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The ability of face discrimination is modulated by the frequency of exposure to a category
of faces. In other words, lower discrimination performance was measured for infrequently
encountered faces as opposed to frequently encountered ones.This phenomenon has been
described in the literature: the own-race advantage, a benefit in processing own-race as
opposed to the other-race faces, and the own-species advantage, a benefit in processing
the conspecific type of faces as opposed to the heterospecific type. So far, the exact
parameters that drive either of these two effects are not fully understood. In the following
we present a full assessment of data in human participants describing the discrimination
performances across two races (Asian and Caucasian) as well as a range of non-human
primate faces (chimpanzee, Rhesus macaque and marmoset).We measured reaction times
of Asian participants performing a delayed matching-to-sample task, and correlated the
results with similarity estimates of facial configuration and face parts. We found faster
discrimination of own-race above other-race/species faces. Further, we found a strong
reliance on configural information in upright own-species/-race faces and on individual face
parts in all inverted face classes, supporting the assumption of specialized processing for
the face class of most frequent exposure.
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INTRODUCTION
Humans as well as other primates are able to extract information
from faces to infer invariant properties such as race (Michel
et al., 2007; Tanaka and Pierce, 2009), species (Pascalis et al.,
2002; Dufour et al., 2006), gender (Bulthoff, 2009), age (Kwon
and da Vitoria Lobo, 1999), nationality (Li et al., 2004), rank
(Dahl and Adachi, 2013), and to some extent personality traits
(Ekman et al., 1980). The most important ability is to rec-
ognize and identify faces (Marr and Nishihara, 1978; Bruce
and Young, 1986). Identity is an invariant face property that,
however, is not fully independent from other invariant prop-
erties, such as race and species. Humans (Meissner et al., 2005;
Hugenberg et al., 2010) and other primates, such as chim-
panzees (Dahl et al., 2013a) and monkeys (Dahl et al., 2007,
2009, 2010, 2011) are experts in individuating the faces of their
own species and race, however, their proficiency deteriorates
for faces rarely exposed to. This phenomenon has been demon-
strated by superior discrimination ability for the own-race as
opposed to other-race faces (OREs), known as the other-race effect
(ORE), the own-race advantage or the other-race bias (Lindsay
et al., 1991; Meissner and Brigham, 2001). Similarly, there is an
effect that it is easier to discriminate faces of the own species
than those of other species. Such effect has been referred to as
own-species advantage, the other- or own-species effect (OSE;
Scott and Fava, 2013). The ORE has been addressed to a great
extent (Meissner and Brigham, 2001) and elicited a robust effect

in observers of different races (Bothwell et al., 1989). The OSE
has been studied extensively in humans, using various behav-
ioral (Dufour et al., 2004; Dufour and Petit, 2010) and neural
methodological approaches (de Haan et al., 2002; Scott et al.,
2005). Humans as well as monkeys show an advantage for own-
species faces: they were more skilled in discriminating (Pascalis
and Bachevalier, 1998) and recognizing (Dufour et al., 2004) the
own-species as opposed to the other-species face (OSE) class.
Human adults show better detection of configural differences in
facial features of human but not monkey faces. Only inverted
human but not monkey faces disrupt this sensitivity (Mondloch
et al., 2006).

Still, it is not clear whether the two effects can be described by
the same underlying computational mechanism of the face recog-
nition system when it is exposed to a face class other than its own.
In detail, the ORE occurs at the level of two face categories that are
slightly different from each other in terms of facial components
and configurations (shared human morphology), while the OSE
occurs at the level of two face categories that fundamentally vary
in the morphological structure. This raises an interesting ques-
tion: do we recruit the same processing mechanism for other-race
as for own-race faces and for OSEs as for own-species faces? Does
the morphological (dis)similarity influence the configural process-
ing of these face types? We examine the ORE and the OSE using
the same paradigm embedded in the same experimental proce-
dure. In a delayed matching-to-sample task, human participants
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discriminated pairs of faces of Asian and Caucasian races as well as
chimpanzee, rhesus macaque and marmoset species. We hypoth-
esize that any morphological deviation from the default class of
faces (here Asian faces) causes a disruption of discrimination per-
formance relative to the default class. We further estimated the
contribution of configural as opposed to part-based contributions
by correlating discrimination performances with the similarity
values drawn from pairwise comparisons of the stimuli’s config-
ural arrangement (configuration) and facial parts (part-based).
Hence, we further hypothesize that the processing of own-class
faces involves a relatively higher contribution of configural infor-
mation as opposed to other face classes, while with increasing
morphological distance from the conspecific face class, the con-
tribution of part-based information, as in object-like processing,
should increase. Further, assuming that face inversion impairs con-
figural processing (Freire et al., 2000), we predict that inverted face
comparisons of all classes show comparable performances that go
along with an equal contribution of part-based information across
all face classes.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-four human participants (10 females; 22.5 years +/−1.5
SD) took part in this study. Twenty-two participants participated
in the task using upright and 22 using inverted stimuli. In other
words, two participants did not participate in both experiments.
The participants were selected from a pool of students at the
National Taiwan University and consist of Asian members exclu-
sively. The participants have never encountered the stimuli used
and they have never been tested on a comparable face discrim-
ination task. The participants were naïve to the purpose of the
experiment. Written consent was obtained from each participant
prior to the experiment.

APPARATUS AND PROCEDURE
We used a delayed-matching-to-sample paradigm (DMS),
presenting one face stimulus centrally on the display for 300 ms
(cue), followed by an inter-stimulus interval (ISI) of 250 ms, fol-
lowed by a mask for 300 ms, followed by a second ISI of 500 ms
and two face stimuli, with one showing the same picture as in the
cue presentation (match) and one showing a different individual’s
face picture (distractor). The match and distractor were shown for
3500 ms, however, responses could be given after disappearance of
the stimuli on the display. The task was to indicate which of the two
stimuli (match and distractor) is identical to the cue stimulus. In
the inversion experiment, all faces, including the cue, were rotated
in image-plane for 180◦. The vertical spacing of the match and
distractor stimuli was about 40 mm (2.92◦ of gaze angle). Stimuli
were presented at a 19-inch CRT display (1024 × 768 pixels) con-
trolled by custom-written software under MATLAB (Mathworks
Inc., Natick, MA, USA) and Psychtoolbox (Brainard, 1997; Pelli,
1997). Testing of upright and inverted stimuli was done block-wise
and separated by maximally 3 days. Participants received financial
compensation. Participants sat in an experimental room (2.5 m
wide, 2.5 m deep), facing the computer monitor at a viewing dis-
tance of 100 cm. The viewing distance was controlled using a chin
rest.

STIMULI
We used black-and-white pictures of faces of Asian and Caucasian
humans as well as chimpanzees (Pan troglodytes), Rhesus
macaques (Macaca mulatta) and Marmoset monkeys (Callithrix
jacchus). All faces were of unfamiliar individuals. All stimuli were
normalized for luminance and contrast and presented on the
screen in an image canvas of 5.75 by 5.75◦ of gaze angle. Masks
were created by extracting 50 rectangular patches from the orig-
inal face stimuli. The size of these patches was 13.33% of the
original image dimensions. Patches were randomly placed onto a
white blank surface (a canvas of the same size as the face stimuli).
This procedure resulted in certain overlap of individual patches,
while fully covering the blank surface. For each face category, mask
stimuli were created and solely used for trials of the same type of
faces. In total, we used five sets of 12 face stimuli each, resulting
in 660 comparisons. In each trial, the mask was randomly cho-
sen from a set of 50 masks. Each participant did five runs of 132
trials each consisting of all five categories intermixed and fully
counter-balanced across categories and face identities.

DATA ANALYSIS
The analyses were performed using Matlab (Mathworks Inc.,
Natick, MA, USA). The dependent variable was reaction times
and error rates. Trials with reaction times above 4000 ms were
excluded. Only correct trials went into the analyses of reaction
times, which is 547 (+/−8.26 SD) upright and 553 (+/−10.7 SD)
inverted trials. The statistics follow a within-subject design. Anal-
yses of variances were performed using a fixed effect ANOVA with
stimulus category and stimulus presentation (upright, inverted)
as fixed factors, an interactive analysis of covariance (ANCOVA)
and two-sample t-tests. The similarity scores of the facial con-
figuration within face classes were determined by calculating the
mean of the Euclidean distances between corresponding configu-
ral marker points of each pair of faces. These markers were placed
manually by the authors. Euclidean distance were further visual-
ized by classical multidimensional scaling (cMDS), which aims at
placing each face in N-dimensional space such that the between-
face distances are preserved as well as possible. The maximum
error is 2.68 in a two-dimensional and 2.66 in a full reconstruc-
tion. To determine the similarity between individual facial parts
(eyes, nose, mouth), we used topological methods (Gunduz and
Krim, 2003) that viewed each two-dimensional images as a surface
with the pixel intensities represented as values on the z-axis. Using
the second derivatives the principle curvatures of the surface were
extracted. The facial features, such as eyes, nose, and mouth, were
composed of valleys and crests. Areas of interests were determined
by cutting the image in the horizontal dimension. The cut-off lines
varied across face classes given the differential face morphology.
The extracted curvature profiles were average in the horizontal
dimension for each image, resulting in a feature vector. The fea-
ture vectors of individual parts were normalized across all classes
to an equivalent length, i.e., number of samples. Similarity scores
of facial parts were correlated with the reaction times for upright
and inverted face trials separately and similarity scores of the facial
configuration were correlated with the performance difference of
upright and inverted face trials by subtracting the upright face
trials from the inverted ones.
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RESULTS
We tested the reaction times of Asian participants on the
discrimination of Asian and Caucasian human faces, as well as
chimpanzee (P. troglodytes), macaques (M. mulatta) and mar-
moset monkey (C. jacchus) faces in upright and inverted orien-
tations (Figure 1A). A cue stimulus (e.g., face 1) was centrally
presented followed by a match-distractor stimulus pair (e.g., face
1 and face 2) of the same species (Figure 1B). We collected an aver-
age of 660 trials for upright as well as inverted presentations in 22
participants. Using a fixed effect ANOVA with stimulus class and
face orientation (upright, inverted) as fixed factors and reaction
times as dependent variable, we found a significant interaction of
the factors stimulus class and the face orientation [F(4,210) = 2.52,
p < 0.05, mean square error = 29388; Figures 1C–E]. In more
detail, we found a systematic facilitation of discrimination for
upright own-race faces (Asians) as opposed to upright OREs [Cau-
casians; t(42) = −2.22, p < 0.05; mean Asians = 660.7 ms, mean
Caucasians = 726.2 ms; one-tailed]. Similarly, we found an advan-
tage for the same upright Asian faces (own-species) as opposed to
upright other-species’ faces, such as chimpanzee, macaques and
marmosets [t(86) = −4.16, p < 0.001; mean Asians = 660.7 ms,
mean chimpanzee = 748.9 ms, mean macaque = 767.5 ms, mean
marmoset = 784.5 ms; one-tailed, corrected for multiple com-
parisons]. These two effects, the own-race advantage and the
own-species advantage, do not appear when the face stimuli were
presented inverted (180◦ image plane rotation): Asian faces (own-
race, own-species) are processed at the same speed as Caucasian
faces [other-race; t(42) = 0.05, p = 0.96; mean Asians = 720.7 ms,
mean Caucasians = 718.7 ms] as well as OSEs [t(86) = 0.25,
p = 0.81; mean Asians = 720.7 ms, mean chimpanzee = 712 ms,
mean macaque = 717.9 ms, mean marmoset = 710 ms]. At the
same time, inversion caused a significant increase of reaction
times for Asian faces [own-race, own-species; t(42) = −1.74,
p < 0.05; mean upright Asians = 660.7 ms, mean inverted
Asians = 720.7 ms; one-tailed], but no change in reaction times
for Caucasian [other-race; t(42) = 0.22, p = 0.83; mean upright
Caucasians = 726.2 ms, mean inverted Caucasians = 718.7 ms],
chimpanzee [other species; t(42) = 1.05, p = 0.30; mean upright
chimpanzee = 748.9 ms, mean inverted chimpanzee = 712 ms]
and macaque faces [other species; t(42) = 1.46, p = 0.15; mean
upright macaque = 767.5 ms, mean inverted macaque = 717.8 ms].
Inverted presentations of marmoset faces (other species), however,
caused a facilitation in comparison to the upright presenta-
tions of the same faces [t(42) = 2.12, p < 0.05; mean upright
marmoset = 784.5 ms, mean inverted marmoset = 710 ms].

We further examined relative changes of reaction times by
normalizing the data samples for each face class by dividing
them with the grand mean of all face classes. We found that
the scores decreased with evolutionary distance from Asian faces:
(1) scores for Asian faces were greater than those for Cau-
casian faces, reflecting the ORE [t(42) = 30.70, p < 0.001;
mean scores Asian = 0.11; mean scores Caucasian = 0.02]; (2)
scores for Caucasian faces were greater than those for chimpanzee
faces [t(42) = 9.64, p < 0.001; mean scores Caucasian = 0.02;
mean scores chimpanzee = −0.02]; (3) scores for chimpanzee
faces were greater than those for macaque faces [t(42) = 4.62,
p < 0.001; mean scores chimpanzee = −0.02; mean scores

macaque = −0.04]; and (4) scores for macaque faces were greater
than those for marmoset faces [t(42) = 14.34, p < 0.001; mean
scores macaque = −0.04; mean scores marmoset = −0.07]. This
trend is consistent across all participants (Figure 1F).

Using an interactive ANCOVA with stimulus class and face
orientation (upright, inverted) as fixed factors, error rates as
covariate, and reaction times as dependent variable, we found
no significant effects of error rates on stimulus class and face
orientation (all p-values > 0.26). Hence, we rule out a speed-
accuracy trade-off. For further analyses we focused on reaction
times.

To determine whether there is a relation between the similarity
of a stimulus pair and the discrimination performances we calcu-
lated similarity values for each face stimulus based on (1) the facial
configuration and (2) individual parts (eyes, nose, and mouth).
(1) We determined configural similarities among individual faces
of the same face classes by calculating the Euclidean distances
between corresponding marker-points set in the 2D face plane
(Figure 2A). These values reflect the overall structure of the face,
but do not include any image information. We determined simi-
larity values between individual face configurations. These values
were then correlated with the corresponding reaction times for
each face class separately. For each participant reaction times were
normalized by the grand mean and assigned to 20 bins of equal
sizes ranging from the minimal to the maximal sample value. We
analyzed upright and inverted faces separately. A negative correla-
tion between reaction times and similarity of facial configuration
would indicate that to discriminate two faces is more difficult
the more similar two face configurations are. We found a nega-
tive correlation between the normalized reaction times of upright
faces and the similarity scores in Asian (r = −0.65, p < 0.01) and
Caucasian faces (r = −0.49, p < 0.05), but not in any OSE class
(chimpanzee r = −0.04, p = 0.85; macaque r = 0.35, p = 0.18;
marmoset r = −0.34, p = 0.16; Figure 2B). We did not find any
negatively correlated relationship between the normalized reac-
tion times of inverted faces and the similarity scores in any of the
face classes (all p > 0.36; Figure 2B). (2) We further extracted face
features using methods suggested in computer vision (Gunduz and
Krim, 2003). This approach treats the face image as a surface with
eyes, nose and mouth being singularities in the surface that build
valleys and ridges of the luminance landscapes (Figure 3). Using
so-called ravines facial features can be extracted from the surface.
We extracted eyes, nose and mouth regions and compared the vec-
tor profiles of these features among the faces of each face class. We
determined the Euclidean distances between corresponding points
of the two vector profiles being compared and correlated these sim-
ilarity scores with the normalized reaction times of upright and
inverted face discrimination trials (Figures 4A,B). Importantly, in
contrast to the configural similarity, the part similarity was deter-
mined by actual image content, i.e., vector profiles were extracted
from the image surface. The assumption is that a negative corre-
lation between reaction times and similarity values for a certain
face part would occur, if participants strongly rely on that face
part and, thus, are negatively affected if two faces have closely
similar parts. We found negative correlations between the eyes
and the similarity scores for all classes when the faces were pre-
sented upright (Asian: r = −0.69, p = 0.01; Caucasian: r = −0.55,
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FIGURE 1 | Stimuli, procedure and reaction times, and configural

analysis. (A) Stimuli: identities (horizontal) and classes (vertical). (B)

Procedure. In each trial, a face picture of an individual (cue) was centrally
presented on the display for 300 ms, followed by an inter stimulus interval
(ISI) of 250 ms, followed by a mask for 300 ms, followed by a second ISI of
500 ms and a presentation of two horizontally aligned face pictures of the
same individual (match) and a different individual (distractor). Participants
indicated their choice by pressing one of two buttons on the joystick,
corresponding to the left and right stimulus on the screen. The correct answer
(match) is the identical face picture as shown in the cue stimulus. (C)

Absolute reaction times were averaged across participants for each face class
(A, Asian; C, Caucasian; Ch, chimpanzee; Mq, macaque; Mm, marmoset). The
color bars indicate the range within the standard errors; the gray dots indicate
the means. Reaction times for upright faces are shown in darker colors; those

for inverted faces in lighter colors. (D) Absolute reaction times of upright
versus inverted faces. Mean reaction times for upright and inverted faces are
shown as dots. Colors correspond to the colors in (C). Circles indicate the
standard errors. (E) Differences of normalized reaction times of upright and
inverted faces. Reaction times were normalized for each face class by the
mean of the corresponding class. Scores for upright faces were subtracted
from those of inverted faces for each face class. Positive values indicate an
advantage for upright above inverted faces in terms of discrimination speed,
while negative values indicate an advantage for inverted above upright faces.
(F) Normalized reaction times for each participant. The color code represents
the relative reaction times, with red being fast, black being slow and white
intermediate. Values above zero indicate slower responses than the mean
response (= 0); values below zero indicate faster responses than the mean
response.
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FIGURE 2 | Configural analysis. (A) Configural markers. Illustrative
arrangement of facial markers on Asian and chimpanzee faces (yellow
dots). Corresponding points as shown were selected for each individual
face. (B) Differences of normalized reaction times of upright and inverted
faces as a function of configural similarity. Differences of normalized

reaction times of upright and inverted faces were correlated with the
binned values of similarity scores drawn from the configural arrangement
of pairs of faces. Black lines indicate the correlation. (C) Multidimensional
scaling (MDS) space of configural similarities among faces and face
classes.

p < 0.05; chimpanzee r = −0.54, p < 0.01; macaque r = −0.59,
p < 0.01; marmoset r = −0.47, p = 0.05). The similarity scores
of the nose regions were not correlated with reaction times of
upright faces in all face classes, but for the macaque and mar-
moset monkeys (Asian: r = 0.08, p = 0.62; Caucasian: r = −0.11,
p = 0.33; chimpanzee r = −0.16, p = 0.25; macaque r = −0.41,
p < 0.05; marmoset r = −0.52, p = 0.01). The similarity scores
of the mouth region were negatively correlated with the reaction
times of upright face in Caucasian and chimpanzee faces (Asian:
r = 0.29, p = 0.88; Caucasian: r = −0.64, p < 0.001; chimpanzee
r = −0.52, p < 0.05; macaque r = 0.29, p = 0.89; marmoset
r = 0.18, p = 0.76). In contrast, the similarity scores of all parts
were negatively correlated with the reaction times of inverted faces
with some exceptions: the chimpanzee’s nose and the macaque’s
and marmoset’s mouths did not elicit any correlation (Eyes: Asian:

r = −0.65, p < 0.001; Caucasian: r = −0.43, p < 0.05; chimpanzee
r = −0.65, p < 0.01; macaque r = −0.60, p < 0.01; marmoset
r = −0.74, p = 0.001; Nose: Asian: r = −0.54, p < 0.05; Caucasian:
r = −0.48, p < 0.05; chimpanzee r = −0.06, p = 0.40; macaque
r = −0.48, p < 0.05; marmoset r = −0.59, p < 0.01; Mouth: Asian:
r = −0.61, p < 0.01; Caucasian: r = −0.65, p < 0.01; chimpanzee
r = −0.57, p < 0.01; macaque r = 0.56, p = 0.99; marmoset
r = 0.40, p = 0.95).

We found a relative increase of reaction times for the discrim-
ination of OREs as well as OSEs. The OSE for upright faces
becomes more pronounced with increasing distance from the
human species on the evolutionary timeline. We further showed
that while face inversion has a marginal or facilitative effect on
faces of the other race, it has a drastic deteriorative effect on faces
of the same race (see discussion). Same-race faces showed a strong
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FIGURE 3 | Face part extraction, part-based analysis. The process of
extraction face parts from an original image (non-normalized images are
shown here for illustration). Black and white colors in the “Map” plots
illustrate the ravines of the face. Colors in the “Exemplar features” and
“Feature space” plots illustrate the face region (blue = eyes;
yellow = nose; red = mouth). The “Feature space” panels show the feature
profiles (y -axis) for each stimulus (x -axis).

negative correlation between reaction times and configural sim-
ilarity, indicating configural sensitivity to a great extent. OREs
showed a relatively weaker negative correlation between reac-
tion times and configural similarity, indicating weaker configural
sensitivity. All other faces showed negative correlations between
reaction times and similarity scores of certain facial parts, suggest-
ing processing mechanisms with focus on individual – likely the
most distinctive – face parts.

DISCUSSION
We addressed how configural processing and similarity at
subordinate-level (within-class) affect discrimination perfor-
mance for faces. Only a few accounts, to date, have taken
similarity among stimulus samples into consideration when eval-
uating discrimination performances (Martin-Malivel and Okada,
2007; Dahl et al., 2013a). Here we evaluate the extent to which par-
ticipants rely on configural similarity among the two samples of
a stimulus pair. A related study showed that with increasing sim-
ilarity among stimuli configural processing increased (Hsiao and
Cheung, 2011). We determined the reliance on configural pro-
cessing by looking at upright as opposed to inverted faces. The
results indicate that participants relied on configural information
more strongly with increasing configural similarity between the
two faces presented. This was true only for the own face class, to
a lesser degree for the ORE class and only in upright presentation
condition. In other words, the more similar the configurations of
two faces was the more the system relied on configural processing
in order to successfully discriminate the two faces.

We also addressed the extent to which the participants relied
on specific facial parts. We expect faces of other species and
races as well as inverted own-race and own-species faces to be
processed in a stronger part-based manner than upright own-
species and own-race faces. The part-based analysis revealed a
general relationship between similarity of parts and discrimina-
tion performance for all face classes. In more detail, the eyes
played a crucial role for all types of classes; the mouth played
a more important role for Caucasian and chimpanzee faces, not
so much for monkey faces; while in contrast the nose played a
more critical role in monkey faces as opposed to human and
chimpanzee faces. As can be seen in Figure 1A, left column,
the chimpanzee faces, in contrast to the monkey faces, contain
a large variance in the mouth area. In other words, differential
diagnostic features are used for the OSE classes. In the upright
own-face class, only the similarity of eyes was negatively cor-
related with the performances, which might be caused by the
strong eye dominance in face recognition, as described in humans
(Barton et al., 2006) and monkeys (Keating and Keating, 1993;
Gothard et al., 2004; Dahl et al., 2007). This, however, drastically
changes when the own-class faces were presented inverted: simi-
larity of all parts were correlated negatively with the performance
scores, speaking for a rather distributed account on discrimi-
nating inverted own-race/species faces. Together, these findings
consistently reflect the involvement of two processing strategies,
configural and part-based processing, depending on the type of
face and the presentation condition. Along the lines, eye tracking
studies in humans (Barton et al., 2006) and monkeys (Dahl et al.,
2009) showed that eye gaze distribution were more compact on
the eye region of upright conspecific faces and more distributed
across facial parts for upright non-conspecific and inverted faces.
Here, we found stronger focus on the eyes only in the upright
own-race/species faces and more distributed reliance on several
facial parts for upright other-race/species faces as well as inverted
faces. In combination with the stronger reliance on configural sim-
ilarity for upright own-race/species faces, we can disentangle the
two processing mechanisms.

How can we interpret our findings? A critical component in
face perception is the level of expertise the observer has with the
face class presented. Expertise of the observer was found to influ-
ence ORE. Configural information is used to a greater extent for
own-race as opposed to OREs (Tanaka et al., 2004; Michel et al.,
2006): Caucasians showed a larger whole-face advantage (in com-
parison to using individual facial parts) for own-race as opposed to
OREs, while Asians, living in a society predominantly populated
by Caucasians, showed an equal whole-face advantage for both
types of faces. Similarly, expertise influences the OSE: humans
and monkeys showed higher sensitivity toward so-called second-
order relational properties (Adachi et al., 2009; Dahl et al., 2010,
2011), i.e., the spatial dimensions among facial parts (Tanaka and
Farah, 1991), and diagnostic scanning patterns indicating config-
ural processing of own-species faces and part-based processing of
OSEs (Dahl et al., 2009). Accordingly, adult humans more easily
detect slight spatial changes in human faces relative to monkey
faces, while the performance is impaired for human faces when
presented in inverted condition (Mondloch et al., 2006). Further,
captive chimpanzees were tested on discriminating chimpanzee
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FIGURE 4 | Normalized reaction times of upright and inverted faces as a

function of similarity scores drawn from face parts. Normalized reaction
times of upright (A) and inverted faces (B) were separately correlated with

the binned values of similarity scores drawn from the face parts of pairs of
faces. Black lines indicate the correlation. Below the graphs the significantly
negatively correlated areas are highlighted.
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and human faces (Dahl et al., 2013a). Young chimpanzees (around
10 years of age) showed a clear advantage for chimpanzee faces
above human faces; however, the advantage turned into a dis-
advantage with increasing exposure to human faces and limited
exposure to chimpanzee faces: older chimpanzees (around 30 years
of age) showed an advantage for human above chimpanzee faces.
In other words the sensitivity toward one class of faces adapted
toward another class of faces more strongly exposed to over
decades. These same chimpanzees showed a more pronounced
face inversion effect (Dahl et al., 2013b) and a more pronounce
left-chimeric face bias (indicating dominant right-hemispheric
processing; Dahl et al., 2013c) for faces of the expert category.
Monkey experts turn out to be more accurate than non-experts at
identifying faces of expertise and were more affected by inversion
of those monkey faces (Dufour and Petit, 2010).

As shown in this study, the similarity of two faces influences
how fast we can differentiate the two. In terms of the own-race
face configuration, the more closer the configural arrangements
of two faces are, the more the observer relied on a configural
approach. While we report an own-race advantage in terms of
reaction times, i.e., faster discrimination for own-race than OREs,
we find that configural information plays a role in both own-
race as well as OREs. However, it needs to be clearly stated that
the effect size is greater for own-race than OREs, with the latter
being significant at exactly 5%. In other words, a face class which
is morphologically close to the own-face class can be treated to
some extent configurally [see Figure 2C for morphological simi-
larity in a multidimensional scaling (MDS) space]. However, with
increasing morphological distance OSEs, configural information
cannot be successfully used for face discrimination. In accordance
with this interpretation, own-race faces have been reported to
be processed more configurally than OREs (Michel et al., 2006).
Further, according to the expertise (contact) hypothesis (Bukach
et al., 2006), the extent to which OREs were accessed configu-
rally, might well reflect the level of exposure of our participants to
Caucasian faces. Critically, our results suggest that there is no on-
off state between part-based and configural processing strategies,
but rather a continuous change of processing strategies along the
grades of similarity with own-class faces.

How can we explain the trend toward facilitation of pri-
mate faces when inverted as opposed to upright? First, it has
to be clearly stated that there was no significant inversion effect
for face classes of the closer evolutionary relatives to humans,
chimpanzees and macaques. However, marmoset monkey faces
showed a difference, and chimpanzee and macaque faces showed
a trend toward a face inversion effect. A possible explanation is
as follows: when the non-human primate faces were presented
upright, the visual system attempts to process these faces like
human (here Asian) faces due to a default approach to face-
like stimuli. However, given the high degree of morphological
difference between non-human primate and human faces, default-
template processing fails for non-human primates to a great extent.
This would explain an increasing deterioration with increasing
evolutionary distance. Once the faces were presented inverted,
they were all treated equally and processed according to a part-
based manner, hence resulting in relatively equal reaction times
for discriminating human and non-human primate faces. In a

recent computational model (SCORE; Dahl et al., accepted), we
found that, indeed, the representational structure of Asian faces
was more different in its higher dimensional components to the
representational structure of chimpanzee faces than Caucasian
faces. This supports the idea that applying a human face tem-
plate onto a non-human face reduces the discrimination power
drastically.

Face perception is governed by two processing mechanisms,
configurally, and part-based processing, and presumably a mix-
ture of both. This study shows that own-class faces tend to follow
configural processing rules, while other face classes are governed
more strongly by part-based processing. The interplay of configu-
ral and part-based processing is influenced by a number of factors:
(1) Expertise in discrimination faces drives the perceptual system
toward a configural strategy. (2) Morphological similarity among
face classes determines the extent to which the perceptual system
is able to generalize from the expert face class to a non-expert face
class. In our study, Asian-face experts can to some degree make use
of configural information in Caucasian faces due to the close mor-
phological distance of Asian and Caucasian faces. (3) Inversion
disrupts access to configural information largely and breaks down
the processing strategies of all face classes to an analytic part-based
manner. Hence, these factors influence the general discrimination
ability of various face classes and manifest in effects like the ORE
and OSE.
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