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Musical rhythm, consisting of apparently abstract intervals of accented temporal events,
has a remarkable capacity to move our minds and bodies. How does the cognitive system
enable our experiences of rhythmically complex music? In this paper, we describe some
common forms of rhythmic complexity in music and propose the theory of predictive
coding (PC) as a framework for understanding how rhythm and rhythmic complexity are
processed in the brain. We also consider why we feel so compelled by rhythmic tension
in music. First, we consider theories of rhythm and meter perception, which provide
hierarchical and computational approaches to modeling. Second, we present the theory
of PC, which posits a hierarchical organization of brain responses reflecting fundamental,
survival-related mechanisms associated with predicting future events. According to this
theory, perception and learning is manifested through the brain's Bayesian minimization
of the error between the input to the brain and the brain's prior expectations. Third, we
develop a PC model of musical rhythm, in which rhythm perception is conceptualized as
an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of
music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of
syncopation, polyrhythm and groove, and propose how these studies can be seen as special
cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles
of prediction and propose that pleasure and desire for sensorimotor synchronization from
musical rhythm may be a result of such mechanisms.
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INTRODUCTION

Music can move us, both emotionally and corporeally. It can
send shivers down our spines and make us tap our feet in time
with the beat. How does the brain facilitate the rich and com-
plex experiences we have of rhythm in music? Here, we propose
the theory of predictive coding (PC) as a framework for under-
standing the ways in which complex rhythms are processed in
the brain and discuss why we derive pleasure from rhythm in
music. First, we point to the theories of rhythm and meter which
allow for hierarchical and computational modeling. Second, we
present the theory of PC, which posits a hierarchical organiza-
tion of neural functioning, reflecting fundamental mechanisms
associated with predicting future events. The theory puts forward
that perception and learning occurs in a recursive Bayesian pro-
cess by which the brain tries to minimize the error between the
input and the brain’s expectation. Third, we view rhythm per-
ception in light of this theory as an interaction between what is
heard (“rhythm”) and the brain’s anticipatory model (“meter”).
We describe the experience of rhythm in music as depending on
the degree of tension or discrepancy between rhythm and meter.
Finally, we review some empirical studies of different forms of ten-
sion between rhythm and meter — syncopation, polyrhythm and
groove — and propose that these can be seen as special cases of PC.
Our examples illustrate a number of fundamental principles of its

mechanisms; the effects of prior experience, model comparison,
and the relationship between prediction error and affective and
embodied responses.

HIERARCHICAL MODELS OF RHYTHM AND METER

Theories of rhythmic perception often contrast rhythm with
meter. Broadly, rhythm is a pattern of discrete durations and is
largely thought to depend on the underlying perceptual mecha-
nisms of grouping (Fraisse, 1963, 1982, 1984; Clarke, 1999). Meter,
again broadly, is the temporal framework according to which
rhythm is perceived. More specifically, as defined by London
(2012, p. 4): “meter involves our initial perception as well as
subsequent anticipation of a series of beats that we abstract
from the rhythmic surface of the music as it unfolds in time.”
At the most basic level, the perception of meter involves a
sense of pulse, i.e., a pattern of beats at isochronously spaced
intervals (Honing, 2012, 2013). When such beats are hierarchi-
cally differentiated into strong and weak accents, it is thought
that we perceive meter (Lerdahl and Jackendoff, 1983; London,
2012). Because of its hierarchical nature, meter allows for rhyth-
mic expectations in music (Large and Kolen, 1994; Jones, 2009;
Ladinig etal., 2009; Rohrmeier and Koelsch, 2012). In other
words, meter provides the listener with an expectancy struc-
ture underlying the perception of music according to which each
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musical time-point encompasses a conjoint perception of time
and salience.

However, there are instances in which this sharp distinc-
tion between rhythm (perceived) and meter (induced) becomes
blurred. Teki etal. (2011a,b) distinguish between duration-based
and beat-based timing associated with the coordination and tem-
poral patterning of body-movements (see also McAuley and Jones,
2003; Grahn and McAuley, 2009). In the former, time is orga-
nized sequentially and relies on absolute intervallic relationships
between discrete events. In the latter, time intervals are orga-
nized relative to overall temporal regularity. In other words,
beat-based rhythms subserve and enable hierarchical meter. In
such cases, the rhythm is perceived as reflecting its underlying
metric organization. This is the most common form of timing
perceived in music. As we shall see, the theory of PC offers a
way of understanding what goes on in our brains when the beats
do not seem to uniformly correspond to one single regularity
framework.

In formal music-theory terms, meter is often specified in the
time signature traditionally given at the beginning of a musical
score. Some common time signatures in Western tonal and metric
music are 4/4, 2/4, and 3/4. In these time signatures, the first digit
indicates the number of pulses in the bar, and the second indicates
their durational value. Hierarchical meters are organized by the
recursive subdivision of each metric level, both above and below
the main pulse (or tactus). Figure 1 shows how metric levels and
their corresponding note durations are organized hierarchically in
a 4/4 bar. In 4/4, the metric hierarchy is duple. Each level — from
the whole-note level to the level of 16th notes' — is recursively
subdivided into two equal parts. The ways of subdividing each
metrical level vary in other time signatures, such as compound
meters like 6/8 in which the duple tactus is divided into three at
the eighth note level, or more complex meters like 5/4 in which the
tactus is quintuple, but other subdivisions are duple. However, the
time signature of a given piece can often be notated in more than
one way, and the subjective experience of its meter may be at odds

More levels can be defined above the bar-level (e.g., the hyper-bar level) and below
the 16th level (e.g., the 32nd and 64th levels). Theoretically, metric levels are relative
and can be subdivided indefinitely. In practice, however, the metric levels we perceive
are limited by our perceptual system: Time-spans too long or too short are not
detectable to the human ear (Fraisse, 1984).
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FIGURE 1 | Hierarchical model of 4/4 meter. Each metric level (or value)
is recursively subdivided into equally spaced parts (or values) at the level
below, determining the metric salience of positions within the metric
framewaork. The higher the level in the hierarchy, the more salient the
position in the meter. Numbers designate serial positions within the meter,
at 16th note resolution. The dashed line specifies the level of the tactus.

with its formal time signature. There is, more generally, greater
disagreement about the perceptual definition of meter, compared
to formal metric categories. While most agree on the particular
salience of the tactus (Parncutt, 1994; Agawu, 2003; Jones, 2009;
Honing, 2012), the extent of hierarchical differentiation of pulse
sequences beyond the tactus (i.e., at higher or lower levels) is still
unknown (Ladinig et al., 2009; Witek et al., in press). Lerdahl and
Jackendoff (1983) have proposed a highly hierarchical theory of
meter, in which rhythm perception is thought to be underpinned
by a metric framework organized in a tree-like structure (similar
to that of Figure 1). This hierarchical structure is derived from
the representation of the musical input which interacts with a
small number of top-down cognitive rules. Similar tree-like orga-
nizations of meter feature in Longuet-Higgins and Lee’s (1984)
computational model of rhythmic syncopation. Here, each metric
level is associated with a metric weight — the higher the level, the
more salient its metric values. Although Palmer and Krumhansl
(1990) found such highly hierarchical structures reflected in the
rhythmic perception of musicians, more recent studies have found
it difficult to empirically demonstrate that listeners’ (both musi-
cians and non-musicians) metric hierarchies extend beyond the
salience of the downbeat (Ladinig etal., 2009; Song etal., 2013;
Witek etal., in press).

In another influential model of meter, dynamic attending the-
ory (DAT), different metric levels are also thought to vary in
salience in relation to each other, but such hierarchical relation-
ships are seen as much more dynamic, adaptive and flexible (Large
and Kolen, 1994; Large and Jones, 1999; Barnes and Jones, 2000;
Jones, 2004, 2009). Originally proposed as a model for temporal
expectations more generally (Large and Jones, 1999; Barnes and
Jones, 2000; Jones, 2004, 2009), DAT has since been specifically
applied to music (Clayton et al., 2004; Molnar-Szakacz and Overy,
2006; Phillips-Silver etal., 2010; London, 2012; Trost and Vuilleu-
mier, 2013). DAT posits that metric frameworks are perceived in
rhythm by way of entrainment. The listener’s attention is captured
and driven by the periodicities (or oscillations) in the rhyth-
mic pattern, and the experience of metric accents corresponds
to the relative strength of attention directed toward each rhyth-
mic event, distributed hierarchically and isochronously across a
rhythmic measure. In this way, meter emerges as a consequence
of the reciprocal relationship between external periodicities and
internal attending processes. Although bottom-up and top-down
processes are acknowledged in both theories (albeit not explicitly
in Lerdahl and Jackendoff, 1983), Lerdahl and Jackendoff (1983)
focus on final-state representations of meter, while DAT (Large and
Kolen, 1994; Large and Jones, 1999; Barnes and Jones, 2000; Jones,
2004,2009) treats bottom-up and top-down processing simultane-
ously and is more concerned with the dynamic process underlying
meter perception. As will soon become clear, such equal empha-
sis on bottom-up and top-down is one aspect that DAT shares
with PC.

It is becoming increasingly common to model metrical per-
ception using wholly computational models (e.g., Desain and
Honing, 1999; Temperley and Sleator, 1999; Dixon, 2001; Mar-
gulis and Beatty, 2008; Volk, 2008). Temperley’s (2004, 2007, 2009,
2010) influential model of rhythm and meter uses “Bayes’ rule,” a
computational theorem that allows the calculation of probabilities
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of certain observations based on prior statistical information.
Through a generative process similar to that proposed by Lerdahl
and Jackendoff (1983), Temperley proposes that meter is inferred
from the probabilities of different patterns of regularity gener-
ated by a given rhythmic input. In one study (Temperley, 2010),
he tested the performance of six probabilistic models of meter,
calculated using Bayes’ rule of probability, on two corpuses of
music; the Essen Folk Song Collection (Schaffrath, 1995) and a
collection of string quartets by Hayden and Mozart. The Bayesian
model allowed Temperley to draw conclusions about how well a
sample of data (e.g., a rhythmic pattern) fits with other samples
of the same type of data more generally (a model of rhythm or
meter). As will become clear below, such Bayesian approaches
can also be seen as the basis of perceptual processing more gen-
erally, from the level of individual neurons, to subjective affective
experience.

PREDICTIVE CODING
The idea that perception can be modeled as a Bayesian process is
the point of departure for a relatively novel way of understand-
ing fundamental brain function. The theory of PC tries to explain
how areas in the brain share and integrate information. It was first
proposed by Friston (2002, 2005), but preceded by several similar
theories about fundamental brain processing centered on predic-
tion (Mumford, 1992, 1994; Rao and Ballard, 1999). Via Bayesian
inference, the brain predicts the causes and sources of its internal
states from the actual sensory input as compared with previous
“knowledge,” accumulated through experience (Friston, 2005). In
this way, the brain is a “hypothesis-tester” and its goal is to “explain
away” prediction error by adapting its a priori predictions. Mathe-
matically speaking, it uses Bayes’ rule recursively (i.e., from level to
level in the nested neural networks) to infer the probability of its
hypothesis, given the equation p(a|b) = p(bla)*p(a)/p(b), where
b is the input and a is the hypothesis (see Temperley, 2007 for
a very accessible and music-oriented explanation of Bayes’ theo-
rem). Note that Bayesian inference is assumed to take place at every
level of brain processing so that higher levels of processing pro-
vide priors for lower levels, thus creating nested and hierarchical
links across the entire brain. The PC theory assumes a multi-
level cascade of processing at different time-scales, in which each
level attempts to predict the activity at the level below it via back-
ward connections. The higher-level predictions act as priors for
the lower-level processing (so-called “empirical Bayes,” Robbins,
1956). These priors are influenced by previous experience and
culture (Roepstorff etal., 2010), often termed hyper-priors (Fris-
ton, 2008). However, it is not only experiences from the lifetime
scale that affect the process; more short-term priors also influ-
ence predictions that are made on a moment-to-moment basis.
For example, while the experience of a metrically complex rhyth-
mic pattern will depend on whether one has been exposed to such
rhythms in playing (Vuust etal., 2012b) or listening (Kalender
etal., 2013), the perception of it will also depend on how fre-
quently this pattern is featured within the current musical context
(Huron, 2006).

The relationship between bottom-up (input) and top-down
(prediction) processes is entirely mutually dependent, and the
comparison between them is essential to the system, since a variety

of environmental causes can theoretically result in similar sensory
input (e.g., a cat vs. an image of a cat). The top-down models
provide the brain with context-sensitive ways of selecting the cor-
rect interpretation of the incoming information. The predictive
models continuously predict the causal relationship between sen-
sory input and environmental events. In changing environments,
the models are gradually updated (as a result of the bottom-up
prediction error) to maximize the correspondence between the
sensory input and the predictions, and minimize prediction error.
In this way, the causes of sensations are not solely backtracked
from the sensory input, but also inferred and anticipated based
on contextual cues and previous sensations. Thus, perception is a
process that is mutually manifested between the perceiver and the
environment, reflecting the bottom-up/top-down reciprocity that
is also central to DAT, as mentioned above.

According to PC, the process of comparing input to predictions
occurs hierarchically at every level of processing, from the inter-
action between individual neurons, to communication between
large populations of neurons (i.e., brain areas or networks).
Furthermore, there are both forward and backward projections
between the different layers in the system (Rao and Ballard, 1999).
Using a simplified physiological model of PC we can assume that
mainly superficial layers in the cortex, rich in pyramidal cells,
are responsible for forwarding prediction error upward in the
system (driving), whereas mainly modulatory feedback connec-
tions from deeper layers provide predictions from higher cortical
areas to suppress prediction errors at the lower levels (Bastos et al.,
2012). In this way, specific neuronal populations are associated
with specific computational roles, disclosing the correspondence
between the microcircuitry of the cortical column and the con-
nectivity implied by PC. Hence, at any given level, the input is
compared with the prediction from the level above (backward
projection). If there is any discrepancy between the two, the
difference, i.e., the prediction error, is fed forward to the next
level (forward projections). At the original level, predictions are
changed to comply with the input. Depending on the degree
of violation, the brain does this by either updating the model,
or changing the way it samples information from the environ-
ment. This dynamic and continuous updating of models and
sampling methods is the basis for the system’s adaptive learning
and plasticity (Friston, 2003). When predictions change, the con-
nectivity between the neurons is believed to change accordingly.
According to PC, the brain’s task is to minimize prediction error
and its ultimate goal is to attain a fully predicted representation
of the world. This results in a system which is highly efficient,
since only the prediction error and no redundant (predicted)
information needs to be processed. This is a key component of
PC that sets it apart from previous theories of prediction and
Bayesian inference. The only information that needs to be com-
municated “upward” is the prediction error, making it a kind
of proxy (Feldman and Friston, 2010) for sensory information
itself.

Predictive coding is notoriously difficult to prove by imaging
or recording in the human brain due to the spatial and temporal
limitations of the available methods, such as functional magnetic
resonance imaging (fMRI), positron emission tomography (PET),
electroencephalography (EEG) and magnetoencephalography
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(MEG). Thus, it remains a theory whose empirical validation is
yet to be completed. Nonetheless, PC is supported by recent devel-
opments in our understanding of brain physiology (see Bastos
etal.,, 2012 for a summary), and this physiological implementa-
tion of PC conforms to what we know about error processing
in the brain. One particularly well-understood neural marker for
error processing (or change detection), which has been frequently
employed in auditory and music experiments, is the mismatch
negativity (MMN) as recorded with EEG/MEG. The neuronal ori-
gins of MMN share physiological features with the error-units
suggested by PC, originating in dense superficial layers of the
auditory cortices.

Furthermore, there are recent behavioral studies indicating that
humans act as rational Bayesian estimators, in perception and
action, across different domains (Kording etal., 2007; Yu, 2007;
Berniker and Kording, 2008). Recent research into rhythmic tap-
ping is closely related to such studies: Konvalinka etal. (2010)
showed that when two participants tap together (instructed to
keep the tempo and synchronize with each other), they adapt
to each other at a tap-by-tap basis, meaning that each tapper
speeds up when the other has been faster on the last tap, and
slows down if the other has been slower. In other words, interac-
tive tappers seem to be trying to minimize prediction error at a
microtemporal level (although the authors do not strictly use PC
in interpreting their results). More recently, Elliott etal. (2014)
provided evidence that, compared to alternative models, Bayesian
modeling could better account for the behavior of participants
instructed to “tap in time” with two irregular metronomes sepa-
rated by a lag, suggesting that humans exploit Bayesian inference
to control movement timing in situations where the underly-
ing beat structure of auditory signals needs to be resolved (i.e.,
beat-based timing). Specifically, compared with models based
exclusively on separation or integration of cues, the Bayesian infer-
ence model better predicted participants’ behavior and motor
timing errors, since it infers the choice of separation vs. inte-
gration based on the likelihood of the onsets of the competing
cues and the prior expectation of the beats’ occurrence. Cicchini
etal. (2012) found that the accuracy with which percussionists
were able to reproduce isolated timing intervals (duration-based
timing) was more successfully predicted using a Bayesian model
whose prior was estimated from statistical information about
mean and standard deviation of interval distribution, compared
with a model which ignored such priors. It should be noted, how-
ever, that if the system from the outside looks as if it applies
Bayesian inference, it does not necessarily mean that its intrin-
sic mechanisms are guided by Bayesian computational principles
(Maloney and Mamassian, 2009). Furthermore, even if the archi-
tecture of the brain is governed by Bayes’ rule, it does not mean
that all behavior and conscious experience should reflect it (Clark,
2013). Human rhythmic behavior and sensorimotor synchroniza-
tion, both in musical (e.g., Large, 2000; Repp, 2005; Keller, 2008;
Repp and Keller, 2008; Schogler etal., 2008; Pecenka and Keller,
2011; Demos etal., 2012) and non-musical domains (Lee, 1998;
Large and Jones, 1999; Mayville etal., 2001; Schmidt etal., 2011),
have been theorized in a number of ways. As mentioned, DAT
has proved a particularly useful framework for understanding
dynamic temporal and motor processes. We are not claiming that

this and other theories are wrong, but rather that PC provides
a broader framework according to which they can be under-
stood. The findings of DAT and other compatible research build
a strong case for PC, and as we shall see below, several examples
of perception of rhythmic complexity in music seem to support it
as well.

Predictive coding has received wide recognition in the cogni-
tive sciences and remains a frequently discussed topic (Rao and
Ballard, 1999; Friston, 2010; Brown etal., 2011; Clark, 2013).
Recently, cognitive philosopher Clark (2013) proposed that the
theory could provide the much sought after “grand unifying the-
ory” of cognition. Advocating embodied approaches to cognition
(Clark and Chalmers, 1998; Clark, 2008), PC appeals to Clark
particularly due to the close relationship it posits between action
and perception (Friston etal., 2010). By emphasizing what he
calls “action-oriented predictive processing,” he asserts that action
follows the same computational strategies as perception, namely
Bayesian inference. The only difference is that in motor systems,
the perceiver’s own movements and active engagement with the
environment constitute the prediction error minimization (Fris-
ton, 2003). Ultimately, action-oriented predictive processing is a
way to mold the world and actively elicit, via body-movement,
the brain’s sensory input. Thus, action and perception work
together in a loop to selectively sample and actively sculpt the
environment, a principle that has important commonalities with
theories of situated and embodied cognition (Verschure etal,
2003; Leman, 2007; Clark, 2008). Furthermore, Clark (2013) sug-
gests that such a principle easily allows for extensions into theories
of social action and cultural environments. He also notes how
interpersonal music-making can be seen as a form of multi-agent
cooperation to collectively shape sensory input through sensori-
motor synchronization (Molnar-Szakacz and Overy, 2006; Repp
and Keller, 2008; Overy and Molnar-Szakacs, 2009; Phillips-Silver
etal.,2010). But to what extent can PC help us understand rhythm
and meter perception at a more basic level? Can the way we
perceive and produce complex rhythm in music be seen as a
Bayesian process? And to what extent can our affective responses
to rhythm in music be seen as a result of predictive mecha-
nisms? In the following discussion we will use special cases of
rhythmic complexity in music to demonstrate how the relation-
ship between rhythm and meter, one of the most fundamental
premises for music perception, is an expression of input vs.
model, bottom-up vs. top-down, action-perception loops, and
Bayesian PC.

PREDICTIVE CODING IN MUSICAL RHYTHM

The principles of PC align closely with the statistical learning
account of melodic perception proposed by Pearce and Wig-
gins (2006) and Pearce etal. (2010). Their notion that initial
neuronal error messages are followed by synchronized activity
in various brain areas in response to low-probability sequences
corresponds to the local prediction error at a low hierarchical
level posited in PC. The ensuing neural synchronization across
various brain areas is analogous with the integration of new infor-
mation into the models at higher hierarchical layers. Recently,
Vuust and Frith (2008), Vuust etal. (2009), and Gebauer etal.
(2012) have suggested that PC can provide a useful framework
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for understanding music perception in general, and rhythm
perception in particular.

Central to this claim is that meter constitutes a key predic-
tive model for the musical brain, shaped by statistical learning,
and repeatedly challenged by the sensory input from rhythmic
patterns in the actual music. Perception of rhythm is thus heav-
ily dependent on the metrical prior. Brochard etal. (2003) have
demonstrated the automaticity of this process in a remarkably
simple experiment. They showed that listening to an undifferen-
tiated metronome pattern caused the brain to register some beats
as automatically more salient than others. Specifically, it arranged
them into an alternating strong-weak pattern, i.e., according to
duple meter. In PC terms, the brain interpreted the input — in
this case the metronomic beats — based on its own predictions.
Duple meters are statistically the most common in Western metric
music (Temperley, 2010) and are embodied in human locomotion
(Sadeghi etal., 2000). Thus the brain maximizes successful predic-
tion by expecting rhythms to be duple (as opposed to, e.g., triple
or compound). These predictive brain mechanisms are depen-
dent on long-term learning, familiarity with a particular piece
of music, deliberate listening strategies and short-term memory
during listening (Altenmuller, 2001). In this way, neural structures
underlying musical expectation are influenced by culture, personal
listening history, musical training, mood, listening situation, and
biology (Figure 2).

The proposed hierarchical processing in PC makes the the-
ory particularly illustrative of the mechanisms behind meter
perception in music. Although the extent of the hierarchical dif-
ferentiation between pulse levels in meter is debated (Witek etal.,
in press), one cannot define meter without acknowledging at least
some degree of hierarchy (e.g., between the whole-note level and
the subsequent levels, as evidenced by the increased metric salience
of the downbeat, Ladinig etal., 2009; Song et al., 2013; Witek et al.,
in press). For meter perception, PC can explain how lower levels,
e.g., events at the eighth-note level, provide metric information
about the whole-note level and the salience of the downbeat (feed
forward). At the same time, the whole-note level, as marked by
the most salient beat, the downbeat, provides a metric frame-
work according to which the eighth-notes at the lower level are
heard (feed back). This PC way of understanding metric hierar-
chies emphasizes the mutual relationship between bottom-up and
top-down processes.

The influence of top-down processes has been demonstrated
in neuroimaging studies of rhythm and beat perception. Dur-
ing passive listening to rhythms (i.e., with no direct priming for
body-movement), Chen etal. (2008a) found activations of cor-
tical secondary motor areas, such as the supplementary motor
area and premotor area, indicating inherent coupling in the
brain between action and perception. Grahn and Rowe (2009)
showed that connections between such secondary motor areas
and the auditory cortex were more strongly coupled during
duration-beat (rhythms whose underlying beat was induced
through varying rhythmic interval) than during volume-beat
(rhythms whose underlying beat was induced through alter-
nating dynamics). This suggests that secondary motor areas
increase their feedback to primary sensory areas during meter
perception. Similar findings were reported by Bengtsson etal.

PREDICTIVE CODING OF MUSIC

Perception & Learning

FIGURE 2 | Predictive coding of music. The experience and learning of
music takes place in a dynamic interplay between anticipatory structures in
music, such as the build-up and relief of tension in rhythm, melody,
harmony, form and other intra-musical features on one side, and the
predictive brain on the other. The real time brain model is dependent on
cultural background, personal listening history, musical competence,
context (e.g., social environment), brain state (including attentional state
and mood), and innate biological factors. The brain is constantly trying to
minimize the discrepancy between its interpretation model and the musical
input by iteratively updating the real time brain model (or prior) by weighting
this model with the likelihood (musical input) through Bayes' theorem. This
leads to a constantly changing musical experience and long-term learning.

(2009), who observed parametric modulation of activity in
cortical motor areas as a function of stimulus predictability
(isochronous, metric or non-metric), suggesting that these areas
are involved in prediction. In accordance with previous research
(Raij etal., 1997; Trainor etal., 2002), they also found increased
activity in response to stimulus predictability in a number of
frontal areas (medial-frontal gyrus, dorsal-prefrontal cortex, and
superior-frontal gyrus). Many such studies have also found that
musical training modulates activity patterns and connections
between areas, illustrating the importance of previous expe-
rience, exposure and expertise in perception of rhythm and
meter (Vuust etal., 2005, 2006; Chen etal., 2008a; Grahn and
Rowe, 2009; Stupacher etal., 2013). These and other studies
show a rhythm-related expertise-dependent action-perception
reciprocity in the brain (Grahn and Brett, 2007; Chen et al., 2008b;
Chapin etal., 2010; Kung etal., 2013), which may reflect the
top-down/bottom-up mutuality and action-oriented perception
posited by PC.

Neurophysiological research into rhythm and meter sug-
gests similar mechanisms. Using EEG, Nozaradan etal. (2011)
recorded neuronal entrainment during listening to a musical beat
whose meter was imagined rather than manifested acoustically.
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Importantly, they found that properties of the beat which were
only imagined (acoustically silent) elicited sustained oscillations
tuned to the appropriate beat frequency, providing neural evi-
dence of musical entrainment and induced meter. Fujioka etal.
(2010) used MEG to show that listening to identical metronome
clicks were spatiotemporally encoded in musicians’ brains in
different ways, depending on the metric context according to
which the ticks had been heard, either duple or triple. Specif-
ically, the right hippocampus showed temporally differentiated
peaks to both conditions, suggesting that this chiefly memory-
related area may act as a predictor (or anticipator) during metric
encoding of temporal structures. In the left basal ganglia, peaks
corresponded to the duple condition only. As mentioned, duple
meter is thought to be more salient than triple due to the
inherent symmetry in human locomotion and, at least for cer-
tain populations, because of the bias toward duple meters in
Western music. Therefore, the authors propose that the basal
ganglia may be involved in the generation of metric hierar-
chies (duple is more salient than triple; Grahn and Brett, 2007;
Grahn and Rowe, 2012). Finally, they speculate that the hip-
pocampal memory system and striatal metric hierarchy system
facilitate endogenous activation in auditory and auditory asso-
ciation areas through feedback loops. Studies such as these tap
into the hierarchical yet dynamic nature of the brain’s func-
tional organization at the millisecond level. Neurophysiological
indications of entrainment, prediction, hierarchy and reciprocity
in the brain are therefore highly compatible with the theory
of PC.

Understanding the neural mechanisms underlying rhythm in
a PC hierarchical framework has recently been suggested for
the differential processing of timing at different time scales
(Madison, in commentary to Clark, 2013). Whereas time
representation at the level of milliseconds will typically be
encoded close to the action output (e.g., cortical motor areas
and the cerebellum), observations and actions that are more
detached in time should involve more prefrontal processing.
This is supported by studies showing processing distinctions
between intervals above and below circa one second (Madi-
son, 2001; Lewis and Miall, 2003; Gooch etal.,, 2011), as
well as by indications that time representation for sub-second
intervals are to some extent sensory specific (Nagarajan etal.,
1998; Morrone etal., 2005) and under some conditions even
limited to spatial locations (Johnston etal., 2006; Burr etal,
2007). For longer time periods, a larger part of the pre-
frontal cortex is activated (Lewis and Miall, 2006; Simons
etal., 2006). This timing-related frontal lobe network over-
laps with working memory and executive control networks
(Jahanshahi etal., 2000; Owen etal., 2005), suggesting that tim-
ing constitutes a general cognitive control problem at longer
time durations. As we shall see below, this division of labor
persists in relation to the different time scales at which per-
ceived rhythms can contradict the metrical framework. Whereas
syncopations occurring at a single instance in drum rhythms
with a clearly defined meter can be dealt with by the audi-
tory cortices alone, polyrhythms that persist for several bars
employ more frontally located (supposedly higher level) neuronal
resources.

NEURAL PROCESSING OF SYNCOPATION AND MUSICAL
EXPERTISE

A key factor in our experience of rhythm is the extent to which a
rhythmic pattern challenges our perception of meter. The most
common example of such tension between rhythm and meter
is syncopation. Syncopations are generally defined as rhythmic
events which violate metric expectations (Longuet-Higgins and
Lee, 1984; Fitch and Rosenfeld, 2007; Ladinig etal., 2009; Witek
etal,, in press). Generally, it is thought that listeners expect
the majority of onsets in a rhythm to coincide with metri-
cally salient positions, while rests or tied notes are expected to
occur at metrically less salient positions (Longuet-Higgins and
Lee, 1984; Temperley, 2010; Witek etal., 2014). A syncopation
occurs when these expectations are violated, when onsets occur
on metrically weak accents and rests or tied notes occur on met-
rically strong accents. Such expectations can be conceptualized
in Bayesian terms (Temperley, 2007, 2010). The model assigns
relative probabilities to all notes and rests of a pattern based on
prior information about statistical frequencies and a hierarchical
model of meter. A syncopation’s perceptual effect is thus a conse-
quence of its predictability within the context of music as a whole.
For a syncopation to obtain its characteristic effect, it must be
experienced as contradicting the meter, but not so strongly that
it undermines the meter. Syncopations can also be thought of as
phase-shifts, where the rhythmic onset, rather than occurring in
phase with its metric reference point, has a negative lag and occurs
before it.

Auditory expectancy violations have been extensively stud-
ied via the “MMN” response in the brain (Sams etal., 1985;
Nidtdnen etal., 1987, 2001; Paavilainen etal., 1989), a compo-
nent of the auditory event-related potential (ERP), measurable
with EEG and MEG. MMN:s relate to change in different sound
features, such as pitch, timbre, location of sound source, inten-
sity, rhythm or other more abstract auditory changes, such as
streams of ascending intervals (Naitinen etal., 1987,2001; Ndata-
nen, 1992; Friedman etal., 2001). The MMN is an effective way
to measure pre-attentive prediction processes in the brain, and
thus provides a particularly suitable tool to investigate PC. The
MMN appears to have properties analogous to the error signal
in a PC framework. It is dependent on the establishment of a
pattern (or model) and responds only when the predictive pat-
tern is broken. MMNs have been found in response to pattern
deviations determined by physical parameters such as frequency
(Sams etal., 1985), intensity (Nddtinen etal., 1987), spatial local-
ization, and duration (Paavilainen et al., 1989), but also to patterns
with more abstract properties (Paavilainen etal., 2001; Van Zuijen
etal., 2004). Importantly for our comparison with PC theories,
the size of the MMN adjusts as the pattern adapts (Winkler etal.,
1996), hence the size of the error message is dependent on the
brain’s model of the incoming input as well as on the input
itself.

The MMN is also strongly dependent on expertise. Musicians
who adjust the tuning of their instruments during perfor-
mance, such as violinists, display a greater sensitivity to small
differences in pitch compared to non-musicians and other musi-
cians playing other instruments (Koelsch etal., 1999); singers
respond with a stronger MMN than instrumentalists to small

Frontiers in Psychology | Auditory Cognitive Neuroscience

October 2014 | Volume 5 | Article 1111 | 6


http://www.frontiersin.org/Auditory_Cognitive_Neuroscience/
http://www.frontiersin.org/Auditory_Cognitive_Neuroscience/archive

Vuust and Witek

Rhythmic complexity and predictive coding

pitch changes (Nikjeh etal, 2008); and conductors process
spatial sound information more accurately than professional
pianists and non-musicians (Miinte etal., 2001). Recently, it
was shown that performing musicians’ characteristics of style
and genre influence their perceptual skills and their brains’ pro-
cessing of sound features embedded in a musical context, as
indexed by larger MMN (Vuust etal., 2012a,b). Such influences
of training on low-level, pre-attentive neural processing exemplify
the longer-term contextual, environmental and cultural aspects
of PC.

To address the effects of expertise on metric perception, Vuust
etal. (2009) investigated whether differential violations of the
hierarchical prediction model provided by musical meter would
produce error messages indexed as MMN. They compared rhyth-
mically unskilled non-musicians with expert jazz musicians on two
different types of metric violations: syncopations in the bass drum
of a drum-kit (a musically common violation), and a more gen-
eral (across all instruments of the drum-kit) disruption of meter
(a musically less common violation). Jazz musicians frequently
produce highly complex rhythmic music and are therefore ideal
candidates for identifying putative competence-dependent differ-
ences in the processing of metric violations. MMNm (the magnetic
equivalent to the MMN, measured with MEG) in response to met-
ric disruption was found in both participant groups. All expert
jazz musicians, and some of the unskilled non-musicians, also
exhibited the P3am after the MMNm. The P3am is the magnetic
equivalent of the P3a, an event-related response usually associated
with the evaluation of salient change for subsequent behavioral
action. The study also showed that responses to syncopation were
found in most of the expert musicians. The MMNms were local-
ized to the auditory cortices, whereas the P3am showed greater
variance in localization between individual subjects. MMNms
of expert musicians were stronger in the left hemisphere than
in the right hemisphere, in contrast to P3ams showing a slight,
non-significant right-lateralization.

The MMNm and P3am can be interpreted as reflecting an
error term generated in the auditory cortex and its subsequent
evaluation in a broader network of generators in the auditory
cortex and higher-level neuronal sources. Consistent with this
point of view is the fact that the MMN signal is mainly gener-
ated by pyramidal cells in the superficial layers of the cortex, as
the canonical microcircuit implementation of PC suggests (Bas-
tos etal.,, 2012). The study by Vuust etal. (2009) also showed
indications of model adjustment in two of the jazz musicians,
since their finger-tapping suggested a shift in metric framework
(e.g., shifting of the position of the downbeat). These findings
are thus in keeping with the PC theory and suggest that there is a
congruous relationship between perceptual experience of rhyth-
mic incongruities and the way that these are processed by the
brain. However, PC is yet to determine the precise physiolog-
ical localization and computations of the networks underlying
such metric violations. Dynamic causal modeling (Stephan etal.,
2007) is a relatively new neural network analysis tool that may
help specify some of the unknowns in PC of rhythm and
meter in music. Nonetheless, the study by Vuust etal. (2009)
showed quantitative and qualitative differences in brain processing
between two participant groups with different musical experience,

indicating that prediction error generated by meter violation cor-
relates positively with musical competence. A PC interpretation
of these findings would posit that the metric models of musi-
cians are stronger than those of non-musicians, leading to greater
prediction error.

PREDICTIVE CODING OF POLYRHYTHM

In some styles of music, the meter may at times be only weakly
(or not at all) acoustically actualized, a situation which cre-
ates extreme instances of perceptual rhythmic complexity. The
pervasive use of polyrhythm, or even polymeter, throughout musi-
cal compositions is a radically complex rhythmic practice that
occurs especially in (but is not restricted to) jazz music (Pressing,
2002). During polyrhythm the formal meter may be completely
absent in the actual acoustic signal, and musicians must rely on
listeners’ ability to predict the formal metric framework. One
example of polyrhythm is “cross-rhythm,” in which different over-
laid rhythmic patterns can be perceived as suggesting different
meters (Danielsen, 2006). A typical example is the so-called “three-
against-four” pattern, which may be illustrated by tapping three
equally spaced beats in one hand and four equally spaced beats
in the other at the same time, so that the periods of both pat-
terns are synchronized. It is possible to perceive the meter of
such a pattern in two ways, either as triple or duple. In triple
meter, the formal time signature is 3/4 and the four-beat pattern
acts as a counter-metric pattern (Figure 3A). In duple meter, the
time signature is 4/4 and the three-beat pattern is the counter-
metric pattern (Figure 3B). The rhythmic organization of the
two interpretations in Figure 3 is exactly the same; that is, in
each pattern the cross-rhythmic relationship between the two
streams is identical. The pattern notated in the lower part of
the staves expresses the meter while the pattern in the higher
part is the counter-rhythm. The phenomenological experience
of this polyrhythm therefore depends on which of the patterns
in the cross-rhythm is defined as the meter. The three-against-
four polyrhythm is thus analogous to ambiguous images such as
Rubin’s vase, which can be seen either as a vase on black back-
ground, or faces on white background (Figure 3C). In the case of
the cross-rhythms, the meter is the background and the counter-
metric rhythm is the foreground. As with Rubin’s (1918) vase,
cross-rhythm in music can sometimes cause perceptual shifts in
which the metric model can be reinterpreted in a different way.
In music, such metric shifts can be supported by sensorimotor
synchronization, e.g., foot-tapping emphasizing the tactus of the
meter. Phillips-Silver and Trainor (2005) found that after an initial
period of listening to metrically ambiguous rhythms while being
bounced according to either a duple or triple meter, 7-month old
babies preferred (i.e., listened longer to) rhythms with accent pat-
terns (i.e., meter) to which they had previously been bounced.
Similar patterns were found in adults, suggesting that auditory
and vestibular information affects rhythm and meter perception
(Phillips-Silver and Trainor, 2007, 2008). Viewed as PC, their find-
ings indicate that body-movement shapes perception, suggesting
action-oriented perception (Clark, 2013). Polyrhythms and oth-
erwise ambiguous rhythms can thus be seen as presenting to the
listener a bistable percept (Pressing, 2002) that affords rhythmic
tension and embodied engagement.
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FIGURE 3 | Cross-rhythms. (A) Three-beat triple meter with four-beat pattern as counterrhythm. (B) Fourbeat duple meter with three-beat counterrhythm.
Dots below the staves designate the tactus. (C) The bistable percept of Rubin’s vase.

Bistable percepts and other types of perceptual illusions have
been suggested to provide particularly revealing illustrations of PC
(Hohwy et al., 2008; Clark, 2013). A common example is binocular
rivalry, a perceptual scenario in which, using a special experimen-
tal setup, each eye is shown a different image simultaneously —
for example, a house and a face (Leopold and Logothetis, 1999;
Hohwy etal., 2008). In such experiments, the experienced image
is not a combination of the two images — some morphed structure
with both house- and face-features — but rather a bistable percept
in which the image shifts from one to the other, but never the
two at the same time. According to PC, such artificially induced
experiences illustrate how our perceptual system deals with situ-
ations in which there are more than one predictive model. The
bottom-up input presents two equally plausible models — it is just
as common to see a house as it is too see a face — but they are tem-
porally and spatially incompatible, i.e., the hyper-prior is that we
never see a face and a house as coming from the same source at the
same time. However, no one stable model can be said to be more
likely or more expected than the other. In choosing one hypoth-
esis over the other, the top-down signals will “explain away” only
those elements of the driving signal that conform to this hypothe-
sis, causing the prediction error of the alternative hypothesis to be
forwarded upward in the system. Therefore, no single prediction
can account for all the incoming information or reduce all predic-
tion error, and the brain alternates between the two semi-stable
percepts. While non-Bayesian feed-forward accounts of such sce-
narios posit that switching is caused by attention alone (e.g., Lee
etal., 2005), PC posits a “top-down” competition between linked
sets of hypotheses.

In a similar way, we can perceive two alternative rhythms in
cross-rhythmic patterns of the kind depicted in Figure 3, but never
both at the same time. In such complex cases, perceptually alter-
nating and prediction-switching processes are the best way for
the brain to minimize prediction error and maintain a statistically
viable representation of its environment. However, cross-rhythmic
patterns differ from binocular rivalry in one important way: in
cross-rhythms such as the three-against-four pattern, it is possible
for musically trained individuals to consciously “hear” one inter-
pretation of the pattern, despite the perceptual input advocating
for the other. In such cases, the perceiver must devote consider-
able effort to sustain his or her internal metric model while the
rhythmic input deviates from it.

Vuust etal. (2006, 2011) have taken advantage of these alterna-
tive perceptual consequences of polyrhythm in two studies, using
fMRI to measure blood-oxygenated-level-dependent (BOLD)
responses in “rhythm section” musicians (drummers, bassists,

pianists, and guitarists). The musical example used was the
soprano saxophone solo in Sting’s “Lazarus Heart,” in which the
rhythm suddenly changes to a different meter for six measures,
leaving no acoustic trace of the original meter. However, despite
the shift in the musical surface, it is still possible to infer the origi-
nal meter since the subdivisions and metric frameworks of the two
eventually align at the end of the six measures. In other words, a
listener could, depending on his or her musical-temporal abilities,
consciously maintain the counter-meter. During the first experi-
ment, participants were asked to tap along to the main meter of
the music while mentally focusing first on the main meter and
then on the counter-meter (Vuust et al., 2006,2011). In the second
experiment, they listened to the main meter throughout the study
and were asked to tap both the main meter and the counter-meter.
In the second experiment, it was found that Brodman’s area (BA)
40 showed increased activity during tapping to the counter-meter
compared to the original meter (Figure 4). This brain area has
been associated with language prosody, and with particular rel-
evance for our discussion, with bistable percepts (Kleinschmidt
etal., 1998; Lumer etal., 1998; Sterzer etal., 2002). Furthermore,
in both experiments, the counter-metric tasks showed increased
activity in a part of the inferior frontal gyrus corresponding to
BA 47, most strongly in the right hemisphere (Figure 4). This
area is typically associated with language, particularly seman-
tic processing (for reviews, see Fiez, 1997; Cabeza and Nyberg,
2000). Vuust etal.’s (2006, 2011) studies thus suggest that these
areas may serve more general purposes than formerly believed,
such as sequencing or hierarchical ordering of perceptual infor-
mation (BA 47) (Fiebach and Schubotz, 2006), and predictive
model comparisons (BA 40). Interestingly, BA 47 was found to
be active both in relation the experience (experiment 1) and pro-
duction (experiment 2) of polyrhythmic tension. Therefore, it
is possible that this area, bilaterally, is involved in the process-
ing of prediction error in polyrhythm per se. The findings may
thus provide evidence of action-oriented predictive processing and
the close relationship posited between action and perception in
PC (Clark, 2013). Furthermore, activity in BA 47 was inversely
related to rhythmic expertise as measured by standard deviation
of finger-tapping accuracy. In other words, the effort to maintain
a counter-metric model during polyrhythm requires less brain
activity for musicians than for non-musicians. This finding sup-
ports the PC hypothesis that the more accurate the prediction,
the less processing is needed by the perceptual system. According
to PC, the continuous effort needed to sustain a counter-metric
model should lead to sustained activity in the relevant brain areas
(e.g., BA 47) and networks, including areas at higher levels than
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FIGURE 4 | Areas of activity in the brain during tapping to polyrhythm.
Activations of Brodman'’s areas (BA) 40 and 47 in the parietal and prefrontal
cortices, respectively, as associated with tapping to polyrhythms. See
Vuust etal. (2006) for more detail.

those primarily generating the prediction errors. At these higher
levels, the experts’ models should be more successful at predict-
ing the incoming rhythmic information since they require less
“processing power” to maintain a competing metric model. In
this way, the decreased neural activity in response to increased
musical ability in expert musicians is an expression of the hier-
archical, bidirectional, and context-sensitive mechanisms posited
by PC.

PREDICTIVE CODING IN GROOVE

In certain styles of music, such as funk (Danielsen, 2006),
hip-hop (Greenwald, 2002) and electronic dance music (Butler,
2006), continuous rhythmic complexity is the basis for structural
development. Such music is often referred to as “groove-based”
(Danielsen, 2010). Groove is primarily defined as a psycho-
logical construct, characterized by a pleasurable drive toward
body-movement in response to rhythmically entraining music
(Madison, 2006; Madison et al., 2011; Janata et al., 2012; Stupacher
etal., 2013; Witek etal., 2014). Such behavioral effects require that
the rhythmically complex musical structures, such as syncopation
and cross-rhythm, are continuously repeated. Other examples of
repeated rhythmic complexity in groove are metric displacement
(Butler, 2006; Danielsen, 2006) and microtiming (Waadeland,
2001; Iyer, 2002; Danielsen, 2006).

In recent experiments, Witek et al. (2014) investigated the rela-
tionship between syncopation in groove, the desire to move, and
feelings of pleasure. Their stimuli consisted of 50 groove-based
(funk) drum-breaks, in which two-bar rhythmic phrases featuring
varying degrees of syncopation were repeated four times, con-
tinuously. Using a web-based survey, participants were asked to
listen to the drum-beaks and rate the extent to which they felt
like moving and experienced pleasure. The results showed an

inverted U-shaped relationship between degree of syncopation
and ratings, indicating that intermediate degrees of rhythmic com-
plexity afford optimal pleasure and desire for body-movement.
The inverted U is a familiar function (Wundt, 1874) in music psy-
chology (North and Hargreaves, 1995; Orr and Ohlsson, 2005) and
has been suggested to describe the relationship between percep-
tual complexity and arousal in art more broadly (Berlyne, 1971).
Interestingly, rather than being affected by participants’ formal
musical training, Witek et al. (2014) found that those who enjoyed
dancing and often danced to music rated the drum-breaks as
eliciting more pleasure and more desire to move, overall. Thus,
it seems that not only institutionalized formal musical train-
ing, but also more informal embodied experience with music
may affect subjective experiences of rhythmic complexity such as
groove.

The inverted U-shape found between degree of syncopation in
groove, wanting to move, and feelings of pleasure can be seen as
complying with a hierarchical perceptual system at its higher and
more subjectively manifested levels. At this higher level, predic-
tion in perception and action facilitates affective and embodied
experiences. At low degrees of syncopation, there is little incon-
gruence between the rhythm of the groove (the input) and the
meter (the predicted metrical model). Thus, little prediction error
is being fed forward from the lower to the higher levels, and the
experiential effect is weak — there is little pleasure, and little desire
to move. At high degrees of syncopation, the degree of complex-
ity is so high, and the rhythmic input deviates from the metric
framework to such an extent, that the predicted model breaks
down. Affective and embodied responses are decreased since the
system is in the process of “learning” and adjusting its internal
models. Also here there is little prediction error since the brain
is unable to provide an appropriate prediction model to com-
pare the incoming input with. This uncertainty of the system in
the initial phase of perception is widely reported in the litera-
ture (Pack and Born, 2001; Born etal., 2010) and is what one
would expect if perception involved recruiting top-level models
to explain away sensory data. However, at intermediate degrees
of syncopation in groove, the balance between the rhythm and
the meter is such that the tension is sufficient to produce pre-
diction error, and for the perceptual system to come up with
a prediction model, but not so complex as to cause the metric
model to break down. The input and the model are incongruent,
but not incompatible, and the prediction error affords a string of
hierarchical encoding and evaluation from lower to higher lev-
els in the brain, ultimately facilitating feelings of pleasure and
desire to move. In fact, synchronized body-movement in groove-
directed dance is a good example of action-oriented perception,
since the body essentially emphasizes the predictive model by mov-
ing to the beat and hence actively tries to minimize prediction
error.

These nested levels of input-model comparisons can also
explain why it is that, despite persistent repetition, the rhythmic
complexity in groove does not lose its characteristic perceptual
effect. That is, higher levels in the groove processing hierarchy
do not only provide basic perceptual metric models (i.e., rhyth-
mic onsets should occur on strong and not weak accents), they
also model expected deviations from the meter (i.e., in groove,
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rhythmic onsets often occur on metrically weak accents). In
this way, groove remains complex, and there is constant tension
between rhythm and meter, despite the same rhythmically com-
plex patterns being repeated time and time again. The relationship
between lower and higher models can thus be one of tension
itself.

Prediction and expectation have been proposed as the primary
mechanisms for emotion and pleasure in music (Meyer, 1956;
Huron, 2006). The general idea in Huron’s theory is that the brain
rewards behavior that stimulates prediction, since prediction is
an evolutionarily adaptive cognitive ability. However, it should be
noted that although PC has been claimed to provide a “grand uni-
fying theory” of cognition and brain processing, able to provide
explanations from low-level firing in individual neurons to high-
level conscious experience, perceptual inputs are of course not
necessarily evaluated and consciously perceived in terms of predic-
tion (Clark, 2013). That is, when we listen to groove-based music,
we may not be consciously perceiving violations of expectation and
prediction errors. Of course, in experience, affective and embod-
ied responses are more readily available to evaluation. Rather, PC
should be seen as the system “working in the background” to facil-
itate the characteristic affective and embodied experiences with
groove.

This discussion highlights how music and the relationship
between rhythm and meter can illustrate the PC theory. The
apparent paradox of the pleasure felt in relation to moderate
amounts of syncopation is an example of the so-called “dark
room problem,” which was recently highlighted in Schaefer et al.’s
comment to Clark’s paper, and his subsequent response (Schaefer
etal,, in commentary to Clark, 2013). What is clearly consistent
with PC is that the prediction error between the meter repre-
sentation and the syncopated rhythm depends on the brain’s
ability to infer a meter. Rhythm with low syncopation should
only entail small or no prediction errors related to the meter.
Rhythm with medium syncopation, i.e., still possible for the
brain to reconcile with a certain metric interpretation, will lead
to larger prediction errors. Rhythm with too much syncopa-
tion, however, could lead to less prediction error if the brain
cannot find the meter, even though the complexity in the stim-
ulus is objectively greater. In other words, there cannot be an
increase in prediction error if there is no model to compare
the input with. What is not evident is why prediction error
could lead to higher experience of pleasure. The “dark room
problem” in this situation is how to bridge the gap between neu-
ronal activity and organization, and conscious and subjective
experience.

Clark addresses this problem by stating that the brain’s end
goal is to maximize prediction, rather than minimize predic-
tion error. Thus, the brain may be rewarding prediction error
since it leads to learning (i.e., maximizing future prediction).
A likely candidate for mediating this effect is the neurotrans-
mitter dopamine in the mesolimbic pathway, as suggested by
Gebauer etal. (2012). Research in rodents (Schultz, 2007; Schultz
etal., 2008) has shown dopamine release to both expected and
unexpected stimuli, suggesting that the complex interaction
between dopamine release and predictions ensures a balance
between “explaining away” prediction error in the short term,

and maintaining an incentive to engage in novel activities (of
potential high risk) leading to adaptive learning in the long
term. A next step would be to empirically validate whether the
relationship between syncopation in groove and pleasure is mod-
ulated by the dopamine system, and to what extent prediction
describes the underlying system at both behavioral and neural
levels.

CONCLUSION

The hierarchical nature of meter and the relationship between
rhythm and meter in rhythmic complexity provide particularly
suitable examples of predictive coding in music. Predictive coding
posits that perception and action are mechanisms relying on hier-
archical processing of information in Bayesian terms, by which
perceptual input, modulated by motor action, is compared with
predictive models in the brain. In music, rhythm (the input) is
heard in relation to meter (the model). When these are at odds,
the difference between them (the prediction error) is fed forward
into the system and is subjected to a string of computational eval-
uations at each level of the perceptual hierarchy, from low-level
neuronal firing to high-level perception and cognition. The pre-
dictive models are inferred from previous experience, and thus
the system is always in a relationship between bottom-up and top-
down processes. We suggest that during syncopation — a rhythmic
structure that violates metric expectations — the listener’s previ-
ous musical training determines the strength of the metric model,
and thus the size of the prediction error. Polyrhythm is a type of
bistable percept in the auditory domain, which relies on competi-
tion between different predictive models to achieve its perceptually
characteristic effect. In groove, medium degrees of syncopation
provide the optimal balance between prediction and complex-
ity, allowing for just enough prediction error to stimulate the
cascade of model comparisons at the nested levels of the per-
ceptual hierarchy and elicit the characteristic pleasurable desire to
dance. Further, the constantly repeated rhythmic complexity in
groove resists permanent model shifts of low-level metric frame-
works, because higher-level models predict that groove should be
complex. These instances of rhythmic complexity in music thus
provide unique examples of several different properties of predic-
tive coding, and present us with ecologically valid stimuli to use in
studying human perception, action, prediction, and the brain.
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