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The problem of deriving the processes of perception and cognition or the modes of
behavior from states of the brain appears to be unsolvable in view of the huge numbers
of elements involved. However, neural activities are not random, nor independent, but
constrained to form spatio-temporal patterns, and thanks to these restrictions, which in
turn are due to connections among neurons, the problem can at least be approached.
The situation is similar to what happens in large physical ensembles, where global
behaviors are derived by microscopic properties. Despite the obvious differences between
neural and physical systems a statistical mechanics approach is almost inescapable, since
dynamics of the brain as a whole are clearly determined by the outputs of single neurons.
In this paper it will be shown how, starting from very simple systems, connectivity
engenders levels of increasing complexity in the functions of the brain depending on
specific constraints. Correspondingly levels of explanations must take into account the
fundamental role of constraints and assign at each level proper model structures and
variables, that, on one hand, emerge from outputs of the lower levels, and yet are specific,
in that they ignore irrelevant details.
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1. INTRODUCTION
Any attempt to derive the processes of perception and cognition
or the modes of behavior from sets of neural activities is con-
fronted with the problem of mapping an incredibly large set of
possible brain states to a very large number of observables. Simply
put, the numbers are staggering: although estimates vary, there
are purportedly about N = 1011 neurons in the human brain
(Sporns, 2012) and even with the very drastic simplification that

a neuron is a binary device, possible states are 2N = 21011
. This

enormous set of states must be mapped into the possible observ-
ables and even in this case numbers are huge: for instance even
with a conservative estimate the number of possible postures
is 1030 (Stephens et al., 2011). The sheer orders of magnitude
involved seem to prevent the possibility of finding any correspon-
dence among elements of the two sets, i.e., the matching of states
to observable processes.

Fortunately there are factors that somewhat simplify the prob-
lem: for instance a given behavior can result from many different
brain states, as redundancy is a well known evolutionary fea-
ture to make living systems more robust. Furthermore brains
are made up of very complex networks (connections are of the
order of 1015), thus neural states are not independent variables
and they tend to form spatio-temporal patterns, rather that dis-
ordered sequences of activity. Indeed, fMRI measures have shown
that spatial maps of activity are formed even in resting state situa-
tions, without any external stimulus (Raichle, 2010). In addition,
as suggested in Ganguli and Sompolinsky (2012), states of the
dynamical systems describing the activity of cortical areas (e.g.,
motor cortex, or sensory cortex) are limited by the dimensionality
of the inputs (e.g., motor task to be performed, or sensory inputs),

which is often much lower than the dimensionality of the cortical
dynamical system.

These simplifying factors notwithstanding, the brain is so
complex that to explain cognitive and behavioral functions
philosophers and scientists have often resorted to conceptual
metaphors (Daugman, 1993); modern examples are the com-
puter and information metaphor (see Werner, 2011) for a critical
review.

An earlier version of the computation metaphor, based on
the seminal work of McCulloch and Pitts (1943), on the equiva-
lence between networks of formal neurons and Turing machines,
was centered on the notion that neural activity implements log-
ical calculus via formal rules for the transformation of for the
manipulation of symbols (Daugman, 1993), an idea which has
provided much impulse to the development of artificial neural
networks and their applications (Haykin, 1994; Werner, 2011).
The computation metaphor later has given rise to the so called
“computational theory” of the brain whose aim is to explain
and to simulate the mechanisms by which the brain performs
a variety of tasks such as, for instance, edge detection or stereo
vision (Marr, 1982). This version of the computation metaphor
has became so popular that the term “computational” is nowa-
days used to characterize almost any model including task analysis
(Daugman, 1993).

Complementary to this approach is the information metaphor,
that views the brain as an information processing device and
focuses on the input–output relations among neurons in the
framework of information theory. The central issues in this
framework are those of coding and decoding of the neural
stimulus, namely which feature of a neural spike train (rate,
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correlations, etc.) carries the information (in Shannon’s sense)
and, next, how this information is decoded by the brain, reveal-
ing the nature of the external (physical) stimulus (Jacobs et al.,
2009; Werner, 2011). The latter problem is known to be an infer-
ence problem (Knill and Pouget, 2004), to solve which Bayesian
techniques have proven to be very successful. This has lead to
the “Bayesian coding hypothesis”: the brain represents sensory
information in the form of probabilities and derives posterior
probabilities of the configurations of the external world (Knill and
Pouget, 2004; Doya, 2007; Friston, 2012).

Computation and information metaphors are useful to eluci-
date important aspects of brain function, but, as pointed out in
Werner (2011), they fail to provide the fundamental link between
the dynamics of neural activity and computational and informa-
tion processing properties of the brain. Thus, a different approach
has emerged which maintains that real comprehension of cogni-
tive and behavioral functions can only follow from the analysis
and explanation of the collective dynamics of neural systems
(Werner, 2011; Parker and Srivastava, 2013).

This is also the point of view taken in the present work: specific
models related to this approach will be reviewed in more detail
later.

Neuronal activity takes place at different scales and a rough
classification can distinguish between microscopic (neurons and
synapses), mesoscopic (networks and local interactions between
neurons), and macroscopic levels (areas of the brain) (Deco
et al., 2008). All these levels have their own specificity determined
by different types of activity patterns. Then understanding the
dynamics of the nervous system requires insights into processes
occurring at different scales and that must be matched by appro-
priate levels of description or representation, characterized by
specific variables and model structures.

Different neural models can be represented as elements of a
two dimensional space (Cessac and Samuelides, 2007). The first
axis of this space describes the type of neuron and its prox-
imity to biology, starting from the Hodgkin–Huxley equations
followed by excitable systems with continuous state and finally
binary neurons of the McCulloch–Pitts type. The other axis takes
in account the collective aspect of neural networks in a hierar-
chy of ordering: one neuron, few neurons, one population of
weakly coupled neurons and finally one population with arbitrary
coupling.

Large neural populations present an obvious similarity with
physical systems composed of very large number of elements
(atoms or molecules) subjected to mutual interactions. In physics
the answer to challenges posed by such systems is to resort to
mechanical statistical methods, which do not try to solve mod-
els at the microscopical level of individual elements, but, instead,
use laws of probability to derive a set of collective variables,
whose properties can then be studied at the macroscopic level.
The success of this approach requires, and indeed depends on,
finding the right variables, which can lead to meaningful macro-
scopic representations, while disregarding irrelevant ones. This,
in turn, involves simplifying the system under consideration,
from a detailed description to a more abstract representation in
which some properties of the elements forming the system are
disregarded.

It must be kept in mind, however, there are crucial differences
when considering physical vs. neurobiological systems.

1. First, neural systems of the brain are part of living organisms.
The problems concerning the transitions from inert to living
states of matter and the characterization of life (Smith and
Szathmary, 1997; Longo and Montévil, 2012) are outside the
scope of this paper. It is enough to say that, at a fundamental
level, activity of neural systems is constrained by the amount
of metabolic energy available and by the need to limit entropy
production (Schrödinger, 1956; Longo and Montévil, 2012).
More relevant for our work is the fact that animal brains have
been shaped by evolutionary pressures and, therefore, neu-
ral systems are subjected to many cost-benefits trade-offs, the
most basic involving the balance between the speed of respose
against the accuracy of identification of a stimulus (Geary,
2005).
These constraints affect the topology of the connections:
empirical evidence suggests that brain anatomical connectivity
is locally clustered with a few long-range connections between
any pair of regions, and this can be explained by the need
to minimize wiring costs while maintaining the possibility
of long range interactions among different areas (Bassett and
Bullmore, 2006).

2. Neurons interact with the rest of the organism and among
themselves in ways, in general, more complex than inter-
actions among elements of physical systems. Furthermore,
neurons are computational units, able to perform non trivial
computations (Koch, 2004).

3. Differently from physics where the elements of a system can
be considered all equal (“all electron are the same” as Fermi
put it), neural systems are characterized by heterogeneity, e.g.,
excitatory vs. inhibitory neurons or electrical vs. chemical
coupling.

4. Neural systems are endowed with specific architectures,
gauged to specific sensory, motor, and cognitive tasks.

5. Networks can learn by changing the strength of their mutual
connections.

6. In physical systems the global behavior can be represented
by simple scalars, for instance critical exponents and corre-
lation lengths in non-equilibrium phase transitions, whereas
models of large networks in the brain must explain the com-
plex spatio-temporal patterns that make up physiological or
behavioral responses. Therefore the question arises of what
constitutes the relevant definition of system activity for a given
level of explanation.

These differences notwithstanding, a statistical mechanics
approach is almost inescapable, since dynamics of the brain as
a whole are obviously determined by patterns of neural activi-
ties occurring at a lower level, and, indeed statistical mechanics
tries to derive the laws at the macroscopic level from interactions
among microscopic components.

A classical example are, in the theory of artificial neural net-
works, the so called Hopfield networks of binary units, (see
Hopfield, 1982; Amit, 1992) and, for more recent results, (Advani
et al., 2013).
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Statistical mechanical techniques are not restricted to the
Hopfield model (Coolen and Del Prete, 2003): they have been
applied also to biological neural systems both to explain exper-
imental data (Masoller et al., 2009; Montani et al., 2009; Deco
et al., 2012) and to provide general models of the brain (Ingber,
1981; Freeman and Vitiello, 2006; Parker and Srivastava, 2013).

It will be argued here that the problem of modeling and rep-
resenting neural systems of increasing size and complexity is akin
to the problem of statistical mechanics and that the way out of
the problem of intractability is the same: to assign at each scale
proper variables, namely variables that emerge from outputs of
the lower level, while ignoring details which are irrelevant for the
higher level.

In particular, the main claims of this paper are:

• Systems at each level obey to the laws holding for the lower
levels, but they are subjected to new constraints that in turn
generate new features, like novel patterns of activity, requiring
adequate levels of representations.

• Constraints derive from the neural connections whose com-
plexity increases with the dimension of neural circuits, whose
topology then plays a central role in determining neural
dynamics.

This approach is inspired by the ideas of Jacob (1977) on the
structure of natural systems:

“Nature functions by integration. . . . Each system at a given level uses
as ingredients some systems of the simpler level but some only. The
hierarchy in the complexity of objects is thus accompanied by a series
of restrictions of limitations. At each level new properties may appear
that impose new constraint on the system. . . Those (constraints ) that
operate at a given levels are still valid at a more complex level.”

2. LEVELS OF COMPLEXITY AND EXPLANATION
Levels of explanations are determined by two main issues: the
choice of state variables and the formal structure of the model.

In very general terms, a neural network is a dynamical sys-
tem describing the temporal evolution of the activities, {ai} i =
1, . . . n, of a neural population of n elements, and can be formally
expressed by a map φ which starting from the state at initial time
t0 yields the state at time t

φi : ai (t0) → ai (t) ; (1)

this system can be either deterministic or ruled by probabilistic
laws. Maps φi are usually the solutions of systems of differential
equations and their formal expressions are typically very complex,
as they depend on a set of external inputs {Ij} j = 1, . . . m and
on the connections among neurons. Thus, in general some sim-
plifications are carried out to make the dynamical system more
manageable.

First one must decide which variable represents the neural
activity: this choice is important not just in order to simplify
the problem but because, implicitly, it identifies which aspect of
neuron dynamics is considered to be important.

Usually in neural networks theory the elementary computa-
tional element is assumed to be the single neuron and the basic

variable is the potential V across the membrane, but other, finer,
levels of resolution could be considered, for instance ion species
and channels or, in principle, the quantum mechanical scale.
Suppose, for sake of argument, that it is possible to write down
and solve the Schrodinger equation for any molecule or atom
of the neuron: the result would be the an incredibly complex
wave function which would not explain more than Hodgkin and
Huxley theory, because the quantum mechanical scale is not really
necessary to understand how spikes are generated, even though,
obviously, the laws of quantum mechanics apply to all atoms
forming the neuron.

In conclusion, for a neuron a “natural” variable is the dif-
ference of potential V across the membrane, whose dynamics
are formally described by the theory of Hodgkin and Huxley.
However, the level of detail of this model is not really required
when one moves from single neurons to neural networks and
more abstract models can be developed, whose structure implic-
itly defines which aspects of spikes generation and transmission
are considered important.

For instance, information transmitted along the nervous sys-
tem of an organism is thought to be encoded by the frequency
of the action potentials (the firing rate), and/or by the timing of
spikes. Then in modeling the transmission of information one
can disregard the shape of the spike and just consider the time
intervals with which action potentials occur: this approach is at
the basis of the “integrate and fire” type of neuron models (Koch,
2004; Deco et al., 2008).

Neural dynamics can be also described by the temporal vari-
ation of spike rates: activity is now identified with the frequency
of action potentials and the sequence of spikes collapsed in just
one number. The reasons behind this choice, besides the obvious
simplification, are based on the observation that many neuro-
biological phenomena appear to be determined at the level of
firing rate. Indeed many experimental data are reported in term
of spike rate, which is considered the fundamental element in the
information processing in the brain, an idea that goes back to
the fundamental work of Adrian (1926). It must be noted that,
in recent years, the idea that spike rate suffices to explain cod-
ing and decoding of neural signal has been, rather convincingly,
questioned (Rieke, 1999).

The rest of this section will try to clarify how increasing com-
plexity of connectivity patterns engenders the emergence of new
properties of neural systems and how levels of explanation can be
found matching this evolution from simple to complex systems.

2.1. MINIMAL NETWORKS
First we shall consider minimal systems of neuron pairs and a
rather abstract and very simple version of the Wilson–Cowan
model (Wilson, 1999) will be adopted to illustrate the role of the
connections in neural dynamics. The state of the neuron will be
represented by its activity a, a real variable, which evolves accord-
ing to a set of differential equations. It is not important here to
give a precise definition of activity, which can be, for instance,
V or spike rate, as the equations used in the following can be
adapted to different meanings of a. Note that the results described
in the sequel are general and not depending on the particular
form of the equations, used here solely for illustrative purposes.
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The activity of a neuron is described by just one differential
equation of the form

τ
da

dt
= −a + S(I − θ), (2)

where τ is a time constant, θ a threshold and I the total input that
can originate from the external world or, more frequently, from
other neurons: in this latter case I can be the sum of several inputs.
The term −a just expresses the obvious idea that in absence of
input the activity relaxes to zero, whereas the function S defines
the effect of the input I on the activity a of the neuron and it
can be modeled in a variety of ways: usually it is assumed S to be
a monotonically increasing function, with S(I) = 0 if I − θ ≤ 0
and tending to a finite value as I increases.

In the following θ will be set to 0 and for simplicity’s sake it
will be supposed that, at least in a time interval δt, I is constant.
Under these assumptions it is straightforward to show that when
the input signal I is switched on the activity a tends to reach a
value a∗ = S(I). Note that, as S is monotonous, there is an one-
to-one relation between a∗ and I, so that for any given a∗ there
exists just one value of I satisfying the equality a∗ = S(I); this
means that the activity a just scale-transforms the input signal,
i.e., reproduces I on a different scale.

Very different, more complex, activity patterns appear in sys-
tem of mutually connected neurons, even when just two units are
considered: the activity is now a vector

a = (a1, a2)

and the corresponding system can be written as

τ1
da1

dt
= −a1 + S (w1a2 + I1)

τ2
da2

dt
= −a2 + S (w2a1 + I2) (3)

The new elements here are the synaptic weights w1, w2, that pro-
vide a description of the interaction between the neurons: three
cases are possible, each characterized by a specific dynamic:

1. the E − E system, where the connections are mutually excita-
tory, that is wi > 0, i = 1, 2,

2. the I − I system characterized by mutually inhibitory con-
nections, wi < 0, i = 1, 2,

3. the E − I system, where one neuron is excitatory and the
other is inhibitory, and the synaptic weights have opposite
signs.

If the connections are mutually excitatory the network is a bistable
system, namely it is characterized by two stable states (attractors):
the activity of both neurons can be either low (possibly zero) or it
can reach high activity levels, depending on the values of synaptic
weights w1, w2, and on the inputs I1, I2. This very simple network
shows that connections between neurons give rise to a set of new
behaviors: for instance, also a very short (ideally instantaneous)
stimulus to one of the neurons can trigger the evolution of both
neurons toward stable high activity levels, i.e., the system is able to
self sustain even when the inputs I1, I2 are switched off. Attractors

of this system are the simplest instance of multi-stabilities, that
can be the basis of short time memory (Wilson, 1999) and can
provide a mechanism for the switching between different percep-
tions or behaviors, as suggested by theoretical and experimental
studies, (Deco et al., 2007; Moreno-Bote et al., 2007).

Two mutually inhibitory neurons are an elementary example
of winner-takes-all networks, which have been widely used in the
context of artificial intelligence and pattern recognition. Due to
mutual inhibition one of the two neurons has high activity levels
whereas the other is not active. The “winning” neuron is deter-
mined by the parameters of the system: in particular if w1 = w2

neuron with the larger input “wins.” Such type of network imple-
ments the very general principle of competitive exclusion, found
also in ecology and population theory, by which when two pop-
ulation compete for resources just one survives (Murray, 2002).
Mechanisms of the winner takes all types are thought to be at the
basis of selection processes, motor control and path integration
(Wilson, 1999).

Finally, a E − I system gives rise to the emergence of
homoeostasis mechanisms, by which sensory input is regulated,
for instance to make the localization of its sources more precise.
Moreover the system can be modified in a straightforward way
to produce sustained oscillations also in presence of a constant
stimulus, an ubiquitous feature in living organisms, from cardiac
cycles to the rhythms of breathing and locomotion. Note that
this property is unique for the E − I arrangement, in that it is
straightforward to show with the standard methods of the the-
ory of dynamical systems that such oscillations cannot appear in
either mutually excitatory or mutually inhibitory systems. It fol-
lows then that oscillations under constant stimulus are due to the
heterogeneity of the system, i.e., the presence of both excitatory
and inhibitory connections. Pairs of E − I type can in turn be
connected into coupled oscillators that act as central pattern gen-
erators, controlling motion routines (Kleinfeld and Sompolinsky,
1988; Brunel and Wang, 2001).

In conclusion these simple neural systems show that coupling
between neurons gives rise to a variety of activity patterns, more
complex than those of a single neuron; hence, they exhibit a larger
spectrum of computational and behavioral properties. The basis
of this enhanced capability resides in the fact that now a1, a2

do not depend solely on the inputs, as connections make them
dependent one on the other.

Consider a pair of neurons to which are given inputs I1, I2,
respectively: if they are not connected the attractors of activity are
a∗

1 = S(I1), a∗
2 = S(I2). As mentioned before there is a one-to-one

correspondence between a∗ and I and therefore any activity pair
of values a∗

1, a∗
2 can be reached given suitable inputs I1, I2, since

activities are independent one from the other. On the contrary
mutual dependence of activities limits the number of states the
system can reach. Suppose that neurons now form, for instance, a
I − I pair. In this case it is straightforward to show that if w1 =
w2 and I1 > I2 the attractors of this system are a∗

1 = S(I1), a2 = 0,
that is the second neuron will be inactive whatever be the value of
I2, provided of course that I1 > I2.

This idea can be made more precise if one considers activi-
ties ai, i = 1, 2, as stochastic variables, with randomness due to
fluctuations of the stimulus or to stochasticity in the mechanisms
generating the neural response.
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The probability that ai take values in a given interval ai + dai

can be computed, at least in principle, via the Fokker Planck equa-
tion (Deco et al., 2008). The derivation of such equation is not
trivial and its solution is, usually, very difficult, but some qual-
itative results can be readily obtained. Let p(ai), i = 1, 2, be the
probability density functions (pdf) of activities ai and let p(a)
be the pdf of the activity vector a; if neurons are supposed to
be independent then the entropy H(a) of the stochastic vari-
able a, a measure of disorder of the system, is the sum of the
entropies of the single variables ai, H(a) = H(a1) + H(a2). On
the other hand it is a standard result of probability theory that if
ai are not independent, as in case of connected neurons, H(a) <

H(a1) + H(a2). Thus, connections among neurons reduce the
effect of casual fluctuations and this in turn entails the generation
of more complex activity patterns.

Mutual dependence of activities has another important conse-
quence: let the activities ai, i = 1, 2 be the input of some neuron
j, and let, for simplicity, assume the weight connecting the input
neurons i = 1, 2 with j to be equal to 1. The total input reaching
j is I = a1 + a2 and its variance σ 2

I ≤ σ 2
a1

+ σ 2
a2

, where the equal-
ity holds only if the activities aj are independent. We see then that
mutual connections provide more reliable global inputs.

2.2. LARGE NEURAL SYSTEMS
It has been shown, so far, that even very simple systems of con-
nected neurons can implement processes of self-organization and
entropy reduction. These properties are inherited by large neural
populations, but obviously increasing the dimensionality of the
system makes the structure of attractors more complex and able to
generate a larger number of possible behaviors: for instance more
multistabilites appear, that can correspond to a larger number of
possible memories or choices. In addition, different experimen-
tal techniques (fMRI, EEG, etc.) have shown that the non-linear
nature of neural dynamics leads to processes of self- organization
and phase transitions (Kelso, 1995; Freeman and Vitiello, 2006).

A variety of theoretical models has been used to investigate the
properties of large scale networks: it is not possible here to give
a detailed review, but they can be subdivided roughly in models
derived by the theory of dynamical systems and models derived
by analogies with physical systems.

A natural application of the theory of dynamical systems is the
concept of neural field, which represents the organization of the
cortex with spatially structured neural network whose dynam-
ics are modeled by differential equations in the continuum limit:
activity of neural fields can form dynamic spatio-temporal pat-
terns, similar to the spatial distributions experimentally observed
in the brain (Wilson and Cowan, 1972; Deco et al., 2008; Bressloff,
2012).

Other models are derived by analogies with physical systems
and use typical methods of statistical mechanics: for instance in
Ingber (1981) collective neural activities in the cortex are for-
mulated by considering first the microscopical level of synaptic
interactions and averaging them spatially to form a mesoscop-
ical domain. The same procedure is then repeated to produce
macroscopic spatial-temporal regions, described by the formal-
ism of stochastic processes. A different, but related, approach
(Freeman and Vitiello, 2006) utilizes many-body field dynamics,

to derive equations describing ordered pattern formation and
phase transitions.

More recently the idea has been put forward that analysis of
self organized criticality can provide useful insight in the anal-
ysis and function of perceptual, cognitive, and motor networks
(Parker and Srivastava, 2013) in that these processes offer a way
out from the stability-plasticity dilemma (Abraham and Robins,
2005), namely the opposite requirements of stability and plastic-
ity. Self-organized criticality is a feature of non-linear dynamical
systems where the macroscopic behavior of a system emerges
from the interactions of its component parts. This results in
non-equilibrium phase transitions, i.e., sharp variation of neu-
ral activity, which depends on the intrinsic dynamics of the
system rather than on external inputs (Parker and Srivastava,
2013).

Neural field and physics based models assume that brain states,
and hence behavior, arises from activity propagating from micro-
scopic to mesoscopic and finally to macroscopic scale, and these
are the basic levels of explanation.

2.3. THE ROLE OF CONNECTIONS
We have seen that large populations of neurons give rise to a
rich variety of behavior. The increased dimensionality of the
system leads to the appearance of new topological properties
and two principles seem to be at work: segregation and integra-
tion. Segregation results in the subdivision of the brain in areas
which, for instance, respond to specific sensory inputs or perform
specialized tasks.

Next, integration among areas is required to process informa-
tion coming from different sources in the external world and to
produce an appropriate behavioral response (Sporns, 2012).

These dual aspects also provide a structural and functional
basis to model brain function. Segregation allows more abstract
levels of explanation, in that neurons belonging to the same area
can be treated as a single variable, for instance by making use of
mean field approximation; any description of the brain activity
aiming to explain behavior, however, cannot help but taking into
account the topology of the connections at the basis of integration
among areas (Geary, 2005; Sporns, 2012).

The increased complexity of neural connections in large pop-
ulations of neurons suggests that the expansion of the range of
possible dynamical states does not depend simply on the number
of neurons but also on the more complex interactions occurring
within the populations. For instance, consider a set of neurons
connected in a purely feedforward way. In this case no oscillatory
behavior can arise in response to a constant stimulus, but, on the
contrary, a feedback loop may give rise to persistent oscillations.

The relevance of the complexity of connections is apparent in
the organization of the visual system, where their topology deter-
mines the receptive fields from the retina to simple, complex,
and hypercomplex cells in the visual cortex, in that the shapes
of these receptive fields require excitatory and inhibitory connec-
tions to form a precise configuration (Wandell, 1995). Specific
structures also characterize the separate, but interactive, visual
systems which preside, respectively, to the formation of internal
models of the external world, and to the control of object-directed
actions (Goodale and Humphrey, 1998).
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Even the generation of simple motions requires specific con-
straints: the neural population must be subdivided in subnets,
each able to perform a specific sub-task, connected in a pre-
cise way to ensure an ordered succession of neural events. The
simplest gesture requires the coordination of activity of different
subnets each firing in a precise sequence: more generally motion
routines result from the synchronization of the activity of many
oscillators, each composed of several neurons, whose phases must
have fixed differences to ensure a proper coordination of single
steps (Murray, 2002).

The type and topology of connections appear then to play a
crucial role in the functions of brain areas at the macroscopical
level. As it could be expected this is true also at the lower scale
of activity patterns: for instance spatially localized areas of activ-
ity can arise from constant input solely if neurons of the area are
linked by mutually excitatory and inhibitory synapses forming
the so called “Mexican hat” weights distribution (Murray, 2002;
Bressloff, 2012). Also, it has been shown that dominant patterns
of spontaneous activities in the brain are determined by neural
connectivity (Galán, 2008).

Data from fRMI studies on spontaneous brain activity pro-
vide further evidence on the role of neural connections. In recent
years several studies found that spatiotemporal activity patterns
are both complex and consistent across different subjects at rest
(Raichle et al., 2001). This evidence poses the question of their
origin, namely whether they are the expression of a common
cognitive state or the consequence of the constraints imposed by
neural connections (Deco et al., 2009).

Several models have been used to predict experimental pat-
terns of activity using connectivity data derived from neu-
roanatomy. These models represent brain areas as nodes of a
graph whose link were derived from neuronatomical data by
application of diffusion tensor imaging (DTI). Dynamics of activ-
ity of the nodes (brain areas) are simulated, for each model,
by a set of differential equations with different variables: mem-
brane potential (Honey et al., 2007; Ghosh et al., 2008), the mean
level of spike rate of a neural population (Deco et al., 2009),
the phase synchrony of neural oscillations (Cabral et al., 2013).
Finally activity can be modeled by a simplified stochastic spin
model (Deco et al., 2012).

For each model the correlation between activity of the pairs
of nodes (functional connectivity) has been calculated and com-
pared with the correlation between brain areas. The results show,
for all models, similar predictions and good agreement between
the experimental and simulated correlations (Cabral et al., 2013).

Two conclusions can be drawn from these analyses. First,
observed spatiotemporal activity patterns in resting state can be
derived just as a consequence of constraints imposed by neural
connections among brain regions. Next, note that the models dif-
fer by the type of variables and the only common feature is the
connectivity matrix, and yet their results are similar. These results,
then, support the idea that connectivity is central in the formation
of patterns of activity in the brain.

Such idea is at the core of the Connectome project (Bullmore
and Sporns, 2009; Sporns, 2012) that intends to under-
stand the complete details of neural connectivity and to con-
struct a map of the complete structural and functional neural

connections in vivo (Sporns et al., 2005; Hagmann et al., 2007,
2008).

3. DISCUSSION
It is often said that the human brain is the most complex struc-
ture in the known universe, even though how such complexity
can be computed is still a open question. In Tononi et al. (1994),
complexity is derived by measures of mutual information, but
other definitions could be considered, based on the entropy of
the states of neural populations (Shiner et al., 1999). In any case
the complex nature of the brain reveals itself in the structure of
its connections and patterns of activities. These two aspects are
inextricably linked: the structure of interactions among elements
of a neural population generates patterns of activity of increasing
complexity.

If the single neuron can just perform a scale transformation
of the inputs, pairs of mutually connected neuron can give rise
to a variety activity patterns, characterized by the presence of
attractors and sustained oscillations. These patterns result from
the constraints that weights impose on activities. Also, we have
shown that in large neural systems the processes of integration
and segregation of connections give rise to a greater variety of
activities of neurons and neuron groups.

As mentioned earlier, in models of biological networks events
are usually supposed to occur at three canonical scales, namely:
microscopic, mesoscopic, and macroscopic, to which correspond
different levels of explanation.

Inside each scale some finer subdivision can be considered.
For instance, motifs, small repetitive networks occurring in large
neural populations and supposed to be building blocks of larger
networks (Sporns and Kötter, 2004; Battaglia et al., 2012) can
be thought of as an intermediate level between microscopic and
mesoscopic scales. Also networks devoted to specific behavioral
or cognitive tasks can provide a link between mesoscopic and
macroscopic levels.

An interesting suggestion has been presented in West and
Deering (1994): in many physical systems “exists a critical dimen-
sion above which fluctuations have only a quantitative effect, but
below which the fluctuation can be amplified to modify the qualita-
tive behavior of the phenomenon.”

In the context of neurobiology, this observation could be
translated to mean that domains in the cortex in which varia-
tions of activity are amplified into sharp transitions implicitly
determine a proper scale for the explanation, for instance, of the
sensory or cognitive responses to an input.

The focus of the present work is on the connectivity among
neurons in large neural populations and considers a simple neu-
ron model with complex connections, so it can be thought of
as situated close to one end of the conceptual space proposed in
Cessac and Samuelides (2007); moving across this space one can
find models with different emphasis on the neuron/connectivity
relationships. At the opposite end of the spectrum with respect
to the approach presented here is the analysis of the computa-
tional properties of the single neuron, which appears to be able
to perform also complex computations (Rieke, 1999; Dayan and
Abbott, 2001; Koch, 2004). Each specific model can be backed (or
disproved) by specific types of data, from recording of electrical
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activity for single neurons or small networks to activity maps, for
instance obtained with fMRI techniques, for large populations.
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