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One of the main tasks of vision is to individuate and recognize specific objects. Unlike
the detection of basic features, object individuation is strictly limited in capacity. Previous
studies of capacity, in terms of subitizing ranges or visual working memory, have
emphasized spatial limits in the number of objects that can be apprehended simultaneously.
Here, we present psychophysical and electrophysiological evidence that capacity limits
depend instead on time. Contrary to what is commonly assumed, subitizing, the
reading-out a small set of individual objects, is not an instantaneous process. Instead,
individuation capacity increases in steps within the lifetime of visual persistence of the
stimulus, suggesting that visual capacity limitations arise as a result of the narrow
window of feedforward processing. We characterize this temporal window as coordinating
individuation and integration of sensory information over a brief interval of around 100 ms.
Neural signatures of integration windows are revealed in reset alpha oscillations shortly
after stimulus onset within generators in parietal areas. Our findings suggest that short-
lived alpha phase synchronization (≈1 cycle) is key for individuation and integration of visual
transients on rapid time scales (<100 ms). Within this time frame intermediate-level vision
provides an equilibrium between the competing needs to individuate invariant objects,
integrate information about those objects over time, and remain sensitive to dynamic
changes in sensory input. We discuss theoretical and practical implications of temporal
windows in visual processing, how they create a fundamental capacity limit, and their role
in constraining the real-time dynamics of visual processing.
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INTRODUCTION – VIRTUAL CONTINUITY AND STABILITY OF
PERCEPTUAL SPACE AND TIME
The perception system is faced with the task of transforming
continuous sensory input into discrete objects and events. It
is critical for survival that the perceptual system is sensitive
and quickly responsive to changes in the input over time in
order, for example, to detect and interpret signals regarding
object or self-motion. However, a primary goal of perceptual
systems is also to uncover stability in the identity and loca-
tion of spatiotemporal objects and to integrate information over
extended periods of time in order to understand complex phe-
nomena such as biological motion (Neri et al., 1998) or events
(Hasson et al., 2008; Lerner et al., 2011; Zacks and Magliano,
2011). Information must be integrated over time to recover the
regularities in the world and to use this perception of order to
make predictions about the near future (Nastase et al., 2014).
Thus, vision in real-time requires a balance combining informa-
tion over time (in order to integrate motion signals or to keep
track of the same spatiotemporal object) and sensitivity to new
information.

A simple example of this challenge for a perceptual system is the
task of crossing a busy street. Perceiving and predicting the motion
of vehicles requires combining information over 100s of millisec-
onds or even seconds, often including the combination of motion
information across occlusion or changes in retinal position caused
by eye movements. On the one hand, combining information over
a longer time period would likely lead to the best possible estimate

of all of the features of the oncoming cars. Nonetheless, the visual
system must also provide a good enough estimate of the current
location of each vehicle in order to support action. Thus, the
perceptual system must optimally balance the competing needs
of speed and information: more time yields better information
but slows down the ability of the organism to react rapidly to the
current state of affairs. It seems likely that the brain provides a
compromise by utilizing a hierarchy of different temporal integra-
tion windows (Pöppel, 1997, 2009; Hasson et al., 2008; Melcher
and Colby, 2008; Holcombe, 2009; Lerner et al., 2011; Masquelier
et al., 2011) and by alternating periods of feedforward sampling
of new information with feedback/re-entrant processes (Di Lollo
et al., 2000; Lamme and Roelfsema, 2000) that create a perceptual
synthesis of the disparate sensory information into coherent, stable
spatio-temporal entities like objects. Indeed, converging evidence
suggests that temporal limits on visual processing can be broadly
divided into two groups of perceptual mechanisms (Holcombe,
2009). A fast group comprises processes of feedforward feature
detection and works on the scale of some 10s of milliseconds. The
second group of visual mechanisms is much slower, taking more
than at least 100 ms and operates on more high-level properties,
like objects that have been selected and individuated.

Here we consider evidence regarding how the temporal win-
dow of object individuation might bridge the gap between fast
feedforward sampling of information and slower object-based
computations. We start with a selective review of the relevant
literature on object individuation, its capacity limits and temporal
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limits in visual perception. Then, we describe a methodology to
experimentally reduce the effective visual persistence of a visual
display in order to more closely map out the time course of object
individuation processes. We review our recent behavioral studies
using this method to show the unfolding of object individuation
and working memory over time. Then we present and discuss
magnetencephalography (MEG) evidence regarding the neural
correlates of this process, including the possibility that neural syn-
chronization patterns can provide useful information about the
nature of integration and individuation. Finally, we discuss the
implications of these findings for capacity limits in visual cogni-
tion, their relationship with natural vision and oscillatory brain
dynamics, and point out some open questions and directions for
future research.

INDIVIDUATION MEASURES VISUO-SPATIAL OBJECT
PROCESSING
INDIVIDUATION: AN INTERMEDIATE STEP BETWEEN SAMPLING
FEATURES AND OBJECTS
Although sensory information seems to extend continuously into
perceptual space and time, the content of cognitive operations con-
sists of coherent scenes containing a limited number of discrete
and invariant objects in any particular instance (Treisman and
Gelade, 1980; Tipper et al., 1990; Kahneman et al., 1992; Baylis and
Driver, 1993; Scholl et al., 2001). Such parsing of the sensory envi-
ronment into elemental perceptual units (Spelke, 1988) provides
a link between sensation and cognition that couples perception
to the external world, free from an infinite regress of referring to
semantic categories (Pylyshyn, 2001). Reading-out objects from
feedforward sensory input is called individuation and involves
selecting features from a crowded scene, binding them into a uni-
tary spatiotemporal entity and segregating this perceptual unit
from other individuals in the image (Treisman and Gelade, 1980;
Xu and Chun, 2009). The output of this intermediate-level visual
analysis is a stable object-based reference frame in which the dif-
ferent features of a specific location in the scene can be bound
together.

Object representations at this stage are suggested to be coarse
and contain only minimal feature information. In fact such indi-
vidual entities do not necessarily provide information about object
identity, but can be regarded as a spatio-temporal placeholder
of the object in focus until feedback processes fill in content.
Several theoretical, psychophysical and neuroimaging studies
have emphasized the computational importance and necessity
of such incremental object representations in intermediate-
level vision, with these entities described as visual indexes
(Pylyshyn, 1989), proto objects (Rensink, 2000), or object-files
(Kahneman et al., 1992; Xu and Chun, 2009). In its essence an
object can be defined as an entity whose recent spatio-temporal
history can be reviewed and therefore still can be referred to
as the same entity despite of changes in its location over time
(Kahneman et al., 1992).

Individuation is an intermediate step in object processing
between bottom-up feature detection and the recognition of stable
and coherent objects. Object representations at this level of pro-
cessing are commonly measured with an enumeration task that
solely requires knowing whether an object is an individual rather

than its identity (which is usually measured with change detec-
tion and interpreted as the content of visual working memory).
In this review we will map the temporal dynamics of visual object
processing as a cascade from (a) sampling a visual signal over (b)
a temporal window of ca. 100 ms duration during which a scene
is segmented and individuated into (c) stable object-based rep-
resentations. Our main result characterizes a brief time window
of persisting sensory information after stimulus onset that lim-
its object individuation and accounts for capacity limits in visual
object processing.

CAPACITY LIMITS IN INDIVIDUATION AND VISUAL MEMORY
Although human cognition is remarkably powerful, its online
workspace, working memory, appears to be highly limited in the
number of informational units it processes (Miller, 1956; Luck
and Vogel, 1997; Cowan, 2000). It is interesting to note that this
capacity is linked to cognitive abilities in general. For example,
inter-individual variability in measures of fluid intelligence and
capacity estimates are highly correlated (Engle et al., 1999; Cowan
et al., 2005; Fukuda et al., 2010b) and reduced capacity is often
found in patients with neuropsychiatric disorders (Karatekin and
Asarnow, 1998; Lee et al., 2010).

Recent evidence suggests that two distinct mechanisms, object
individuation and identification, work together in creating these
visual object capacity limitations (Xu and Chun, 2009). Individua-
tion appears to be the initial bottleneck in visual object processing
from an unlimited in capacity, but fragile, purely bottom-up
and in parallel computed sensory representation (iconic mem-
ory: Sperling, 1960, 1963; Neisser, 1967) to such a capacity limited,
durable and cognitively structured visual store (visual short-term
memory: Sperling, 1960, 1963; Phillips and Baddeley, 1971). A
subset of these individuated objects are elaborated subsequently
during object identification. It is at this stage that identity infor-
mation becomes available to the observer and the content of the
object can be consolidated into durable and reportable repre-
sentations in visual working memory (Xu and Chun, 2009). As
individuation precedes identification, the capacity of the latter has
its upper bound in the limit of the former (Melcher and Piazza,
2011; Dempere-Marco et al., 2012; Figure 1 middle panel). In
fact on a single-subject level, estimates of individuation capac-
ity commonly exceed visual memory limits and the two measures
tend to be highly correlated (Piazza et al., 2011; Figure 1 right
panel).

It has long been noted that individuation is limited in capacity:
we can quickly and effortlessly perceive that there are exactly two
items but not that there are exactly eight items (Jevons, 1871; com-
pare Figure 1 left panel upper row with lower row). Enumeration
is equally quick, accurate and effortless within a narrow range of
one to four objects. Such small numbers of items are supposedly
simultaneously apprehended by a qualitatively distinct mecha-
nism known as “subitizing” (Kaufman et al., 1949). Performance
for set-sizes exceeding this range, as measured by reaction time
and accuracy, deteriorates with every additional item to be enu-
merated (Figure 1 middle panel). This suggests that visual object
capacity limits are grounded in this “subitizing” phenomenon and
that visual processing beyond this limit has to rely on imprecise
estimation or serial and time-consuming counting that requires

Frontiers in Psychology | Perception Science August 2014 | Volume 5 | Article 952 | 2

http://www.frontiersin.org/Perception_Science/
http://www.frontiersin.org/Perception_Science/archive


Wutz and Melcher Temporal windows limit visual capacity

FIGURE 1 | Capacity limits in visuo-spatial object processing. Left panel:

typical stimuli within experiments on visuo-spatial object processing
(individuation, visual memory). Individuation for up to four objects (upper
panels) is accurate and fast. Visuo-spatial object processing above this limit
requires successive perceptual steps (counting, lower panels). Middle panel:

visuo-spatial object processing (individuation, visual memory) as a function of

set-size. Both tasks show a limit of up to four objects. The inflection point of
the sigmoid curve fit to the psychophysical data can be used to estimate
individual capacity limits. Right panel: single-subject correlation between
individuation and visual memory capacity. Limits in visuo-spatial object
processing correlate across subjects and individuation usually exceed visual
memory limits (Figures adapted with permission from Piazza et al., 2011).

successive perceptual steps. In contrast, “subitizing” is thought to
measure visuo-spatial object processing within one single feed-
forward processing iteration (for review, see Melcher and Piazza,
2011; Piazza et al., 2011).

THEORIES ABOUT OBJECT PROCESSING CAPACITY LIMITS
In light of its importance for cognitive and perceptual func-
tioning, the search for the root of this capacity limitation is
fundamental to the study of visual cognition. There are a num-
ber of competing theories for why “subitizing,” and individuation
in general, is limited to sets of only about three or four items
(for review, see Piazza et al., 2011). These theories start with the
idea that capacity measures the number of objects individuated
“immediately” (Kaufman et al., 1949), as reflected in the root of
the word “subitizing” (subitus). This capacity is characterized in
terms of spatial metaphors such as an index, pointer, or slots.
Capacity is thus typically thought of as a limit in spatial res-
olution, rather than temporal limits. Because of the apparent
automaticity and immediateness of processing, several theories
assumed an ad hoc, direct and continuous indexing between
external coordinates and object-files (Pylyshyn, 1989), like focal
slots waiting to be filled in with content (Luck and Vogel, 1997;
Fukuda et al., 2010a). Since performance tends to deteriorate
after around four items (although this does depend on individ-
uals and task), it was proposed that there were four indexes or
slots.

Starting with the idea that subitizing is an all-or-none, uniform
process might, however, neglect the possibility that capacity is
related to the temporal period during which individuation occurs.
Individuation is a computationally complex task. Ullman (1984)
has characterized vision in terms of serial tasks that involves
indexing of salient items, marking previously indexed locations
and multiple shifts of the processing focus. In fact, execution of
such complex coding in real-time would seem likely to require

the implementation of a specialized routine set-up as a series
of elemental operations (Roelfsema et al., 2000). As reviewed in
the following section, temporal aspects of visual perception have
been studied extensively and show that visual processing is not
“immediate” (Kaufman et al., 1949) but always occurs over time.
This raises the question of whether these temporal factors, rather
than or in addition to spatial factors, might underlie capacity
limits.

In terms of time, object individuation is a process that must, as
described above, balance between the need for speed and the aim of
integrating information over time about salient objects in order to
recognize, remember and respond to their properties. This trade-
off is apparent in the case of computer vision systems for robotics,
in which an exact, metric representation of the environment is
computationally expensive and typically too slow to guide behav-
ior in real-time. Computer systems used to drive cars, for example,
do not represent in detail the entire visual scene (Bertozzi et al.,
2000) because such a complete, metric model cannot be updated
in real-time. In the case of the human visual system, one strategy
to deal with this trade-off is to individuate and integrate informa-
tion about a small number of potentially important items within
each perceptual cycle.

TEMPORAL RESOLUTION OF VISUO-SPATIAL OBJECT
PROCESSING
VISUO-TEMPORAL LIMITS BETWEEN FEATURE DETECTION AND
OBJECT-BASED COMPUTATIONS
Temporal resolution refers to the precision of a measurement with
respect to time. Estimates of the temporal resolution of vision
come from a variety of different tasks but can be divided into two
groups of temporal limits: a fast group that operates on the order of
10s of milliseconds and a slower group of visual mechanisms tak-
ing more than 100 ms (Holcombe, 2009). The fast temporal limits
are usually explained by temporal integration of low-level visual
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features (like in the case of flicker fusion or integration masking;
Crozier and Wolf, 1941; Kietzman and Sutton, 1968; Scheerer,
1973a,b; Di Lollo and Wilson, 1978; Coltheart, 1980; Enns and
Di Lollo, 2000; Breitmeyer and Öğmen, 2006). In contrast, slower
temporal limits are usually associated with high-level processing
in an object-based frame of reference like in the case of feature
conjunctions across space (color-shape: Holcombe and Cavanagh,
2001; or orientation-location: Motoyoshi and Nishida, 2001) or
consolidation of objects in visual working memory (Gegenfurt-
ner and Sperling, 1993; Vogel et al., 2006). Unlike the temporal
blurring of basic image features, temporal processing limits for
this slower group have been suggested to depend on selective
attention (Holcombe, 2009). Together these two groups of pro-
cesses act in concert to create a coherent perceptual impression in
time.

Here, we try to combine these two frameworks, tempo-
ral resolution and attentional selection. As reviewed above,
object individuation appears to be the basic set-up process for
object-based representations, introducing selectivity in process-
ing individual properties of a scene. Consistent with this idea
recent evidence suggests that “subitizing” and individuation in
general, rather than being a pre-attentive indexing mechanism
(Trick and Pylyshyn, 1994), requires selective attention (Egeth
et al., 2008; Olivers and Watson, 2008; Railo et al., 2008). We show
that individuation is limited by temporal integration of sensory
information over time and how visual capacity limits arise nat-
urally as a consequence of this integration window. We argue
that intermediate-level vision bridges the gap between fast feature
detection and slower object-based computations, and that this
depends on a temporal integration window that is used to struc-
ture and stabilize individual perceptual elements within a sampled
sensory image.

TEMPORAL INTEGRATION OF SENSORY PERSISTENCE
Following stimulus onset a briefly presented visual display per-
sists perceptually for a limited temporal window of 80–120 ms
(Haber and Standing, 1970; Coltheart, 1980; Di Lollo, 1980).
This persisting window acts like a low-pass filter on dynamic
aspects of real-time vision, limiting the temporal resolution
of perceiving each single visual event. When a second stim-
ulus is presented in rapid succession to a first stimulus, the
associated features of both stimulus onsets are partly inte-
grated into a single percept. Such short-lived sensory integration
intervals have been described to influence visual perception
(Scheerer, 1973a; Enns and Di Lollo, 2000; Breitmeyer and
Öğmen, 2006), visual memory (Di Lollo, 1980), and rapid per-
ceptual decision-making (Scharnowski et al., 2009; Rüter et al.,
2012).

Important insights into the temporal dynamics of sensory inte-
gration have been achieved through the study of visual masking:
the reduction of the visibility of one stimulus, called the target,
by another stimulus shown before and/or after it, called the mask
(Enns and Di Lollo, 2000; Breitmeyer and Öğmen, 2006). It is
classically explained in terms of a two-factor theory: integration
and interruption masking (Scheerer, 1973a,b). Interruption mask-
ing limits more high-level feedback processing after perceptual
analysis of the target has largely finished. Integration masking,

however, results from short-lived temporal collapsing of feedfor-
ward sensory signals, as a consequence of the imprecise temporal
resolution of the visual system. Integration of sensory persistence
between rapid successive stimuli reduces the time to access the
sensory trace of each single stimulus. Hence integration masking
degrades visual performance by fractionating the sensory persis-
tence of the target display and limiting its effective presentation
time. Integration masking is very effectively implemented with
a specific forward masking technique that makes it possible to
quantitatively change the duration of sensory persistence and the
degree of temporal integration by varying the onset asynchrony
between the first and second display (Di Lollo, 1980; Wutz et al.,
2012; Figure 2).

Mask and target elements share the same physical properties,
in order to equate stimulus energy from both visual events. The
only physical difference between mask and target constitutes their
temporal onset asynchrony. Temporal integration of mask and tar-
get features occurs for stimulus onset asynchronies (SOAs) shorter
than around 100 ms, because of smearing of sensory persistence
triggered at each onset. For SOAs exceeding this critical time frame,
mask and target persistence segregate in time and the sensory trace
of the target display can be read-out. In this way, varying the SOA
within this integration masking sequence controls the effective
presentation time of a visual display by fractionating its sensory
trace. We designed this technique to map the temporal dynamics
of successive perceptual processes involved in object processing
with identical visual stimuli only varying task demands: from
basic detection to subsequent individuation and finally identifi-
cation and consolidation of objects in visual working memory
(Figure 3).

INTEGRATION WINDOWS LIMIT INDIVIDUATION CAPACITY
INDIVIDUATION CAPACITY INCREASES UNIT BY UNIT WITHIN THE
SENSORY WINDOW
Individuation stabilizes visual perception by computing objects.
This process is thought to operate within a single glance and is
strictly limited in capacity to a small set of around four objects.
We tested whether visual object capacity is indeed reached at the
very moment a stimulus enters the visual field or instead accu-
mulates with longer viewing time by fractionating a single glance
into smaller units. We used an integration masking paradigm (see
Figure 2) in order to vary the time to access the sensory trace
of the to be individuated items and measured individuation per-
formance for different set-sizes. Contrary to what is commonly
found in “subitizing” tasks, which has consistently shown highly
accurate performance up to around four objects across a wide
range of studies (see Figure 1), fractionating the sensory per-
sistence of the stimulus with integration masking dramatically
reduces individuation capacity. This suggests that reading-out a
small set of individual and stable objects is not an instantaneous
process (Figure 3) but rather evolves over time.

Individuation capacity increases in steps within the lifetime
of sensory persistence of the stimulus (Figure 3; Wutz et al.,
2012). Within integration masking, SOA between mask and target
directly reflects effective target persistence and time to read-out
individual objects. Temporal integration of visual signals is com-
plete and target information is completely inaccessible if there is
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FIGURE 2 | Integration masking sequence. The visual stimuli within this
integration masking sequence, a random-line noise mask and the target
elements (“X”), are rendered physically indistinguishable (i.e., equal
luminance, equal mean line length and width, random spatial position of
lines), enforcing integration of physical features via mask-target similarity
(Blalock, 2013). Mask and target events also offset together at the same time
(gray square at about 60 ms on above scale), so that temporal onset
asynchrony between visual stimuli (SOA; 50 ms above) constitutes the only
physical difference between mask (green square at 0 ms) and target events
(blue square at 50 ms). Temporal integration of mask and target features (red,

dashed line) occurs for SOAs shorter than around 100 ms, since masking
triggered at mask onset continues for this quasi-constant period of sensory
persistence (green, dashed line). With longer SOAs the sensory trace
triggered at target onset (blue, dashed line) successively segregates from
masking persistence and the therein-contained target information can be
read-out for an increasingly longer interval. The maximum time window
available for target read-out spans the entire effective target persistence (i.e.,
without integration from preceding masking persistence) of around 100 ms
(see Wutz et al., 2012, 2014; Wutz and Melcher, 2013 for details on the
masking sequence).

common stimulus onset (SOA = 0 ms). With increasing SOA,
visual signals segregate in time and the read-out of each single
sensory trace increases correspondingly. The slopes of individ-
uation across read-out time, however, co-vary with the number
of individual objects to be processed. Whereas one object is suf-
ficiently stable within 25 ms, two objects require 50 ms to be
individuated. Individuation capacity for four objects, which is
the average visuo-spatial capacity limit (Figure 1), is asymptot-
ically reached after around 100 ms (Figure 3 left panel; Wutz
et al., 2012). Limiting the effective presentation time with inte-
gration masking reveals that processing speed and object capacity
interact, rather than a uniform individuation improvement across
the “subitizing range” with less temporal limitations. Consistent
with this result, interactions between perceptual speed and object
selection have also been reported for multiple object tracking
(Holcombe and Chen, 2013).

Incremental individuation of objects within a stimulus’ sensory
persistence suggests that this temporary integration buffer is func-
tionally critical for object processing. Such an integration interval
might reflect the need to equilibrate read-out of invariant and sta-
ble perceptual form and almost simultaneously integrate changes
in sensory input into a continuous stream of visual impressions.
Sensory images that remain stationary within the first 100 ms after

sampling are successively segmented and structured into objects
within its sensory persistence. Consequently, visuo-spatial object
capacity limitations arise as a result of the narrow integration
window bandwidth (Figure 3).

The speed of stable information accrual, however, is partic-
ularly crucial in case of fast changes in the sampled sensory
image (<100 ms). When the sensory signal changes faster than
the integration window (<100 ms; change, motion, short SOA
masking sequence) individuation capacity is reduced as a func-
tion of the rate of sensory change, stabilizing only a subset
of objects. This drop in visuo-spatial object processing with
higher temporal processing demands balances the needs for per-
ceptual stability in space and continuity in time. One object
can already be stabilized in some 10s of milliseconds. In this
way at least one object can be selected and further tracked for
speeds drawing near the upper temporal limit of visual process-
ing (Kietzman and Sutton, 1968). Structuring an entire scene into
multiple objects, however, requires processing over an interval
of around 100 ms. We argue that vision uses the time window
of sensory persistence following stimulus onset to balance the
opposing needs of individuating stable objects and maintaining
the temporal resolution necessary to track rapidly changing
events.
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FIGURE 3 | Visuo-spatial object processing under conditions of

integration masking. Left panel: enumeration performance for one, two, and
four objects as a function of stimulus onset asynchrony (SOA). Individuation
capacity increases in steps as a function of SOA and hence less integration
masking. One object can be individuated after 25 ms, two objects require
50 ms and the full-set of four objects (the average visuo-spatial capacity limit)
are only stabilized within the entire lifetime of sensory persistence (100 ms).

Right panel: detection is faster and visual memory slower than individuation.
The onset of four visual stimuli can be reliably detected with as little as 25 ms
between mask and target onsets. Individuation of four objects, however,
increases in steps for up to 100 ms as a function of SOA. Visual memory for
four objects that requires identity integration with individuated object-files
remains stable and low across SOAs (Figures adapted with permission from
Wutz et al., 2012 and Wutz and Melcher, 2013).

SAMPLING FEATURES IS FASTER, WHILE VISUAL MEMORY IS SLOWER
THAN INDIVIDUATION
Temporal buffering of input signals does not necessarily imply
that sampling of new information is inhibited completely within
this integration interval. In fact, merely detecting a second event
requires as little as 25 ms between event onsets (Figure 3 right
panel). Despite this remarkable processing speed, the informa-
tional content of such fast feedforward sampling is considered to
be virtually unlimited in capacity (Wundt, 1899; Sperling, 1960)
and can already involve higher-level visual areas, allowing for rapid
scene categorization of natural images (Thorpe et al., 1996; Li et al.,
2002), basic image grouping (Field et al., 1993; Roelfsema et al.,
2000), visual analysis of scene semantics (but not scene syntax, Vö
and Wolfe, 2012; Võ and Wolfe, 2013) or computation of global
summary statistics of the raw sensory image. For example, the
average size of a set of objects can be computed even when the
display changes continuously (Albrecht and Scholl, 2010). Thus
certain global properties of the sensory image can be read-out
during fast sampling, serving as a layout for visual analysis (“the
gist”; Rensink, 2000).

Without translation into a perceptually invariant and stable
representation, however, information about individual elements
within the sensory image is easily over-written by subsequent
input (Wundt, 1899; Sperling, 1960, 1963; Breitmeyer and Öğmen,
2006). Hence, selectivity in spatio-temporal processing does not
arise from a failure to sample the sensory image, but reflects sub-
sequent structuring and stabilization of individual perceptual ele-
ments (Wutz and Melcher, 2013). Accordingly, individuation (but
not basic bottom-up detection) of multiple perceptual elements
evokes a set-size specific modulation of the N2pc EEG-component
that is commonly assumed to index attentional selection (Mazza
and Caramazza, 2011).

This coupling of the spatio-temporal coordinates of the sen-
sory signal to a specific object representation enables identity
integration between rapidly sampled content and slowly com-
puted structure. Consequently, visual memory for an entire

array of individual elements that requires binding of identity
to location remains low throughout the integration bandwidth
(Figure 3 right panel; Wutz and Melcher, 2013). Consistent with
the idea that individuation precedes identification, visual work-
ing memory performance rises gradually to asymptote under
the influence of backward masking (Gegenfurtner and Sperling,
1993; Vogel et al., 2006). In contrast to the forward mask-
ing paradigm described above, backward masking is thought
to reflect a disruption of processing after feedforward percep-
tual analysis is already completed (Scheerer, 1973a,b) but before
consolidating information into visual working memory. This
distinction in object processing stages between individuation
and identification of objects is further fostered by task-specific
activation patterns in parietal areas (Xu and Chun, 2006; Xu,
2007). Within such a “neural object-file” framework multi-
ple visual objects are selected and individuated in an initial
feedforward operation involving the inferior intra-parietal sul-
cus (IPS) and only subsequently identified and maintained in
visual working memory (within superior IPS; Xu and Chun,
2009).

Step-wise, feedforward individuation of only a limited number
of objects within a temporal buffer limits the temporal dynam-
ics of vision. In real-time processing, however, delayed feedback
systems (like the visual system; Felleman and Van Essen, 1991)
exhibit asymptotic unstable behavior when confronted with sig-
nals with different latencies that have to be combined (Sandberg,
1963). Temporal buffering provides a solution to this problem
by synchronizing convergent input streams. In this way, feed-
back processing, like identification, operates upon the outcome
of the whole temporal buffer to ensure spatio-temporally coher-
ent vision. This provides a possible solution to the problem of how
to carve continuous sensory input into coherent objects, despite
the presence of feedback loops. Temporal windows allow for the
read-out of individual elements but also the integration of sensory
flux into a dynamic stream of visual impressions (Öğmen, 1993;
Wutz and Melcher, 2013).
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NEURAL MECHANISMS: ALPHA PHASE SYNCHRONIZES
INDIVIDUATION AND INTEGRATION
It has been suggested that implementation of integration win-
dows within perceptual processing might involve brain oscillations
(Varela et al., 1981; Pöppel and Logothetis, 1986; Dehaene,
1993). Numerous studies have shown that the temporal rela-
tion between sensory stimuli and neural oscillations can alter
the perceptual outcome. For example, psychophysical threshold
estimates have been shown to vary with the phase of ongo-
ing oscillatory activity (Busch et al., 2009; Mathewson et al.,
2009) and recent evidence suggests even a causal link between
the two (Neuling et al., 2012). Moreover, perceived simultane-
ity and sequentiality of apparent motion percepts depend on the
phase of the occipital alpha rhythm (Varela et al., 1981; Gho
and Varela, 1988). Such periodic fluctuations have previously
been described as rhythmic background sampling of the sen-
sory surrounding (VanRullen et al., 2007; Busch and VanRullen,
2010). These results suggest that oscillations impose a “per-
ceptual frame” on feedforward processing such that integration
and individuation of sensory signals depends on its periodic
phase.

One key characteristic of brain oscillations is robust phase syn-
chronization to transient input (Buzsáki and Draguhn, 2004).
In addition to effects of ongoing oscillations prior to stim-
ulus onset, stimulus evoked synchronization patterns might
reveal how phase information influences perceptual integra-
tion. In this view, external stimulation results in a “reset” of
functionally relevant oscillatory patterns such that their phase
synchronization is locked to stimulus onset. Resets might in
particular occur in response to transient sensory change, like
saccadic eye movements or real-world transitions (i.e., stimu-
lus onset). In fact, evoked responses to successfully detected
and entirely missed stimuli differ extensively (Busch et al.,
2009) and alpha phase-locking accounts for individual differ-
ences in a rapid visual discrimination task (Hanslmayr et al.,
2005). Likewise, reset cyclic patterns in visual task perfor-
mance have been reported in response to sudden flash events
(Landau and Fries, 2012) or auditory sounds (Romei et al.,
2012). Moreover, electro-cortical stimulation studies demon-
strated a causal link between phase resets and perceptual per-
formance by showing that repetitive transcranial magnetic stim-
ulation (TMS) at 10 Hz synchronizes natural alpha oscillations
(Thut et al., 2011) and biases spatial selection in visual tasks
(Romei et al., 2010, 2011).

In support for the idea of a link between phase synchroniza-
tion and temporal integration windows, we have demonstrated
that the perceptual outcome of integration masking depends on
short-lived alpha phase synchrony over parietal sensors mea-
sured with MEG (Wutz et al., 2014). We contrasted trials in
which observers accurately individuated low set-sizes of target
items (up to 3) from masking persistence with trials in which
mask and target elements integrated in time and individua-
tion failed (see Figure 2). Correct individuation is accompanied
by a reset selectively synchronizing alpha oscillations within
a temporal window of around 100 ms (so for approximately
one alpha cycle) shortly after onset of the masking sequence
(Figure 4).

It is important to note that alpha phase synchrony reset by the
masking sequence only distinguishes between individuation and
integration of visual transients on rapid time scales (<100 ms;
short SOA trials). Segregating sensory changes exceeding this crit-
ical time frame (long SOA trials) instead depends on slower beta
power modulations prior to stimulus onset (Wutz et al., 2014). The
time course of the alpha phase synchrony reset (≈100 ms; ≈one
alpha cycle) is consistent with the perceptual effects of integration
masking (Enns and Di Lollo, 2000; Breitmeyer and Öğmen, 2006;
Wutz et al., 2012). These results suggest that short-lived alpha syn-
chronization is in particular key for perceptual processing of fast
sensory changes. Precise phase coding within this integration cycle
(through e.g., eigenfrequency damped oscillations; Buzsáki and
Draguhn, 2004) in response to sensory transitions might balance
individuation of perceptual elements and integration of sensory
flux to guarantee spatio-temporal coherent perceptual outcomes.

IMPLICATIONS AND FUTURE DIRECTIONS
THE MAGIC WINDOW: TIME AND CAPACITY LIMITS
Following Miller’s (1956) seminal paper discussing the “magic
number” of 5–7 objects, the nature of these capacity limits has
been a matter of intensive debate. Although a review of this exten-
sive literature is beyond the scope here (for review see Cowan,
2000), it is important to note that the role of time in capacity
limits has been almost neglected in any of the major theories.
As described above, limits in the capacity of object individua-
tion can be explained by the limited duration of visual persistence
and the cycle of feedforward and feedback processing: in other
words, temporal, rather than spatial, bandwidth. One advantage
of a temporal window explanation of capacity is that capacity lim-
its emerge naturally out of the rate of object individuation within
this window of persistence, without the need to posit any ad hoc
mechanisms.

In terms of neural implementations, the MEG evidence
reported here, as well as related neuroimaging studies (Todd
and Marois, 2004; Knops et al., 2014) suggest that neurons in
posterior parietal cortex (PPC) may be involved in the individ-
uation of objects. Specifically, capacity limits may reflect the
spatial and temporal nature of attentional priority (saliency)
maps in PPC (Melcher and Piazza, 2011; Franconeri et al., 2013;
Knops et al., 2014). Unlike the priority maps in early visual areas
(Zhang et al., 2012), attention priority maps in parietal cortex are
thought to integrate bottom-up and top-down saliency estimates
for objects over time (Bogler et al., 2011), allowing for object
information to be accumulated and maintained (Mirpour et al.,
2009; van Koningsbruggen et al., 2010). The results reviewed here
emphasize the temporal aspects of the individuation process in
determining attentional priority and capacity.

INTERACTION WITH NATURAL VISION: RETINOTOPY AND VISUAL
STABILITY
A fundamental challenge for the perception of coherent spatiotem-
poral objects is that objects move and so do our sensory receptors.
In retinotopic space, object motion would be expected to create
smear within the image plane along the motion path and blurry
object representations (the so-called “moving ghost problem”;
Öğmen and Herzog, 2010). Whereas motion smear can be reduced
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FIGURE 4 | Individuation and integration of visual signals depends

on short-lived alpha phase synchrony shortly after stimulus onset.

Phase synchrony [measured with inter-trial coherence (ITC); Makeig
et al., 2004; also called phase-locking factor (PLF); Tallon-Baudry et al.,
1996] is higher within correctly individuated trials compared to incorrect
integration. Phase synchronization in response to the masking sequence
is short-lived (∼100 ms; lower panel) and selective for alpha oscillations
(8–12 Hz; left panel). Neural generators of this effect are located in

mostly left-hemispheric parietal areas (peak difference: left inferior
parietal; localized using a linear constrained minimum variance (LCMV)
beamformer algorithm; Van Veen et al., 1997). In particular, phase
synchrony distinguishes between individuation and integration only for
short SOA trials, in which temporal integration of rapid transients
occurs; but not for long SOA trials, in which sensory changes exceed
the critical integration time frame (Figure adapted with permission from
Wutz et al., 2014).

by mechanisms similar to meta-contrast masking (Chen et al.,
1995; Purushothaman et al., 1998), the read-out of moving objects
would still result in fuzzy perceptual form computations. In order
to avoid such “ghost-like” appearances the visual system might
rely on motion segmentation when computing non-retinotopic
representations (Öğmen and Herzog, 2010). This development
of non-retinotopic representations necessitates integration over a
temporal interval on the order of 100–150 ms (Öğmen et al., 2006;
Öğmen and Herzog, 2010; Otto et al., 2010). Temporal integration
of feature persistence over this temporal interval has also been
implicated in the use of spatial cues for motion direction in natu-
ral images (a“motion streak”; Geisler, 1999). In general, perceptual
mechanisms responsible for motion and clear, un-smeared objects
share functional characteristics and are capable of analyzing form
and motion concurrently (Ramachandran et al., 1974; Burr, 1980;
Burr et al., 1986), fostering the close link between object form and
motion perception, and temporal integration over an interval of
ca. 100 ms of image persistence.

The temporal window of individuation reviewed here might
serve as a buffer to translate fast retinotopic representations
into stable, but slower non-retinotopic (including spatiotopic,

frame-based or object-based: Melcher, 2008; Lin and He, 2012)
representations that are of particular importance when objects
move or change quickly. Perceiving an object as an individ-
ual within a crowded scene requires the observer to represent
an object’s spatiotemporal coordinates distinct from the back-
ground and from other individuals in the image. Such a structured
perceptual representation contains information about sensory
input that is invariant to its absolute retinotopic coordinates
and gives rise to non-retinotopic form. Static input remains
long enough on a well-defined location in the image, so that
its associated features can be firmly attached to this location
and capacity limits arise as a function of individuated loca-
tions within the image persistence. In case of fast changes in
the image plane, however, only a subset of locations can be
selected and individuated into non-retinotopic representations.
In this way the need for higher temporal resolution balances
with limits in the computation of stable non-retinotopic indi-
viduals in each single instance. Such an equilibrium might
be essential in mediating between stable object and dynamic
motion perception with minimal motion smear in the image
plane.
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Likewise, eye and head movements create a change in the retinal
input and thus, potentially, a source of confusion when integrating
information over time (for a discussion of the similarity between
the effects of object and eye motion, see: Ağaoğlu et al., 2012). Typ-
ically, stable eye fixation periods last on the order of 150–300 ms
in reading and natural viewing tasks (for review see Rayner, 1998).
The external world seems stable despite these dramatic spatio-
temporal disruptions in sensory information, perhaps relying on
non-retinotopic object representations (Melcher and Colby, 2008;
Burr and Morrone, 2011; Melcher, 2011).

We speculate that the visual system might deal with the prob-
lems of object and self-motion in a similar way, involving at least
two stages of processing (see also Otto et al., 2010). At the first
stage, relatively brief visual integration windows, such as those in
visual masking studied here, combine information in a retino-
topic manner over a time course that allows for feedforward
processing. This time window is used to successively individu-
ate spatio-temporal elements and hence stabilize sensory input. It
is not coincidental, then, that the most brief eye fixations found
in reading and natural viewing and intermediate-level visual inte-
gration windows would be of similar minimum durations since
the goal of each new fixation is to sample part of the visual scene
in order to individuate the most relevant objects. It would not
make sense to move the eye before all of the information is sam-
pled up to the level of object individuation, or to “mis-align” this
integration window so that the saccade occurs right in the middle
(integrating information during individuation from two different
spatial locations). Moreover, the complete cycle of feedforward
and feedback processing would tend to exhaust all of the useful
information available from the fovea, making long fixation dura-
tions inefficient unless the information of the retina was dynamic
or difficult to resolve.

At the second stage, however, information about the same
object should be combined over time, over a longer time win-
dow and a non-retinotopic spatial reference frame. Accurate
perception of object motion relies on non-retinotopic form com-
putation (Öğmen et al., 2006). Likewise, there are a growing
number of examples of spatiotopic perceptual effects across eye
movements (for review, see Melcher and Colby, 2008; Burr and
Morrone, 2011; Melcher, 2011) and there is converging evidence
that this involves time scales of several hundred milliseconds
(Zimmermann et al., 2013a,b). Overall, these studies suggest that
there are both relatively brief, retinotopic integration windows and
longer, spatiotopic windows.

One clear hypothesis from this idea is that retinotopic tempo-
ral integration windows should be reset by saccades and aligned
to new eye fixations. As described above, it would be problematic
if the basic object individuation process combined information
from different spatial locations due to a saccadic eye movement
changing retinal position during the integration window. Some
evidence for a reset in the window of object individuation comes
from studies of masking. Visual persistence, as measured by the
missing dot task (Di Lollo, 1980), does not continue across sac-
cades (Bridgeman and Mayer, 1983; Jonides et al., 1983) and
masking can be disrupted by the intention to make a saccade
(De Pisapia et al., 2010). On the other hand, the much longer
temporal integration windows involved in apparent motion, over

100s of milliseconds, do not seem to be disrupted by saccades
(Fracasso et al., 2010; Melcher and Fracasso, 2012). Further stud-
ies are needed to precisely define the relationship between fixation
onset and the temporal windows of object individuation. The
exact timing of temporal integration windows relative to eye
movements might play a critical role for the impression of visual
stability on rapid time scales. Such fast, feedforward computa-
tions might still involve retinotopic coordinates and therefore
require saccadic remapping. However, much of the impres-
sion of visual stability might involve longer time windows that
are not entirely retinotopic and thus do not require saccadic
remapping.

NEURAL SYNCHRONIZATION COORDINATES FEEDFORWARD AND
FEEDBACK OBJECT PROCESSING
We have reported that the short-lived alpha phase synchroniza-
tion reset by stimulus onset predicts perceptual performance on an
integration task. Time- and frequency characteristics of this effect
(100 ms at 10 Hz) point to an alpha phase reset involved in feedfor-
ward individuation of objects. This is in line with classical findings
identifying partly reset alpha oscillations in event-related poten-
tial (ERP) signatures (especially in the N1 component, Makeig
et al., 2002). The functional role of alpha oscillations in per-
ception and cognition are debated. Recent advances, however,
have associated alpha phase information with the selection and
recognition of object representations (for review see Palva and
Palva, 2007). In support of this view, but in contrast to spa-
tial or numerical limits in object segmentation, we propose an
account based on temporal bandwidth in which phase-locking
couples external signals to alpha integration cycles. Processing lim-
its might then arise as a result of feedforward encoding within one
synchronized cycle. A temporal window model based on neural
synchronization patterns has several interesting functional char-
acteristics that could coordinate feedforward and feedback object
processing.

Synchronous coupling to oscillatory dynamics can structure
processing into cyclic time windows for coherent integration of
convergent inputs that arrive with different latencies (Buzsáki
and Draguhn, 2004). In this way alpha oscillatory cycles might
reflect temporal reference frames as elementary building blocks
in feedforward processing. In fact, alpha cycles have been pre-
viously discussed as segmenting input into discrete snapshots of
∼100 ms (VanRullen and Koch, 2003). In line with this view illu-
sory motion reversals in the continuous wagon wheel illusion are
most prominent at wheel-motion frequencies around 10 Hz and
are correlated with alpha band amplitude in the ongoing EEG trace
(VanRullen et al., 2005, 2006).

VanRullen and Koch (2003) also suggested a possible way
to read-out object information within such a temporal win-
dow that might involve coupled networks of nested oscillatory
sub-cycles (coding individual content) within slow-wave carriers
(defining the temporal reference frame). Such neural networks
are capable of representing individual information by means of
frequency-division multiplexing (Lisman and Idiart, 1995). Espe-
cially, phase-amplitude coupling between α- and γ-frequency
bands could prioritize the selection of multiple visual objects
(Jensen et al., 2012, 2014). In this view the selection of individual
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items might be regulated via timed release of inhibition within one
alpha cycle (Van Rullen and Thorpe, 2001; Klimesch et al., 2007;
Jensen et al., 2012). Indeed, neural network dynamics of individ-
uation can be modeled based on inhibition between competing
items in a saliency map (Knops et al., 2014). Whereas multiplex
coding is a well-established principle of neural function (O’Keefe
and Recce, 1993; Kayser et al., 2009; Siegel et al., 2009), future work
is needed to determine its functional significance for human visual
cognition. Our results support the view that oscillatory synchro-
nization might represent multiplexed phase coding and suggest
that object capacity limits can arise, not only by the read-out speed
of individual elements, but also from the bandwidth of the carrier
function.

Importantly, integration windows can help to coordinate
visual processing dynamically, because phase synchronization
occurs in response to internal or external changes in input (via
phase resetting; Buzsáki and Draguhn, 2004; Buzsáki, 2006;
for review see Thut et al., 2012). In this way, brief phase syn-
chronization might contribute to the rapid coordination of
distributed neuronal populations (like the retinotopically orga-
nized areas along the visual hierarchy; von der Malsburg, 1981;
von der Malsburg and Schneider, 1986; Singer and Gray, 1995;
Fries, 2005). This might be important in order to cope with the
combinatorial complexity of crowded visual scenes that contain
individual elements that can consist of a nearly infinite number
of feature combinations and can appear at any given moment
in time or spatial location. This flexibility in combining arbi-
trarily complex features over space and time would seem to
require neural network communication. In line with this view,
phase synchronization has been hypothesized to sub-serve cross-
modal integration or feature binding and to gate the information
flow between local neuronal ensembles (Singer, 1999; Salinas and
Sejnowski, 2001). Consistent with this idea, phase synchrony
between distributed processing sites has been demonstrated to
predispose visual perception (Hipp et al., 2011), route selective
attention (Siegel et al., 2008; for review see Womelsdorf and
Fries, 2007), predict individual working memory capacity (Palva
et al., 2010) and reflect higher-level temporal processing limits
(Gross et al., 2004).

Our results reveal wide spread synchronization patterns in
parietal cortices locked to stimulus onset already at the level of
object segmentation. We argue that vision makes use of phase syn-
chronization as a temporal reference frame in which distributed
processing can be orchestrated and aligned to input transitions.
Reset synchronization patterns might therefore coordinate feed-
forward and feedback mechanisms involved in encoding complex
and dynamic visual scenes with nearly real-time speeds. In this
framework, temporal windows might reflect a neural strategy for
coherent perception of objects in space and time.

CONCLUSION
As described above, there is accumulating psychophysical and
electrophysiological evidence for an intermediate-level temporal
window involved in the individuation of a small number of rele-
vant objects in a scene. Individuation capacity increases in steps
within the lifetime of visual persistence of the stimulus, suggest-
ing that visual capacity limitations arise as a result of the narrow

temporal window of sensory persistence. In contrast to the main
theories based on spatial slots or finite spatial resources, these
findings suggest that time is the critical factor in the emergence of
capacity limits. In this way, capacity limits can be seen as a result of
the need of the visual system to coordinate feedforward and feed-
back processes. The cycle of feedforward and feedback processing
reflects a compromise between the competing needs of a percep-
tual system to integrate information over extended periods of time
(to get a better estimate of stable object and event properties) and
sensitivity to changes in the environment.
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