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In a musical ensemble such as a string quartet, the musicians interact and influence each
other’s actions in several aspects of the performance simultaneously in order to achieve a
common aesthetic goal. In this article, we present and evaluate a computational approach
for measuring the degree to which these interactions exist in a given performance. We
recorded a number of string quartet exercises under two experimental conditions (solo and
ensemble), acquiring both audio and bowing motion data. Numerical features in the form
of time series were extracted from the data as performance descriptors representative of
four distinct dimensions of the performance: Intonation, Dynamics, Timbre, and Tempo.
Four different interdependence estimation methods (two linear and two nonlinear) were
applied to the extracted features in order to assess the overall level of interdependence
between the four musicians. The obtained results suggest that it is possible to correctly
discriminate between the two experimental conditions by quantifying interdependence
between the musicians in each of the studied performance dimensions; the nonlinear
methods appear to perform best for most of the numerical features tested. Moreover, by
using the solo recordings as a reference to which the ensemble recordings are contrasted,
it is feasible to compare the amount of interdependence that is established between the
musicians in a given performance dimension across all exercises, and relate the results to
the underlying goal of the exercise. We discuss our findings in the context of ensemble
performance research, the current limitations of our approach, and the ways in which it
can be expanded and consolidated.

Keywords: interdependence, string quartet, ensemble performance, signal processing, motion capture, mutual

information, nonlinear coupling, granger causality

INTRODUCTION
Music performance is, as one of the major performing arts, a
social experience. The performer, the audience as well as the com-
poser interact with each other in both direct and indirect ways;
which makes music performance a fertile research topic when
studying human interaction. In this article, we place the focus on
the interaction between the members of a musical ensemble and
the interdependence that is established between them as a result.

Musicians playing together must not only synchronize their
internal timekeeping mechanisms, but also jointly shape the
more nuanced aspects of their performance such as intonation
or dynamics in order to achieve a (presumably) shared aesthetic
goal (Keller, 2008). In order to achieve this while performing, the
members of the ensemble communicate nonverbally with each
other to exchange information using auditory as well as visual
feedback (Goebl and Palmer, 2009; D’Ausilio et al., 2012).

The mechanisms that enable social interaction between the
performers also depend on the type of ensemble. Larger ensem-
bles are usually led by a conductor who acts as a leader in terms of
temporal coordination (Rasch, 1988; Luck and Toiviainen, 2006),

evaluates the performance and provides additional instructions
on how it should be carried out. On the other hand, small ensem-
bles are typically conductor-less, and such tasks are placed upon
the musicians themselves. In small ensembles, each performer
usually has their individual part, while in large ensembles it is
common for given sub-sections of the same instrument family to
have identical parts—examples of this are first and second violin
sections within a symphonic orchestra. The subject of research in
this study is the string quartet, a small conductor-less ensemble
of four musicians (two violins, a viola and a cello) where every
musician has their own individual part. Although the first vio-
linist is traditionally considered the “leader” of a string quartet,
this cannot be always expected to be the case; moreover, there is
no guarantee that he/she will have the greatest decision-making
influence in the group (Young and Colman, 1979).

In small conductor-less ensembles such as a string quar-
tet, each musician must divide their attention between shaping
their own performance and aligning their expressive choices
with the rest of the ensemble. Such cognitive mechanisms, along
with anticipatory and timekeeping mechanisms, are discussed at

www.frontiersin.org September 2014 | Volume 5 | Article 963 | 1

http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.00963/abstract
http://community.frontiersin.org/people/u/112297
http://community.frontiersin.org/people/u/140192
http://community.frontiersin.org/people/u/140179
http://community.frontiersin.org/people/u/140816
mailto:panos.papiotis@upf.edu
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Papiotis et al. Measuring string quartet interdependence

length in Keller’s work (Keller, 2008; Pecenka and Keller, 2009;
Keller and Appel, 2010). Timekeeping and synchronization mech-
anisms are also extensively investigated in the so-called tapping
literature (a literature review of which can be found in Repp,
2005), a combination of theoretical and empirical research on
sensorimotor synchronization based on experiments featuring
rhythmic tapping tasks. Among the many findings, there are two
important synchronization phenomena of special interest for the
scope of this study: phase correction and period correction; viewing
tempo as an oscillating system, these two mechanisms account for
short-term and long-term adjustment mechanisms, respectively.

Performance in an ensemble typically involves more com-
plex temporal interactions than the ones observed in a rhythmic
tapping task. Synchronization in more natural performance con-
ditions has been investigated by Goebl and Palmer (2009), who
demonstrated the importance of both auditory and visual feed-
back in piano duet performances as well as how the absence of
one type of feedback affects the musicians’ reliance on the other.
This study also used solo performances as a baseline measure
of timing similarity, a technique that is adopted in our study.
Besides controlling the existence and type of feedback, the authors
also assigned musical roles (leader/follower) to the musicians.
While some effects of the musical role on the performance could
be observed, the results combined with the participants’ com-
ments suggest that cooperation is preferred to strict musical roles.
Empirical work done by Moore and Chen (2010) on string quar-
tet performance also seems to support this conclusion; despite
observing high temporal precision across the entire quartet, they
did not encounter evidence for one individual performer being
responsible for the achievement of synchrony. In their words: “In
the complex performance studied here every response is con-
ceivably a stimulus, every stimulus conceivably a response; but
neither can be identified” (pp. 413, section 4.3 “Timing and
interactions”).

The lack of explicitly assigned roles in an ensemble’s perfor-
mance does not necessarily imply a lack of increased influence
for specific members of the ensemble. In a comprehensive data-
driven study carried out by Wing et al. (2014), two different string
quartets were asked to perform a short excerpt while introduc-
ing unrehearsed expressive deviations in terms of timing in their
performance. The authors utilized phase correction measures to
quantify the amount of effort employed by one performer to
adjust to the tempo of others, showing different results for each
quartet. In one quartet, the first violinist exhibited less adjustment
to the others than vice versa, while in the second quartet, the levels
of correction by the first violinist matched those exhibited by the
others; a result that highlights how quartets can employ different
strategies ranging from an “autocracy” to a “democracy” when it
comes to tempo coordination. Another work that deals with social
interaction in string quartet performance has been carried out by
Glowinski et al. (2013). Focusing on body movement, its relation
to expressivity, and the purpose it serves in coordinated action,
they highlight the challenges of carrying out empirical research
on realistically complex scenarios.

When it comes to other performance dimensions such as into-
nation, dynamics, or timbre, there is little work to be found;
the large majority of the literature is focused on temporal

synchronization. One of the few related studies deals with singing
in barbershop quartets (Kalin, 2005), where the results strongly
suggested that the singers strive to separate their formants from
one another in order to facilitate correct intonation; which also
suggests that modulations in one dimension of the performance
(in this case timbre) might be employed to achieve optimal
coordination in another (intonation). A methodology for ana-
lyzing polyphonic vocal performances has also been outlined
by Devaney and Ellis (2008). While differences between solo
and ensemble performance have been observed both for dynam-
ics (Goodman, 2002) and intonation (Nickerson, 1949; Mason,
1960), it is still unclear what their function is within the context of
musical interaction. Recent work on how intonation and dynam-
ics adjustments contain information on the coordination between
musicians has been presented in Papiotis et al. (2012).

So far, the literature mostly addresses the question of how
ensemble musicians coordinate their actions to bring about
the optimal co-variation of expressive performance parameters.
There are however several factors that can contribute to, or hinder
coordinated action: the technical difficulty of the piece in rela-
tion to the capabilities of the performers, the conditions under
which the performance takes place, the performers’ familiarity
with the piece and with each other and the performers’ condition
during the performance, to name a few. Besides practical fac-
tors, joint musical action assumes that a common goal is shared
by the musicians—an assumption that cannot be always consid-
ered fully true in every ensemble’s performance. In this article, we
would like to pose a question different than how musicians inter-
act: given a certain performance by an ensemble, is it possible to
measure whether the musicians are indeed interacting and adapt-
ing to each other to achieve a coordinated result? This question is
especially relevant when studying performance dimensions such
as Intonation or Dynamics, rather than synchronization—since
the establishment of a common tempo is the first fundamental
step in order to achieve joint musical action.

We therefore wish to test the following hypothesis: for each
dimension of the performance individually, it is possible to mea-
sure whether the musicians are indeed interacting with each other
by measuring the interdependence between time series features
extracted from the acoustic result of the performance. In other
words, to investigate whether the variations in the way the musi-
cians produce sound contain information about the interaction
between them that is observable using current computational
methods of interdependence. An extension to our hypothesis is
that it is not only possible to measure whether the performers are
interacting or not, but to also compare how much the degree of
interaction in a given performance dimension varies across dif-
ferent pieces/exercises. In this sense, it is not our main goal to
directly contribute on understanding how musical interaction is
achieved, but rather propose and evaluate a new set of tools that
can be subsequently used for contributing to future research on
musical interaction.

To this end, we have carried out a set of experiments with a
professional string quartet performing under two different exper-
imental conditions; solo and ensemble. A set of performance
descriptors in the form of time series is extracted from each
musician’s individual sound and sound-producing gestures, each
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related to a single dimension of the performance (intonation,
dynamics, timbre, and timing). We quantify the amount of inter-
dependence between these descriptors across the four musicians
for each of the dimensions using a set of computational methods
originating from different academic disciplines. A statistical test is
performed on the obtained results in order to assess whether sig-
nificantly higher interdependence is encountered for the ensemble
condition in comparison to the solo condition. Finally, we cal-
culate the variation of interdependence estimations across the
different exercises and relate the results to the underlying musical
scores.

MATERIALS AND DATA PROCESSING
This section outlines the experiment (in terms of materials and
design), the subjects, and conditions under which it was carried
out, the data acquisition methodology, and the steps for data
pre-processing and feature extraction.

EXPERIMENT DESIGN
Two main considerations were taken into account during the
design of the experiment. The first one was ensuring that each
chosen exercise has a simple shared goal that is clearly under-
stood by the performers; the sharing of a common interpretation
is identified as an instrumental aspect of ensemble performance
(Keller, 2008). Our selection of the musical scores given to the
performers was therefore focused on this.

The second consideration was having a set of ground truth data
through which comparisons could be as unambiguous as possi-
ble. It was essential that the conditions under which the data was
gathered reflect the studied phenomenon; and such data can only
originate from an experiment whose design is focused around
having a clear condition where zero interdependence among the
musicians exists, and a case where some interdependence exists.
The chosen solo and ensemble experimental conditions reflect our
attempt at achieving such distinct examples.

Selection of scores
The scores were selected from an exercise handbook for string
quartets (Heimann, 2007), specifically designed to assist in

strengthening the interdependence among the members of the
ensemble. These exercises consist of short, simple musical tasks
whose difficulty lies in achieving overall cooperation rather than
correctly performing one’s individual task successfully. Six exer-
cises were chosen from the handbook; with each exercise focusing
on a single dimension of the performance. Table 1 contains a
summary of the exercises along with a short description for
each one.

Each exercise was accompanied by a set of instructions from
the composer that were presented as the shared goal of the exer-
cise; examples include “the quartet should sound as one instru-
ment” or “the crescendi and decrescendi must start at the same
time and end at the same time.” Besides textual instructions, the
intonation and timbre exercises also featured visual annotations
that aided in comprehending the goal of the exercise, with the
intonation exercise featuring an upward/downward arrow denot-
ing a departure from equal temperament to just intonation, and
the timbre exercise featuring a small visual aid denoting the dis-
tance of the bow from the instrument bridge. A short excerpt of
each exercise can be seen in Figure 1. In all exercises, the musi-
cians’ parts are homophonic and generally contain isochronous
rhythms.

Subjects and conditions
The subjects were members of a professional string quartet that
had already been performing together for more than a year,
including public performances. The mean age of the musicians
was 30 years old (σ = 2.9), and all of them had been practic-
ing their respective instruments for at least 20 years, including
at least 10 years of professional experience as members of musi-
cal ensembles (chamber orchestras, symphonic orchestras, string
quartets). They were all compensated for their participation in
the experiment, and signed an agreement (jointly prepared by
the participating academic institutions) regarding the use of their
data and experimental conditions.

The experiment was conducted in two main experimental con-
ditions, solo and ensemble. In the solo condition, each musician
performed their part alone using a stripped-down version of the
score; meaning they had no access to the other musicians’ scores

Table 1 | Description of the recorded exercises along with their durations (minutes:seconds).

ID Dimension Description Score Ensemble Solo duration

duration duration (average and sdev)

I1 Intonation “Vertical listening,” the ability to adjust one’s intonation according to the
intonation of the rest of the ensemble

2:12 2:24 μ = 2:12
σ = 0:09

D1 Dynamics Immediate (“subito”) changes in dynamics 0:56 1:03 μ = 0:57
σ = 0:04

D2 Dynamics Gradual (“crescendo/decrescendo”) changes in dynamics 0:48 0:52 μ = 0:47
σ = 0:05

R1 Rhythm Small changes in tempo (“poco piu/meno mosso”) 1:20 1:00 μ = 0:57
σ = 0:06

R2 Rhythm Different degrees of rhythmic syncopation 1:20 1:14 μ = 1:19
σ = 0:11

T1 Timbre Similar tone quality for different bow-string contact points (“sul tasto/sul
ponticello”) and different dynamics levels

0:56 1:05 μ = 0:56
σ = 0:04
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FIGURE 1 | Score excerpts from all exercises used in the experiment.

(Legend: I1, Intonation exercise; D1, Dynamics exercise nr.1; D2, Dynamics
exercise nr.2; R1, Rhythm exercise nr.1; R2, Rhythm exercise nr.2; T1,
Timbre exercise).

nor the textual instructions (or annotations for the case of into-
nation) therein. Essentially, the solo condition represents a case
where both the shared goal and the communication channels
between the musicians are absent. Each musician was provided

with their solo version of the score prior to the actual record-
ing, and was left to rehearse their part alone for approximately
15 min per exercise. We provided the musicians with four bars of
a metronome click immediately before recording as an indication
of the desired tempo.

Following the solo condition, the musicians were given the
complete quartet’s score along with the composer’s instructions.
They were then left to rehearse the exercise for a short period
(10–15 min) or until they felt they were achieving the exercise’s
shared goal satisfyingly. We did not interfere with the musicians
during this rehearsal period. While the rehearsal condition was
also recorded, it was not carried out under controlled conditions
and the performance was frequently interrupted by the quartet
to discuss a particular passage or take notes. For that reason, we
decided to exclude it from this study; the importance and role of
the rehearsal process in string quartets has also been highlighted
in other work (Davidson and King, 2004).

Finally, following rehearsal, the musicians were recorded in the
ensemble condition; similar to the solo condition, they were pro-
vided with four bars of a metronome click immediately before
recording. For the case of the intonation exercise, we carried out
two separate ensemble recordings: one without the annotations
provided by the composer, and one with the annotations. This
was made to ensure that the solo version of the intonation exer-
cise was not too far removed from the ensemble version. For
the case of the timbre exercise, the provided annotations were
present in both the solo and ensemble scores since they referred
to the playing technique rather than the common goal of the
ensemble.

The experiment was carried out over the course of several
days; all of the solo condition recordings were carried out dur-
ing the first day, with the rehearsals and ensemble condition
recordings spread out throughout the rest of the days. The order-
ing of the recording sessions was the following: solo violin 1
(all exercises), solo violin 2 (all exercises), solo viola (all exer-
cises), solo cello (all exercises), ensemble dynamics (D1), ensem-
ble dynamics (D2), ensemble intonation (I1), ensemble rhythm
(R1), ensemble rhythm (R2), ensemble timbre (T1). The con-
sistent solo-ensemble ordering was a necessity of the experi-
mental design, as the lack of familiarity with the scores of the
rest of the ensemble is a core characteristic of the solo condi-
tion. While this could potentially entail a risk of order effects,
the simplicity of the musicians’ parts in each exercise reduces
the possibility of becoming more familiar through additional
exposure.

DATA ACQUISITION
Individual audio from each performer was acquired through the
use of piezoelectric pickups attached to the bridge of instruments;
the recorded audio was sampled at 44,100 Hz. Pickup gains were
manually adjusted in the mixing console with the aid of level
meters in the recording equipment to avoid the clipping of indi-
vidual audios and to ensure equivalent levels of intensity led to
equivalent signal amplitudes. We also simultaneously acquired
bowing motion data at a sample rate of 240 Hz by means of a
Polhemus Liberty wired motion capture system as detailed in
Maestre (2009). In a post-acquisition step, the synchronization
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of audio and motion capture data was reviewed through the
alignment of linear timecode timestamps.

DATA PROCESSING
Score-performance alignment
The existence of an underlying musical score for each of the
recordings provides a reference to which each performance can
be compared. In order to obtain this absolute reference, we per-
formed a precise score-performance alignment for each record-
ing, obtaining note onset and note offset times expressed in
milliseconds. This procedure was carried out by means of a semi-
automatic score-performance alignment algorithm which utilizes
both the audio as well as motion data to iteratively estimate note
boundaries (Maestre, 2009). Estimated note onsets and offsets
were then manually inspected to correct possible segmentation
errors.

Feature extraction
The next step to our data processing pipeline is to extract numer-
ical features in the form of time series from our data which char-
acterize the performance in terms of four dimensions: Intonation,
Dynamics, Tempo, and Timbre.

Intonation refers to the accuracy of the produced pitch for
a musical performance. String instruments are fretless and are
therefore capable of producing continuous pitch; the musicians
must constantly perform adjustments to their intonation in order
to achieve harmonic consonance for the overall sound. When
each performer has a different score, the achievement of con-
sonance is further complicated by the choice of tuning tem-
perament—fine adjustments to the note intervals that can vary
from a twelve-tone equal temperament (i.e., each pair of subse-
quent notes having an identical frequency ratio) to just intonation
(intervals defined by the harmonic series), among several other
temperament systems.

We remind the reader that our goal is not to observe whether
the performers are indeed achieving consonance or not, but to
measure whether the adjustments to their intonation are influ-
enced by the rest of the ensemble. Given that each performer
has their own part, a direct comparison of each performer’s pro-
duced pitch is not possible; an objective reference is needed in
order to express intonation adjustments in a common scale across

performers and different melodic lines. We utilized the score as
“reference pitch,” i.e., perfect non-adjusted intonation (accord-
ing to the equal temperament tuning system), from which the
performer’s deviations can be calculated.

Our pitch deviation feature is therefore defined as follows. For
every recorded performance, the fundamental frequency of the
audio signal is estimated using the YIN algorithm (De Cheveigné
and Kawahara, 2002). YIN’s output is pitch expressed in a linear
scale of octaves (with 0 being 440 Hz, 1 being 880 Hz etc.). For
a given recording r1, let us define f est(r1) as the estimated pitch
for that recording and f score(r1) as the reference pitch based on
the score. By computing the difference between the two, we can
obtain the pitch deviation δf r1:

δf r1 = f est(r1) − f score(r1) (1)

An example of the pitch deviation feature for the D1 exercise can
be seen in Figure 2.

Dynamics refer to the varying levels of loudness or sound
intensity in a musical performance. For every recording, we
estimate loudness (in dB) as follows. The recorded audio sig-
nal is divided into frames of 33 ms with a 97.5% overlap. Let
(xi

1, · · · , xi
n) be the samples of the ith frame: for each frame we

compute the Root Mean Square (RMS) of its samples:

RMS (i) = 1

n

√
(xi

1)2 + · · · + (xi
n)2 (2)

Finally, we express the RMS value in dB:

logRMS (i) = 20 log10 (RMS(i)) (3)

We perform this logarithmic scaling in order to obtain an estima-
tion of loudness that is closer to human auditory perception, as
per Fechner’s law (Dehaene, 2003).

Typically, musical scores include both instantaneous as well as
gradual changes in dynamics. When the scores of more than one
performer feature the same dynamics change at the same time,
this can give the impression of coordinated action regardless of
whether such coordination actually exists. In order to remove
such a bias from our data, and in accordance to previous studies
(Papiotis et al., 2012), we subtract a linear trend from the logRMS

FIGURE 2 | Excerpt from the pitch deviation feature from exercise D1, for all instruments.
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feature in each individual note in the recording. This way, the
note-to-note changes in dynamics are greatly reduced, making
temporal fluctuations of dynamics within each note’s bound-
aries much more prevalent. An example of the detrended logRMS
feature for the D1 exercise can be seen in Figure 3.

Timbre refers to the quality of the sound, and is an elusive con-
cept whose perceptual and quantitative attributes have been the
subject of study from many academic viewpoints (Krumhansl,
1989; Hajda et al., 1997). In contrast to the rest of our studied
dimensions, timbre cannot be easily studied individually as it is
inextricably connected to both dynamics and pitch (Krumhansl
and Iverson, 1992). In our analysis, we opted to quantify the tim-
bre characteristics of the performance using two different types
of data: instrumental (sound-producing) gesture data as well as
audio data.

Our gesture-based timbral feature is the bow-bridge distance,
the distance (in centimeters) from the bridge to the point of
contact between the bow and the string that is being excited.
Bow-bridge distance is a parameter that is instrumental in the
achievement of different timbral qualities in bowed string per-
formance (Schelleng, 1973). Composers and performers use the
sul tasto or sul ponticello (on the bridge and on the fingerboard,
respectively) terms to describe bow-bridge distance in written
music and manipulate the quality of the produced sound by
changing the balance between the amplitude of the fundamental

frequency and the higher harmonics. In fact, bow-bridge distance
manipulation was also the main focus of the timbre exercise we
used in our experiments. An example of the bow-bridge distance
feature for the D1 exercise can be seen in Figure 4.

Audio-based timbral features are typically extracted from the
audio spectrum: examples of the most prevalent features include
the spectral centroid and the Mel-Frequency Cepstral coefficients
(MFCCs). As mentioned above, separation between timbre and
other dimensions of the performance (dynamics and pitch) is
difficult to achieve in a spectral representation. Recent work by
Peeters et al. (2011) investigated the redundancy among spectral
features using correlational analysis and hierarchical clustering.
The authors were able to distinguish ten classes of features that
were largely independent from a statistical point of view. Of
the available features based on their feature extraction tool-
box, we chose to use the Spectral Crest feature: a descriptor
of the noisiness/harmonicity of the sound that was shown to
be relatively independent from other dynamics- or pitch-related
features.

Spectral Crest is calculated as follows: first, the audio signal
is divided into frames of 23 milliseconds with a 75% overlap.
For the ith frame of the audio signal, the power spectrum is
obtained using the Short-time Fourier Transform, yielding k fre-
quency amplitude values ak (where K is the number of STFT
bins). Finally, the Spectral Crest is obtained by comparing the

FIGURE 3 | Excerpt from the logRMS feature from exercise D1, for all instruments.

FIGURE 4 | Excerpt from the bow-bridge distance feature from exercise D1, for all instruments.

Frontiers in Psychology | Cognitive Science September 2014 | Volume 5 | Article 963 | 6

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Papiotis et al. Measuring string quartet interdependence

maximum value and arithmetical mean of the power spectrum:

SpectralCrest (i) = max ak(i)
1
K

∑K
k = 1 ak(i)

(4)

An example of the Spectral Crest feature for the D1 exercise can
be seen in Figure 5; as a ratio, it is dimensionless and therefore
has no unit.

Tempo refers to the speed or pace at which a musical composi-
tion is performed. In the context of music information retrieval,
tempo is typically represented with so-called tempo curves, mea-
sured in beats-per-minute (BPM). For the ith note in a recording,
the tempo curve is calculated as follows:

Tempo (i) = performed note duration

score note duration
∗ scoreBPM (5)

where the performed note duration and score note durations are
expressed in seconds and the score BPM is the initial BPM tempo
at which the musicians were instructed to play. After the ini-
tial computation, the tempo curve is smoothed at the bar level
using a moving average to derive an overall tempo behavior; this
way we aim to focus on long-term tempo fluctuations (similar to
the period correction mechanism discussed in the introduction)
rather than short-term asynchronies. An example of the Tempo
curve feature for the D1 exercise can be seen in Figure 6.

The rationale behind using this tempo representation (rather
than using e.g., note onset/offset asynchronies) is as follows. First,
it was our intention to look at tempo tendencies on a high level of
abstraction (as opposed to low-level asynchronicities), and such
performance intentions are much more evident on a broader
time scale. Second, a time-series representation of tempo allows
us to approach it in the same way as for the other performance
dimensions when quantifying interdependence.

Temporal alignment of solo features
Since in the solo case the musicians were not performing simul-
taneously, the recordings are temporally mismatched; even if they
are manually shifted so that the first note onsets coincide, given
time they will start to drift apart up to the point where the same
sample index corresponds to different points in the score. In the
case of Intonation, Dynamics and Timbre, our objective is to
study the musicians’ interdependence excluding all other facets
of the performance, and it was therefore necessary to time-warp
the solo performances in order to compare the features while
excluding timing information.

This was achieved by applying a note-by-note temporal warp-
ing algorithm based on resampling the extracted time series (pitch
deviation, logRMS, bow-bridge distance, Spectral Crest) between
note onsets. For each note in the score, the samples between the
note onset and the note offset of the solo note are resampled to
match the duration of the equivalent ensemble note. Then, this

FIGURE 5 | Excerpt from the spectral crest feature from exercise D1, for all instruments.

FIGURE 6 | Tempo curve feature for exercise D1, for all instruments.
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segment is temporally shifted so that the temporal position of the
note onset and offset matches that of the corresponding note of
the ensemble recording. All solo recordings were thusly processed
to match the ensemble recordings, in order to mimic the natural
timing of a joint performance. An example comparison between
ensemble and solo features for violinist 1 in the D1 exercise can be
seen in Figure 7.

INTERDEPENDENCE METHODS
Having extracted our time series features for each performer and
each recording, the next step is to search for interdependence
between the features of each member of the quartet. Four meth-
ods for measuring interdependence have been tested and will be
briefly presented in the following section; for an excellent litera-
ture review on these methods we redirect the reader to the one
carried out by Pereda et al. (2005). Although the methods vary in
terms of complexity as well as the research discipline in which
they originate from, we opted to divide the methods based on

whether they are most suited for dependences of a linear or non-
linear nature. For each category, there is one symmetric and one
directional method; the difference between the two being that
a directional method can also assess the direction of influence
between two interacting time series besides the strength of the
interdependence. Besides introducing the four methods, we also
provide some additional details on the way they are computed as
well as the parameters that must be selected for computation.

LINEAR METHODS
Pearson product-moment correlation coefficient
This is the most common method utilized for quantifying pair-
wise linear dependence; its output px,y between time series x
and y ranges from px,y = −1, i.e., complete linear inverse cor-
relation between timeseries x and y, to px,y = 1, i.e., complete
linear direct correlation between time series x and y, with a value
px,y = 0, suggesting an absence of linear dependence between the
two time series. Since linear correlation is calculated pairwise

FIGURE 7 | Comparison of all extracted features for the ensemble (blue) and solo (red) recordings of violin 1, for an excerpt of exercise D1 (for the

pitch deviation, logRMS, bow-bridge distance, and spectral crest features) and the entire exercise (for the tempo curve feature).
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and is symmetric, we calculated the correlation coefficient for
each one of the 6 possible pairs between the four musicians.
The final correlation values were normalized using the Fisher
z-transformation.

It must be noted that indiscriminately applying Pearson
Correlation on continuous data regardless of their characteristics
(such as autocorrelation or distribution) has been criticized and
alternatives such as first-order differencing have been proposed
(Schubert, 2002; Upham, 2012). The reason we have opted not
to perform such transformations on our time series is two-fold.
First, first-order differencing time series that describe perfor-
mance dimensions such as dynamics or intonation would severely
alter their structure, potentially removing critical characteristics
of the time series (such as within-note temporal fluctuations)
which we wish to maintain. Second, one of the goals of this study
is to compare across different methods in terms of their capac-
ity to detect interdependence from the same performance data; if
another measure can correctly quantify interdependence without
the need for first-order differencing, it should be preferred over a
method which requires such transformations.

Granger causality. In studying the relationship between time
series, it is often useful to assess the directionality of that rela-
tionship; besides the overall degree of interdependence, it is also
important to draw conclusions about the direction of influence,
i.e., whether variable 1 is influencing variable 2 more than the
opposite. A method that is capable of giving such an estimate is
Granger causality (Granger, 1969), a statistical concept that was
first applied to econometrics, and recently to computational neu-
roscience (Brovelli et al., 2004; Londei et al., 2007). It poses the
hypothesis that if time series x causes time series y, then past val-
ues of x should significantly help in predicting future values of
y as opposed to simply using past values of y to predict its own
future; this is assessed through the use of a multivariate vector
autoregressive modeling (or linear regression analysis, depend-
ing on the approach). In this study, we used a freely available
MATLAB toolbox by Seth (2010).

Since Granger causality is a directional measure, the con-
nectivity analysis of four musicians yields 12 pairwise causality
assessments Gx, y (three causal pairs for each variable) as well
as the total causal density Gdensity of the ensemble, a bounded
value between 0 and 1, with 0 signifying a complete lack of
causal interactivity; we use the latter value as an estimation of the
total amount of causal interactivity sustained by the network of
musicians.

Nonlinear methods
Mutual information. Mutual Information is a non-directional
measure originating from the field of Information theory. It is not
a nonlinear method per se, being based on the concept of entropy
as proposed by Shannon in the 1950s and therefore dealing with
reduction of information rather than the linearity of the data.
For a pair of time series x and y, mutual information measures
the difference between two types of Joint Shannon Entropy; the
joint entropy of the two variables as measured from the data, and
the joint entropy of the two variables as if they were independent
(Moddemeijer, 1989; Cover and Thomas, 2006). If they are indeed

independent, MIx, y is zero. Otherwise, MIx, y is a positive, non-
bounded value measured in nats that represents the reduction of
uncertainty about x that is gained by knowing the outcome of y
and vice versa. Similar to the case of linear correlation, the analysis
of a network of four musicians yields 6 pairwise values of Mutual
Information.

Nonlinear coupling coefficient. There exists a variety of nonlinear
interdependence measures that quantify the signature of direc-
tional couplings between two time series x and i (Lehnertz, 2011);
it is assumed that the processes behind the time series are char-
acterized by separate deterministic dynamics which both exhibit
an independent self-sustained motion. Assuming the existence
of directionality, i.e., the dynamics of one process driving the
dynamics of the other, directional couplings can in principle be
detected by quantifying the probability with which close states
of the driven dynamics are mapped to close states of the driving
dynamics.

The state space of x (i.e., the set of all its possible states with
each state corresponding to a unique point in the space of that set)
is reconstructed using the method of state space embedding; then,
a number of spatially nearest neighbors are selected for each point
xn in the state space (excluding temporal neighbors through the
use of a given threshold). Finally, the squared mean Euclidean dis-
tance from the nearest k neighbors of xn is calculated, along with
the y-conditioned squared mean Euclidean distance (by replac-
ing the nearest neighbors of xn by the equal time partners of the
closest neighbors of xn). It has been shown that, when x → y cou-
pling occurs, there is increased probability that close states of y
are mapped to close states of x. Several available measures based
on the above paradigm exist; of these we use the measure L, which
was recently shown to be of higher sensitivity and specificity for
directional couplings than previous approaches (Chicharro and
Andrzejak, 2009). The output of Lx, y is a bounded value between
0 and 1, with 0 signifying a complete lack of interdependence. For
a more in-depth explanation of this particular method as well as a
proper mathematical formulation, we direct the reader to the arti-
cle where the method was originally introduced (Chicharro and
Andrzejak, 2009). As in the case for Granger causality, 12 pairwise
calculations of coupling Lx, y are carried out. However, we cur-
rently have no method of measuring the overall interdependence
of the string quartet; the average value of the set of 12 coupling
values is used as estimation instead.

DETAILS ON INTERDEPENDENCE ESTIMATION AND PARAMETER
SELECTION
For the Intonation, Dynamics, and Timbre dimensions, we chose
to sequentially compute interdependence on the time series by
splitting them into consecutive non-overlapping windows. There
are three reasons behind this decision: first, as we are study-
ing features that change with time, it is natural that the amount
of interdependence will also vary—something which can poten-
tially reveal the role of the musical score in the performance,
as the collaborative task that must be jointly carried out by the
musicians. Second, by windowing the time series we can reduce
the non-stationarity in our data, thus making the interdepen-
dence measures more reliable. Finally, we can deal with smaller
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amounts of data at a time, which removes the need to downsam-
ple our signals in order to cope with memory requirements. For
the Tempo dimension, we apply the four interdependence meth-
ods on the entire tempo curve features, since they are sampled at
much larger time intervals and therefore consist of significantly
fewer samples.

For the three performance dimensions where a windowed
approach was adopted, the time series features are split into win-
dows whose size is calculated in beats according to the score. Beat
positions are converted to sample indices in order to split the time
series using the score-performance alignment. All of the recorded
exercises have a bar length of four beats with the exception of the
Intonation/I1 exercise which has a bar length of six beats; we chose
a universal window size of eight beats as a compromise (in all
exercises except I1, 8 beats correspond to two bars, while in I1 they
correspond to 1.5 bar). Section “Comparison Across Different
Exercises and Parameters” provides some further information on
how the window size affects the interdependence estimation.

For each window, interdependence strength is calculated using
the four methods as described in the previous section (six pair-
wise values of Pearson Correlation, six pairwise values of Mutual
Information, one value of Causal Density, and twelve pairwise
values of Nonlinear Coupling). These values are averaged across
performer pairs (except for the causal density value which is not
pairwise) to produce a single sequence of interdependence values
along the duration of each recording. For the Tempo dimension,
the estimated interdependence values are simply averaged across
all performer pairs since there is no windowing.

Besides the window size, other parameters are necessary to be
defined. For the case of Granger causality, the order of the mul-
tivariate regression model must be chosen. We used the Bayesian

Information Criterion in order to automatically select the model
order, as it was estimated from each of the features.

For the calculation of the nonlinear coupling coefficient, there
are four parameters that must be given as an input to the algo-
rithm:

• embedding dimension (m), the number of past values to be
included for the state space reconstruction

• time delay parameter or tau (τ), the time delay in samples
between each of the past values used

• number of nearest neighbors (k), and
• Theiler window (W), the threshold used to exclude temporally

close points from being selected as nearest neighbors.

Experimenting with the values of these parameters, it became
evident that the most important ones were the embedding dimen-
sion (m) and the time delay (τ ), since they were the ones who had
the greatest impact on the outcome of the algorithm; the number
of nearest neighbors was set to k = 3, and the Theiler window
to W = 2τ . We experimented with a wide range of values for
both m and τ (m = [3 : 10] and τ = [2 : 10]) and found that
the differences between ensemble and solo recordings were similar
irrespective of the m and τ values (an example of this observa-
tion for the Dynamics dimension of the D1 exercise can be seen
in Figure 8). The final parameters used were m = 10 and τ = 5.

RESULTS
In this section, we present the obtained results of our interde-
pendence analysis. First, we report the mean (μ) and standard
deviation (σ) along with the number of data points (N) of inter-
dependence values for each dimension and its corresponding

FIGURE 8 | Example of the effect of parameter choice (embedding dimension and time delay) on the estimation of the Nonlinear Coupling

coefficient, for the Dynamics dimension of exercise D1.
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exercise separately. We also report the results of a sequential
ANOVA test, in order to decide whether there is a significant
difference in mean interdependence strength values between the
ensemble and solo conditions. All ANOVA results reported in
this section were additionally confirmed using a non-parametric
(Wilcoxon rank-sum) test, which yielded similar results. In the
second half of the section, we compare interdependence values
across all recorded exercises for each dimension individually over
a wide range of window size values (for the Intonation, Dynamics,
and Timbre dimensions) as well as smoothing window size values
(for the Tempo dimension).

INTONATION
Table 2 contains the averaged interdependence values for each
tested method, for the Intonation dimension. The methods were
applied on the I1 exercise; we remind the reader that for I1 two
separate ensemble recordings were carried out (with intonation
annotations, and without annotations).

On initial inspection, it can be observed that the Linear
Correlation method is not able to detect any significant differ-
ences between the ensemble and solo recordings of I1. Moreover,
marginally negative correlation values between the pitch devia-
tions of the musicians are observed in all three recordings. Given
the noisy and nonlinear nature of the pitch deviation time series,
this result does not come as a surprise.

Quite the opposite result can be observed for each of the
three remaining interdependence methods. All of them estimate
a higher amount of interdependence for the two ensemble record-
ings in comparison to the solo recording, while the ensemble-with-
annotations recording demonstrates a slightly higher amount
of interdependence in comparison to the ensemble-without-
annotations recording. Whether this is a result of the order of the
recordings, the existence of the annotations or chance, we cannot
say; more experimental data are necessary to answer the question.

Although all three methods demonstrate higher interdepen-
dence in the ensemble conditions in comparison to the solo con-
dition, it is difficult to decide from the average interdependence
values alone whether that difference is large enough to state that
they can indeed capture a significantly higher amount of ensem-
ble coordination in the ensemble recordings. In order to assess
significance, we ran a repeated measures One-Way ANOVA test

on the results of all analysis windows; the results showed that both
Mutual Information [F(1, 16) = 18.324, p = 0.001, η2 = 0.71] as
well as the Nonlinear Coupling Coefficient [F(1, 16) = 16.085,
p = 0.001, η2 = 0.72] could successfully separate the interdepen-
dence means of each ensemble condition from the solo condition.
One the other hand, Granger causality did not provide significant
separation between ensemble and solo. None of the interdepen-
dence methods found a statistically significant difference between
ensemble-with-annotations and ensemble-without-annotations.

The fact that the non-linear methods perform better than the
linear methods (and especially Granger Causality) can be poten-
tially explained by the noisy and non-linear nature of the pitch
deviation time series themselves. However, besides these charac-
teristics, there is another important factor that might explain the
difference: by subtracting the score-defined pitch (a succession
of constant values) from the estimated pitch (a highly autocor-
related time series), we introduce discontinuities that cannot be
properly modeled using autoregressive processes, such as the ones
employed in the computation of Granger Causality.

It must be also noted that naturally, intonation choices (in
terms of how intervals are performed) in the solo condition are
bound to be quite different from intonation choices in the two
ensemble conditions, mainly due to the lack of a common goal
(i.e., consonant chords) in the solo condition. Although not part
of our experimental design, an additional solo recording that is
carried out post-ensemble could perhaps shed more light on the
effect of such choices on intonation interdependence and vice
versa; we return to this topic in the Discussion section of this
article.

DYNAMICS
Table 3 contains the average interdependence values for the
Dynamics dimension. The methods were applied on the D1 and
D2 exercises.

The results are quite similar to the Intonation case, save for
generally higher amounts of interdependence and slightly differ-
ent results for the Linear Correlation method. All four methods
now seem to detect higher amounts of interdependence for the
ensemble case, for both recorded exercises. The repeated measures
ANOVA test once again showed significant separation between
ensemble and solo only for the Mutual Information [D1: F(1, 6) =

Table 2 | Mean (μ) and standard deviation (σ, N = 17) of interdependence strength for the Intonation dimension per experimental condition.

Method Interdependence strength, intonation (I1)

Ensemble, with annotations Ensemble, without annotations Solo

Linear correlation μ = −0.032 μ = −0.039 μ = 0.001

σ = 0.564 σ = 0.512 σ = 0.321

Causal density μ = 0.0322 μ = 0.0317 μ = 0.0082

σ = 0.0283 σ = 0.0302 σ = 0.0083

Mutual information μ = 0.464* μ = 0.415* μ = 0.277

σ = 0.211 σ = 0.147 σ = 0.103

Nonlinear coupling coefficient μ = 0.287* μ = 0.263* μ = 0.201

σ = 0.098 σ = 0.072 σ = 0.068

Values with an asterisk denote a statistically significant difference between ensemble and solo.
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Table 3 | Mean (μ) and standard deviation (σ, N = 7 for exercise D1 and N = 6 for exercise D2) of interdependence strength for the Dynamics

dimension, per exercise and experimental condition.

Method Interdependence strength, dynamics (D1) Interdependence strength, dynamics (D2)

Ensemble Solo Ensemble Solo

Linear correlation μ = 0.343 μ = 0.154 μ = 0.368 μ = 0.279

σ = 0.375 σ = 0.232 σ = 0.451 σ = 0.349

Causal density μ = 0.0039 μ = 0.0018 μ = 0.0080 μ = 0.0032

σ = 0.0043 σ = 0.0014 σ = 0.0019 σ = 0.0012

Mutual information μ = 0.494* μ = 0.306 μ = 0.688* μ = 0.449

σ = 0.092 σ = 0.067 σ = 0.182 σ = 0.109

Nonlinear coupling coefficient μ = 0.262* μ = 0.152 μ = 0.372* μ = 0.256

σ = 0.052 σ = 0.042 σ = 0.078 σ = 0.046

Values with an asterisk denote a statistically significant difference between ensemble and solo.

21.022, p = 0.004, η2 = 0.55, D2: F(1, 5) = 39.082, p = 0.002,
η2 = 0.90] and the Nonlinear Coupling Coefficient [D1: F(1, 6) =
28.048, p = 0.002, η2 = 0.66, D2: F(1, 5) = 28.409, p = 0.003,
η2 = 0.82]. Given how the logRMS signals are detrended in a
note-by-note fashion, the same type of discontinuity is present in
this case, making the computation of Granger Causality difficult
once again.

TIMBRE
Table 4 contains the average interdependence values for the
Timbre dimension. The methods were applied on the T1 exercise;
we remind the reader that for the Timbre performance dimen-
sion, two different features are used (bow-bridge distance and
spectral crest).

For the case of bow-bridge distance, the results are differ-
ent from the two previous cases. Neither Linear Correlation nor
Mutual Information show higher amounts of interdependence for
the ensemble condition (although it can be argued that the dif-
ferences between ensemble and solo are quite small compared to
the previous cases). Causal Density and Nonlinear Coupling show
higher values for the ensemble condition, although the repeated
measures ANOVA test confirms a statistically significant differ-
ence only for the Granger Causality measure [F(1, 6) = 7.628,
p = 0.036, η2 = 0.76]. Given how the artificially introduced dis-
continuities do not exist in the bow-bridge distance time series,
the relatively good performance of the Granger Causality method
(compared to other performance dimensions) is reasonable; after
all, Granger Causality has been previously used with success
on similar gesture data from string instrument performances
(D’Ausilio et al., 2012).

The results on the Spectral Crest feature are a return to
the pattern observed in previous results, especially Dynamics.
All four methods show higher interdependence values for
the ensemble condition, with statistical significance for the
Mutual Information [F(1, 6) = 13.608, p = 0.01, η2 = 0.63]
and Nonlinear Coupling Coefficient methods [F(1, 6) = 6.747,
p = 0.041, η2 = 0.66]. Although there are no artificially intro-
duced discontinuities in the Spectral Crest feature, the sig-
nal is quite nonstationary—especially around note change
events.

TEMPO
Finally, Table 5 contains the average interdependence values for
the Tempo dimension. The methods were applied on the R1 and
R2 exercises.

All four methods show higher amounts of tempo interdepen-
dence for both exercises, with the amount of interdependence in
the ensemble recordings being more than double the amount of
solo interdependence (with the exception of Linear Correlation).
Unfortunately, the lack of a windowed analysis means that a
test for statistical significance for each interdependence method
cannot be carried out in this case.

COMPARISON ACROSS DIFFERENT EXERCISES AND PARAMETERS
Up to this point, we have only discussed interdependence results
in an ensemble vs. solo context—i.e., without drawing any
comparisons across the different exercises for the same perfor-
mance dimension. Such a comparison would indeed be valu-
able in assessing the interdependence methods’ capacity for not
only detecting interdependence, but also quantifying its relative
amount.

However, each exercise features a different score—each one
containing different numbers of notes, note durations, and types
of relations between the musicians’ parts. For that reason, the
interdependence estimates of different ensemble recordings are
not directly comparable, as the overall amount of interdepen-
dence that is estimated for each piece may vary regardless
of the actual amount of cooperation that exists among the
performers.

For this reason, we make use of the interdependence esti-
mated from the solo recordings as a baseline to which the ensemble
interdependence can be compared. More specifically, we subtract
the estimated solo interdependence from the estimated ensem-
ble interdependence in order to obtain a relative measure, the
amount of “interdependence gain” that is observed as a result of
joint action. Given how there is a single solo and ensemble record-
ing for each exercise, the comparisons reported in this subsection
are difficult to generalize or statistically test. Besides the fact that
the musicians’ actions are not always deliberate or a consequence
of interdependence, deviations across repeated performances of
the same exercise should be expected. Therefore, the following
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Table 4 | Mean (μ) and standard deviation (σ, N = 7) of interdependence strength for the Timbre dimension, per feature and experimental

condition.

Method Interdependence strength, timbre (T1) Interdependence strength, timbre (T1)

Bow-bridge distance Spectral crest

Ensemble Solo Ensemble Solo

Linear correlation μ = 0.642 μ = 0.676 μ = 0.158 μ = 0.035

σ = 0.886 σ = 0.822 σ = 0.397 σ = 0.182

Causal density μ = 0.0134* μ = 0.0093 μ = 0.0080 μ = 0.0019

σ = 0.0048 σ = 0.0040 σ = 0.0102 σ = 0.0018

Mutual information μ = 1.057 μ = 1.070 μ = 0.341* μ = 0.170

σ = 0.128 σ = 0.247 σ = 0.138 σ = 0.033

Nonlinear coupling coefficient μ = 0.633 μ = 0.617 μ = 0.231* μ = 0.154

σ = 0.062 σ = 0.085 σ = 0.076 σ = 0.056

Values with an asterisk denote a statistically significant difference between ensemble and solo.

Table 5 | Interdependence strength for the Tempo dimension, per exercise and experimental condition.

Method Interdependence strength, Tempo (R1) Interdependence strength, Tempo (R2)

Ensemble Solo Ensemble Solo

Linear correlation 0.983 0.718 0.830 0.523

Causal density 0.697 0.362 0.462 0.160

Mutual information 1.207 0.534 0.715 0.292

Nonlinear coupling coefficient 0.112 0.066 0.063 0.026

analysis is intended as an exploration and potential direction for
further research rather than a pursuit of definitive conclusions.

In order to draw a fair comparison, we also carry out this anal-
ysis over a wide range of values for the window size parameter
(for Intonation, Dynamics, and Timbre) and the smoothing win-
dow width parameter (for Tempo); this way, we can investigate
the effect of these parameters on the estimated interdependence.
The Mutual Information method was chosen for the iterative
estimation of relative interdependence, due to its rapid compu-
tation time as well as its demonstrated capability at quantifying
interdependence on our data.

Figure 9 shows comparative Mutual Information values for
each recorded exercise, in terms of Intonation interdependence.

As it can be observed, the I1 exercise gradually increases
in relative interdependence gain as the window size becomes
larger, up to the point where it shows notable interdepen-
dence gain in comparison to the rest of the exercises. In other
words, the larger the temporal context provided, the clearer the
importance of Intonation interdependence becomes for the I1
exercise.

Besides I1, the exercises with the next highest interdependence
gain appear to be D1, D2, and T1. These exercises along with
I1 feature large note durations—a condition which is a reason-
able prerequisite for Intonation interdependence. The reader may
also observe that the curve of the R2 exercise is absent from the
plot: this is because interdependence for the solo condition was
actually higher than the ensemble condition, yielding a curve that
dips below zero interdependence gain. As observed in the score

excerpt of exercise R2 in Figure 1, the exercise consists of the same
two notes for each musician, performed at different degrees of
rhythmic syncopation. A possible explanation for this result can
be that in the solo condition, the performers have no external
perturbations in regard to rhythm, and can therefore maintain
a much more steady and predictable intonation behavior, which
could be mistaken for coordinated action by the interdependence
measures. This possibility could be verified or dismissed with
the analysis of additional solo and ensemble recordings of the
same exercise, an issue that was commented on previously in this
subsection.

Figure 10 shows comparative Mutual Information values for
each recorded exercise, in terms of Dynamics interdependence.

The D1 and D2 exercises consistently demonstrate the high-
est amounts of interdependence gain, followed closely by the T1
and I1 exercises. Moreover, the window size does not appear to
greatly affect the gain of interdependence for either of the exer-
cises. In a similar vein to the Intonation case, the two tempo-based
exercises (R1 and R2) demonstrate either low or negative interde-
pendence gain, something that suggests that focus on Dynamics
and Intonation does not necessarily imply a concurrent focus on
Tempo.

For the case of Timbre, rather than using only Mutual
Information we decided to combine two results: Causal
Density values for the bow-bridge distance feature and Mutual
Information for the Spectral Crest feature. The two different esti-
mations were normalized and then added together to create the
result seen in Figure 11.
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FIGURE 9 | Interdependence gain for the Intonation dimension, for different exercises and window sizes. (Legend: I1, Intonation exercise; D1, Dynamics
exercise nr.1; D2, Dynamics exercise nr.2; R1, Rhythm exercise nr.1; R2, Rhythm exercise nr.2; T1, Timbre exercise).

FIGURE 10 | Interdependence gain for the Dynamics dimension, for different exercises and window sizes. (Legend: I1, Intonation exercise, D1,
Dynamics exercise nr.1, D2, Dynamics exercise nr.2; R1, Rhythm exercise nr.1; R2, Rhythm exercise nr.2; T1, Timbre exercise).

The T1 exercise is shown to sustain a consistent amount of
interdependence gain across different frame sizes along with the
D1 and D2 exercises, which also show comparable amounts of
interdependence gain albeit with larger variation; note here that
the scale of interdependence values is much smaller as they are
normalized between Mutual Information and Causal Density
(which has generally yielded low values for noisy/nonlinear sig-
nals, as observed in Tables 2–4). Given how the values reported
are a combination of two different analyses (based on bow-bridge
distance and Spectral Crest), this could be an indication of “dis-
agreement” between the two sets of results. As mentioned in
Section “Materials and Data Processing,” Timbre is a quality of
the performance that is difficult to quantify, and the current
results show that there is certainly room for improvement in our
approach.

Finally, Figure 12 shows comparative Mutual Information
values for each recorded exercise, in terms of Tempo
interdependence.

As expected, the two tempo-based exercises (R1 and R2)
demonstrate the largest amounts of interdependence gain.
Increasing the smoothing window appears to lead to an increase
in interdependence gain for the two exercises—a result that, as in
the case of Intonation, suggests that larger context leads to clearer
view at the underlying goal of the exercise. In support of this, the

rest of the exercises maintain a steady level of interdependence
gain.

DISCUSSION
In this article, we carried out a data-driven analysis of interde-
pendence among the members of a performing string quartet.
Focusing on Intonation, Dynamics, Timbre, and Tempo as dis-
tinct dimensions of the performance, we evaluated a set of mea-
sures capable of quantifying musical interdependence in terms of
these dimensions, and designed a Music Information Research
(MIR)-oriented methodology for the extraction of performance
descriptors on which the interdependence measures were applied.

The obtained results suggest that, at least for the simple exer-
cises that were studied, it is feasible to correctly discriminate
between recordings where no interaction between the performers
exists, and recordings where some interdependence can be safely
assumed to exist; and the nonlinear interdependence methods
appear to be the most suitable for such an analysis. By measuring
the difference in interdependence between the solo and ensemble
recordings, the results suggest that it is also feasible to measure
how much the performers are interacting in one performance
dimension across different exercises and relate the results to the
shared goal of the ensemble as it is defined by the underlying
score.
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FIGURE 11 | Interdependence gain for the Timbre dimension, for different exercises and window sizes. (Legend: I1, Intonation exercise; D1, Dynamics
exercise nr.1; D2, Dynamics exercise nr.2; R1, Rhythm exercise nr.1; R2, Rhythm exercise nr.2; T1, Timbre exercise).

FIGURE 12 | Interdependence gain for the Tempo dimension, for different exercises and smoothing window sizes. (Legend: I1, Intonation exercise; D1,
Dynamics exercise nr.1; D2, Dynamics exercise nr.2; R1, Rhythm exercise nr.1; R2, Rhythm exercise nr.2; T1, Timbre exercise).

We view the main contribution of this work as the inclu-
sion of the different interdependence measures and the evalu-
ation of their potential to capture musical interdependence in
several distinct dimensions of the performance. Although the
results we have obtained so far are promising, they serve an
exploratory rather than conclusive purpose: while a clear ten-
dency is observed (statistically significant interdependence dif-
ferences between ensemble and solo for the “target” performance
dimension in all exercises), the potential for decisive conclusions
is limited by the amount of data that we have collected (in terms
of repetitions for each experimental condition). This is especially
relevant in the case of Section “Comparison Across Different
Exercises and Parameters,” where the solo recordings are used as
a reference interdependence level to which the ensemble record-
ings are compared. While the results hint at how interdependence
is a quantity that varies with the goal of the performed exercise,
more repetitions for the two experimental conditions would be
necessary in order to distinguish findings that are due to deliber-
ate action rather than “noise” resulting from the innate variability
of music performance, a persistent challenge of academic work on
the subject (Palmer, 1997).

In the introduction, we discussed how performance dimen-
sions such as Intonation, Dynamics, and Timbre are quite under-
represented in the current literature. The results we have obtained
show that it is feasible to include such parameters in future stud-
ies, and their inclusion could expand and consolidate aspects of
our approach for the cases where our data were not enough to
offer strong conclusions. Regarding tempo and/or timing, most
available works deal with ensemble coordination from a low-
level synchronization point of view (Repp, 2001; Repp and Keller,
2010) and are based on the thoroughly studied phase correc-
tion and period correction phenomena and their mathematical
background. A joint analysis of temporal behavior data using
both this approach as well as the high-level approach that is fol-
lowed in our study could highlight their differences or common
ground and provide broader description of joint musical action
in terms of temporal coordination. Similarly, the inclusion of
these methods in the work presented here could help in bridging
the conceptual gap between the concepts of synchronization and
interdependence.

The materials and experimental conditions considered in this
study cover but a small area of the complex phenomenon that
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is string quartet performance. The experiments were based on
a relatively small amount of short exercises, recorded by a sin-
gle quartet. Longer and more complicated scores could further
test the usefulness of our methodology, or reveal interactions
between the performance dimensions that were not seen in this
study. Studying more quartets with a different potential for coor-
dination could validate or challenge the patterns that we have
observed so far, while capturing more repetitions of the same per-
formance along a larger time window could reveal information
about how interdependence is established during an ensemble’s
training process. In our experiment, recordings carried out in
the solo condition were designed as “ground truth” which was as
far removed from ensemble performance as possible; however, it
would be also useful to test with more variations of the solo con-
dition such as performing alone after having performed together,
or even recordings where the musicians are performing a piece
together for the first time.

In this study, we represent each performance dimension with
numerical features extracted from the recorded data. The fea-
tures that were selected in our approach are but a subsample of a
very large set of performance descriptors that can be found in the
Music Information Research literature (Serra et al., 2013); and the
proposed methodology could be greatly consolidated by includ-
ing more features and assessing their capacity to capture musical
interdependence.

From our results, we have found that interdependence meth-
ods capable of detecting nonlinear interactions are generally
more suited for the type of data we tested. One reason could
be that the encountered interactions are indeed of a nonlinear
nature. Other possible reasons could be the noisy and nonlin-
ear nature of the data, the processing that they undergo in our
methodology (such as the introduced discontinuities we discuss
in Section Intonation), or a combination of the two. Earlier tests
with non-parametric correlation measures (such as Spearman’s
rank correlation) yielded results similar to the ones obtained by
Pearson correlation. The inclusion of more features with differ-
ent characteristics regarding stationarity, linearity etc. could help
in addressing the above questions, and provide more arguments
toward the use of these methods in practical applications.

As is usually the case with quantitative research that com-
bines different algorithms and feature extraction techniques, each
step requires technical decisions regarding the selection of appro-
priate parameters, the impact of which on the final result is
not always straightforward to predict and often requires iterative
computations in order to assess. A clear example of parame-
ter impact can be seen in Section “Comparison Across Different
Exercises and Parameters,” where the size of the interdepen-
dence analysis window is shown to affect the interdependence
difference between the solo and ensemble cases. Another exam-
ple of the second point (need for iterative computation over
different combinations of parameters) can be seen in Figure 8;
although for this analysis we did not discover a notable impact
of the Nonlinear Coupling coefficient’s parameters on the results,
such iterative computations are necessary in order to assess their
impact.

In order to assess the interdependence between musicians in
one performance dimension vs. another, it is necessary to have
reference recordings where (ideally) no interaction between the

performers takes place (such as the solo recordings in this study).
Data collection under these conditions is a complicated and costly
process that can only be carried out under experimental condi-
tions. On the contrary, capturing the performance of a quartet
under natural conditions is relatively straightforward and com-
monplace even within the recording industry. To this end, we
are currently working to eliminate the need for such reference
recordings and making our methodology more easily applicable;
our first steps in this direction take advantage of techniques origi-
nating from Surrogate Time Series analysis techniques (Schreiber
and Schmitz, 2000), and attempt to generate surrogate time series
solely from the ensemble recordings as a baseline reference.

Two important aspects of musical interdependence that are
not addressed in this study are (i) the fluctuation of interdepen-
dence strength along time, and (ii) the interpersonal relationships
among the musicians and the roles they imply. In its current
state, our methodology allows for the investigation of both time-
varying estimations (through the use of a windowed analysis)
as well as separate estimations for each pair of performers, even
though we have not dealt with such questions so far. We aim to
advance our research in both of these areas in future studies.

This work has been focused on an ensemble of bowed string
instruments. However, it can be reasonably assumed that the pre-
sented methodology can be applied to different kinds of ensem-
bles; while ensembles such as wind sections or even singing voice
ensembles are an obvious choice, the methodology pertaining
to dynamics and tempo can be easily applied to most musical
instruments. In fact, the core of our methodology—obtaining
numerical representations of the behavior of interacting agents
and assessing the interdependence between them—could be use-
ful in studying interactions in social contexts beyond music
performance; an example would be the academic discipline of
Social Signal Processing (Pantic et al., 2011), where multimodal
data originating from human non-verbal behavior are automati-
cally analyzed to study social interaction and derive context-aware
causal relationships between interacting agents.
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