, the concept of “food
Addiction” was one of various proposed causes of the obesity epi-
demic. This has been vigorously debated in the media (Avena,
2010), as well as in the scientific community (Michaelides et al.,
2013). Moreover, the criteria in the Diagnostic & Statistical Manual

of Mental Disorders, Fifth Edition (DSM-5) pertaining to sub-
stance abuse, has been applied to food addiction in humans based
on ever increasing evidence in animal and humans (Gold and
Avena, 2013). In terms of sugar being considered a psychoac-
tive substance, clinical accounts from self-identified food addicts
describe using food to self-medicate; they eat in order to change
a negative mood state (Blum et al., 2013). Behaviors reported by
self-identified food addicts conform to the seven DSM-5 criteria
for substance use disorders (Campbell et al., 2013). This notion
of commonality has been confirmed by studies that show that
food craving, in both normal weight and obese patients, acti-
vates similar areas of the brain to those indicated in drug seeking
(Wise, 2013). Avena (2010) adequately defined binging, with-
drawal, and craving by presenting evidence from animal models
of binge eating of sucrose or glucose, in a review that summa-
rized evidence for “food addiction.” In a PANTHER analysis of
gene array expression performed on 152 unique genes, resulting
in a total of 193 multiple-factor (MF) assignments, sorted into
20 categories (Avena et al., 2010; Blum et al., 2012a,b) found gene
clusters expressed significantly differently, in the ad libitum sucrose
group compared to the sucrose binge eating group. These clus-
ters seem to be convergent with the neurotransmitters involved
in the brain reward circuitry like serotonin; endorphins; GABA;
dopamine; cannabinoids; ACH and leptin, and specifically in the
brain reward cascade (Yarnell et al., 2013) and RDS (Downs et al.,
2013).

CONTROVERSIAL FINDINGS
Since the original finding by Blum et al. (1990) first to associate
the Taq-A1 of the dopamine D2 receptor gene polymorphism and
severe alcoholism there have been controversial findings possibly
due to poor control screening. One example of poor screening
and negative findings relative to the role of dopaminergic gene
polymorphisms and reward seeking behavior as well as parent-
ing is observed in the work of Creemers et al. (2011) from a
Dutch general population. This problem exists even in the current
literature.

We have cautioned against including RDS behaviors in the
control group which could lead to spurious results. Since that
time there have been no less than 3738 (Pubmed-6-23-14) peer
reviewed articles on many peripheral and central nervous sys-
tem (CNS) behaviors and physiological processes. Understandably
addiction or even the broader term RDS involves very complex
gene × environment interaction and one cannot expect that a sin-
gle gene like the DRD2 gene would have a powerful effect by itself,
however, albeit many negative findings, there is still a plethora
of evidence for the role of the DRD2 gene polymorphisms and a
number (small sample of studies represented herein) of addictive
and other reward dependent behaviors including: alcohol depen-
dence (Pato et al., 1993; Ponce et al., 2003; Munafò et al., 2007;
Smith et al., 2008; Pinto et al., 2009; Grzywacz et al., 2012; Wang
et al., 2013); drug dependence (Li et al., 2004; Xu et al., 2004; Young
et al., 2004; Barratt et al., 2006; Li et al., 2006; Hou and Li, 2009;
Chen et al., 2011a,b; Al-Eitan et al., 2012; Jacobs et al., 2013; Lee
et al., 2013; Ohmoto et al., 2013; Sullivan et al., 2013; Suraj Singh
et al., 2013; Vereczkei et al., 2013; Wang et al., 2013; Clarke et al.,
2014; Roussotte et al., 2014; Schuck et al., 2014); mood disorders
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(Vaske et al., 2009; Huertas et al., 2010; Zhu et al., 2011; Zou et al.,
2012; Hettinger et al., 2012; Jutras-Aswad et al., 2012; Tsuchimine
et al., 2012; Whitmer and Gotlib, 2012; Zai et al., 2012; Peciña
et al., 2013; Zhang et al., 2014); rearing behaviors (Mills-Koonce
et al., 2007; Bakermans-Kranenburg and van Ijzendoorn, 2011;
Beaver and Belsky, 2012; Masarik et al., 2014); obesity (Spangler
et al., 2004; Fang et al., 2005; Huang et al., 2005; Epstein et al., 2007;
Nisoli et al., 2007; Barnard et al., 2008; Blum et al., 2008; Eny et al.,
2009; Epstein et al., 2010; Mathes et al., 2010; Stice et al., 2010; van
Strien et al., 2010; Jabłoński, 2011; Anitha et al., 2012; Chen et al.,
2012; Winkler et al., 2012; Ariza et al., 2013; Carpenter et al., 2013;
Cameron et al., 2013; Hess et al., 2013; Alsiö et al., 2014); Anorexia
Nervosa (Bergen et al., 2005); motivation (Trifilieff et al., 2013);
brain metabolism (Noble et al., 1997); ADHD (Gold et al., 2014),
and pathological gambling (Gyollai et al., 2014).

It has been argued that the significance of the Taq 1A polymor-
phism is presumed to be related to decreased nucleus accumbens
neurotransmission leading to reward deficiency. While human
imaging studies have reported lower levels of striatal DA D2 recep-
tors in subjects with the Taq 1A polymorphism, the significance is
less clear. In subjects with the Taq 1A polymorphism 18F 6FDOPA
studies have reported significantly increased striatal uptake of
18F 6FDOPA consistent with increased DA synthesis. If there is
increased DA synthesis and release, the decreased apparent levels
of striatal DA D2 receptors may be due to increased extracellular
DA levels. Increased synthesis may be due to a decrease in striatal
D2 auto-receptors. While this may be correct the surfeit theory
of drug dependence may be incorrect. In fact, surfeit concepts
have been also made with regard to escalation of cocaine abuse
claiming that the increased abuse is due to increased dopamin-
ergic activity in the accumbens. However, recent clear evidence
from Willuhn et al. (2014) dispels this and suggests otherwise that
escalation of cocaine abuse is due to low dopaminergic function.
In fact utilizing sophisticated analyses they suggested that agonis-
tic not antagonistic intervention would be prudent in terms of
treating all addictions.

In terms of BMI and dopaminergic gene polymorphisms and
subsequent associations there is controversy especially with regard
to the dopamine transporter gene. As stated earlier Chen et al.
(2008) reported a significant negative correlation between BMI
and striatal DAT1 levels. However, others did not find this asso-
ciation in so called obese healthy subjects (once again not very
well screened for RDS behaviors), albeit a larger cohort in the
van de Giessen et al. (2013). In addition this non-association
was also reported by Thomsen et al. (2013) as well utilizing so
called healthy obese subjects. However, there are number of other
reports which support the DAT1 negative association with BMI
including: Need et al. (2006), Fuemmeler et al. (2008), Wang et al.
(2011), Sikora et al. (2013), and Valomon et al. (2014). With these
studies in favor of an association of dopaminergic gene polymor-
phisms and even a study showing that methamphetamine known
to block DAT1 reducing fat and carbohydrate intake (Danilovich
et al., 2014), there is real controversy concerning the actual role
of BMI as a biological marker for obesity relative to percent
body fat, as clearly pointed out by Shah and Braverman (2012).
This notion is highlighted in a study from Chen et al. (2012)
that shows a significant correlation with carriers of the DRD2

Taq-A1 and higher percent body fat compared to DRD2
Taq-A2.

There is some controversy concerning a conclusive statement
that sugar addiction may lead to obesity (Hone-Blanchet and
Fecteau, 2014). However, the evidence seems to favor a bond
between Substance Use Disorders, as clinically categorized in the
DSM 5, and food reward (see Brownell, 2012) including an article
by Gold and Avena (2013).

In terms of eating disorders there have been a number of reports
indicating the potential link between reward gene polymorphisms
and binge eating (Davis et al., 2008). The finding that obese carriers
of the DRD2 Taq-A1 allele had higher reward sensitivity (binging
behavior) compared to normal weight controls favors the surfeit
theory rather than the deficit RDS concept. While this might be
true we must caution against these findings because the controls
in the study may not reflect a phenotype free of all RDS behaviors
which could lead to spurious results. The suggestion of block-
ing Dopamine activity in the reward circuitry may be of interest
in the short term but damaging in the long term as discussed
in this article (Blum et al., 2012a). Interestingly, Gearhardt et al.
(2011) also found differential neuro-correlates to food scores in
healthy young women lean to obese. Food addiction scores cor-
related with greater activation in the anterior cingulate cortex,
medial orbitofrontal cortex, and amygdala in response to antici-
pated receipt of food. Furthermore, food addiction scores showed
greater activation in the dorsolateral prefrontal cortex and the cau-
date in response to anticipated receipt of food but less activation in
the lateral orbitofrontal cortex in response to receipt of food. This
particular study portrays the complexity of attempting to dissect
brain reward function related to eating behavior.

While there is evidence from Stice’s group that polymorphisms
in both dopamine D2 and D4 result in a blunted response to palat-
able foods and subsequent weight gain (Stice et al., 2008a,b,c, 2010)
a paper by Stice et al. (2011) showed in youth that increased striatal
dopamine neurotransmission may also be a risk factor for obesity
using fMRI. Certainly this supports the surfeit dopamine theory
proposed by Robinson and Berridge (2000), and correctly suggests
that obesity is a complex disorder and based on both genetics and
environment (epigenetics) individuals having increased motiva-
tion for food may fall into two categories ( based on gender, age
of onset, etc.) either deficit or surfeit in terms of dopaminergic
function. More research is required to carefully dissect these dif-
ferences in the future in terms of “liking and wanting” (Blum et al.,
2012a; Willuhn et al., 2014).

We have discussed the potential problems associated with
bariatric surgery such as transfer of addiction (Blum et al.,
2011a,b) and the work of Dunn et al. (2010) revealing reduced D2R
availability (hypodopaminergic state) following bariatric surgery
suggestive of increased requirement for self- administered drugs or
behaviors linked to dopaminergic activation. Interestingly in five
obese subjects Steele et al. (2010) found that pre bariatric surgery
the obese subjects had a lower D2 R availability compared to post-
surgery levels 6 weeks after surgery whereby it was found that D2R
availability increased. This of cause would suggest reduced drug
and or addictive behavioral seeking behaviors linked to enhanced
dopaminergic function. The question which remains is that the
findings by Dunn et al. (2010), was post 7 weeks compared to
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6 weeks by Steele et al. (2010) and could this represent a down-
ward trend leading to once again a hypodopaminergic trait. An
important question as it relates to our proposed theories regarding
transfer of addiction following even longer periods post-bariatric
surgery seems prudent.

In addition while we have pointed out that there is evidence
for a decreased availability of D2R in obese subjects (Volkow et al.,
2009) there is some controversy that argues this is only true for
severe obesity (Eisenstein et al., 2013; Kessler et al., 2014). Once
again we evoke the concept that using BMI as a factor is not an
appropriate phenotype (other RDS behaviors may be a confound
variable) and that mild obesity may not indicate the real disorder.
This has been underscored by the need for alcoholism severity as
the true endophenotype (Blum et al., 1990; Connor et al., 2002).
Importantly, Volkow’s group have now published at least 13 papers
supporting their original concept of low D2R availability and obe-
sity (Tomasi and Volkow, 2013), however lowered D2R availability
was not found with novelty seeking in obesity (Savage et al., 2014).

While additional studies are required to determine the link
between dopaminergic function and AN as well as other eating
disorders, there are a number of neurogenetic reports. Gervasini
et al. (2013) showed a number of interesting associations with
dopamine gene polymorphisms including: DRD4 variable num-
ber of tandem repeats (VNTR) 7R/7R was significantly associated
with greater risk for AN; significant differences in asceticism
scores between DAT1 VNTR genotypes; and significant differ-
ences in Drive for Thinness and Body Dissatisfaction between
DRD4- C-616G genotypes. Moreover, Nisoli et al. (2007) found
that independent of obesity, the A1+ allele, both in A1/A1
and A1/A2 genotypes of the DRD2 gene significantly associ-
ated with the Drive for thinness and Ineffectiveness. The A1+
allele, both in A1/A1 and A1/A2 genotypes, was not differ-
ently distributed among disease groups; on the contrary two
EDI subscales (Drive for thinness and Ineffectiveness) resulted
in association with A1+ allele without effect of the eating dis-
ease or obesity. This finding suggested that the A1+ allele is not
simply related to body weight but the A1+ allele is a marker
of a genetic psychological trait in humans with high risk to
develop pathological eating behavior. In fact other work from
National Institute of Alcohol Abuse & Alcoholism (NIAAA) has
clearly shown significant linkage disequilibrium between the −
141 Indel and two exon seven SNPs (939Y and 957Y) of the
DRD2 gene was observed over a distance of >50 kbp in the
AN probands but not in the controls. This further suggests that
transmitted variation in D2 dopamine receptor affecting tran-
scription and translation efficiency plays a role in vulnerability
to AN.

KB220 COMPLEX
It is of interest that the complex KB220Z and variants thereof
have overcome brain reward circuitry abnormalities, in protracted
abstinent psychostimulant abusers observed using qEEG analysis.
In fact, KB220Z following only one oral dose of 24 g resulted in an
increase in alpha bands with a concomitant increase in low beta
bands after 1 h, an effect which usually requires 10–20 biofeedback
sessions. This is further supported by preliminary work in China
using fMRI showing direct significant activation of dopaminergic

pathways compared to placebo during the resting state (Blum et al.,
2012b). Thus if KB220Z stimulates dopamine release then it is
quite possible that the released dopamine will have an impact on
glucose release, which could offset abnormal glucose or even food
cravings. We must await further required research to determine
the benefits induced by this putative natural D2 agonist especially
investigating functional magnetic resonance imaging resting state
functional connectivity (rsfMRI) in rodents.

In summary, typically, obesity is associated with abnormal eat-
ing behaviors. Brain imaging studies, in both humans and animal
models, for the most part, implicate the involvement of DA-
modulated reward circuits in pathologic eating behaviors. It is
known that food cues increase striatal extracellular DA, provid-
ing evidence for the role of DA in the non-hedonic motivational
properties of food (Wang et al., 2009). In addition, food cues also
increase brain metabolism in the orbitofrontal cortex suggesting
the association of this region with enhanced “wanting” of food
consumption. Importantly, similar to drug-dependent subjects,
striatal DA D2 receptor availability is decreased in obese sub-
jects, which may induce them to seek food (glucose and high
fat) as a means to compensate temporarily for under-stimulated
(deficient) reward circuits (Thanos et al., 2008a). Reduced DA D2
receptor densities are also associated with reduced responsively in
both striatal and prefrontal regions involved in inhibitory con-
trol, which may provoke their inability to control food intake
and as such weight gain. Interestingly, gastric stimulation espe-
cially in obese subjects activates limbic and cortical regions.
These same brain regions are activated during drug craving in
drug dependent individuals (Cyders et al., 2013). Moreover, obese
subjects have enhanced sensitivity to the sensory properties of
food. This fact coupled with a reduction of DA D2 receptors
places obese subjects at high risk for uncontrollable eating behav-
ior. As noted, in bypass surgery when eating is not an option,
there is a transfer of addictive – like behaviors and subsequently
drug – seeking may become the new reinforcement (Thanos et al.,
2013).

Thus, we submit that results from these on-going investigations
indicate that multiple, but similar brain circuits are disrupted in
obesity and drug dependence. We encourage new strategies tar-
geted at improving DA function in the treatment and prevention
of obesity a subtype of reward deficiency (Avena et al., 2013a,b).
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