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The category variability effect refers to that people tend to classify the midpoint item
between two categories as the category more variable. This effect is regarded as evidence
against the exemplar model, such as GCM (Generalized Context Model) and favoring the
rule model, such as GRT (i.e., the decision bound model). Although this effect has been
found in conceptual category learning, it is not often observed in perceptual category
learning. To figure out why the category variability effect is seldom reported in the past
studies, we propose two hypotheses. First, due to sequence effect, the midpoint item
would be classified as different categories, when following different items. When we
combine these inconsistent responses for the midpoint item, no category variability effect
occurs. Second, instead of the combination of sequence effect in different categorization
conditions, the combination of different categorization strategies conceals the category
variability effect. One experiment is conducted with single tones of different frequencies
as stimuli. The collected data reveal sequence effect. However, the modeling results with
the MAC model and the decision bound model support that the existence of individual
differences is the reason for why no category variability effect occurs. Three groups
are identified by their categorization strategy. Group 1 is rule user, placing the category
boundary close to the low-variability category, hence inducing category variability effect.
Group 2 takes the MAC strategy and classifies the midpoint item as different categories,
depending on its preceding item. Group 3 classifies the midpoint item as the low-variability
category, which is consistent with the prediction of the decision bound model as well
as GCM. Nonetheless, our conclusion is that category variability effect can be found in
perceptual category learning, but might be concealed by the averaged data.
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The seminal study of Rips (1989) showed that people tend to
classify an item (e.g., a 3-inches circular object) at the mid-
point between two categories (e.g., QUATER and PIZZA) as the
category with a larger variability (i.e., PIZZA), although the mid-
dle item is more similar to the low-variability category (i.e.,
QUATER). This finding attracts many researchers’ attention, for
it indicates that category variability is one of the sources for cate-
gorization and challenges the exemplar-based model, specifically
GCM (Generalized Context Model; Nosofsky, 1986, 1987). Since
the exemplars of low-variability category vary in a smaller range
than those of high-variability category, the total distance from
exemplars to the middle item is shorter for the low-variability cat-
egory than the high-variability category. Thus, the middle item is
more similar to the low-variability category. Based on similarity,
GCM would always classify the middle item as the low-variability
category. Only when the two categories in the same psychological
space have different specificities for similarity computation, can
GCM predict Rips (1989)’ finding (see Nosofsky and Johansen,
2000).

In contrast, the famous rule-based model GRT (Generalized
Recognition Theory; Ashby and Townsend, 1986; Ashby and

Gott, 1988; Ashby and Maddox, 1992; Maddox and Ashby, 1993)
is thought to be able to account for this phenomenon. According
to GRT, learning categories is to generate a category bound-
ary. The boundary divides the psychological space into different
regions, each of which corresponds to a category. An item would
be classified as a category, if its percept is located in the region
corresponding to that category. Each category is assumed to be
represented as a normal distribution with the mean location hav-
ing the largest likelihood to be classified as that category. The
optimal boundary between two categories is located on where
the percept of item has an equally high likelihood to be classified
as either category. According to the nature of normal distribu-
tion, the likelihood of a value is a function of the distribution
variance. Thus, the optimal category boundary will be influenced
by the variance of category distribution and always close to the
low-variability category. This is why the middle item would be
predicted as the high-variability category by GRT.

Although this phenomenon is observed in conceptual cate-
gory learning, it is not often reported in the studies of perceptual
category learning. Thus, the purpose of this study is to exam-
ine whether the variability of category would influence perceptual
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categorization. Specifically, how the midpoint item between two
categories would be classified is our focus. For the convenience
of discussion, we follow Stewart and Chater (2002) to call this
phenomenon category variability effect (CVE). In the later sec-
tions, we review the past studies, discussing the possible reasons
for the low reliability of them, including the sequence effect in
category learning and individual differences, and then introduce
our experiment, discussing the empirical data, and modeling
results.

1. CATEGORY VARIABILITY EFFECT IN PERCEPTUAL
CATEGORY LEARNING

In the study of Cohen et al. (2001), two categories were defined
as high-variability and low-variability categories by their cov-
ering range on the stimulus dimension. In the learning phase,
the participants learned to correctly classify the exemplars of
these two categories. In the transfer phase, the critical item was
presented for the participants to predict its category label. The
results showed that the probability of high-variability category
for the critical item became higher when the exemplar number
of high-variability category increased from two to seven, with
the exemplar number of low-variability category fixed to one.
However, the probability of high-variability category for the crit-
ical item is still not significantly larger than 0.50, namely no CVE
occurred.

Stewart and Chater (2002) used a circle with a dot attaching
on its periphery as stimulus. The dot position was the stimulus
dimension and the high-variability and low-variability categories,
respectively, cover a larger and a smaller portion of the periph-
ery. Their results showed no CVE when the participants were
presented with one stimulus on each trial. However, when all
exemplars of each category were presented together to the par-
ticipants in the learning phase, CVE was observed. Thus, it seems
critical to CVE that people should be aware of the variability of
category.

Similar to Cohen et al. (2001), Hsu and Griffiths (2010) also
used lines of different lengths as stimuli to examine CVE. In
the discrimination condition, the participants were instructed to
predict the category label, given the current line length. In the
generation condition, the participants were instructed to predict
which category would be more likely to have a line of this length.
The results showed no CVE in the discrimination condition and
a clear CVE in the generation condition. These behavioral results
were correctly simulated by their Bayes network models. For the
generative condition, the model aimed to estimate the probabil-
ity distribution over the input given the category label, namely
p(x|c). However, for the discrimination condition, the model
aimed to find a direct mapping between inputs and category
labels, namely p(c|x). The success of their models implied that the
occurrence of CVE demands the knowledge about candidate cat-
egories. Together with the findings of Stewart and Chater (2002),
this knowledge should include the variability of each category.

According to the previous review, it is not clear whether CVE
would occur in category learning. To figure out why the past stud-
ies did not observe CVE is the purpose of this study. We seek
for the answer by checking out the nature of category learning
task, instead of testing people in some new experimental design.

Our focus is on the sequence effect and individual differences in
category learning.

2. SEQUENCE EFFECT IN CATEGORY LEARNING
Normally, the category representation (i.e., rule or exemplars)
is assumed to be quite stable during category learning, as it is
the representation of category structure, which would not change
throughout the experiment. Thus, with the stable category repre-
sentation, one item would be classified to the same category under
any circumstances. However, recent studies show that the same
item might be classified as different categories when following dif-
ferent items (Stewart et al., 2002; Stewart and Brown, 2004). This
finding instead suggests the possibility of short-term representa-
tion (i.e., the information of the preceding item) to be adopted in
category learning. Inspired by this finding, in the case of CVE, the
midpoint item may be classified as one category when following a
certain items and the other category when following some other
items. Accordingly, when mixing up these conditions, the aver-
aged result would show no CVE. If this is true, we should expect
some sequence effect in the experiment for examining CVE.

The sequence effect of our interest is suggested by Stewart
et al. (2002)’s MAC (Memory and Comparison) strategy for cat-
egorization. The MAC strategy is very simple. Suppose we know
that one category takes larger values and the other takes smaller
values, just like the one-dimensional category structure used for
examining CVE. When item n − 1 is from the large category and
item n is even larger than it, Xn ≥ Xn−1, item n must be the large
category. Likewise, when item n − 1 item is from the small cate-
gory and Xn ≤ Xn−1, item n must also be the small category. That
is, when the sign of the difference between successive items can
guarantee the category of the latter one, the probability to repeat
the preceding category label as the response for the latter item
is 1.00. When this heuristic cannot be applies to categorization,
that is Xn < Xn−1 when item n − 1 is from the large category or
Xn > Xn−1 when item n − 1 is from the small category, the prob-
ability to repeat the preceding category as the current response is
the similarity between item n − 1 and item n. The MAC model
can be expressed as

p =
{

1.00
exp−c|Xn − Xn − 1|, (1)

where c is the specificity, when c is large, items would be less sim-
ilar and vice versa. The similarity between item n − 1 and item
n is exponentially transferred from their psychological distance.
The smaller the distance, the larger the similarity.

According to the MAC strategy, we define the sequence effect
as the tendency to repeat the preceding category label as current
response. In this study, we would like to examine the sequence
effect in categorization. Specifically, we would like to check if this
effect is the reason for the inconsistent reports about CVE in the
past studies.

3. INDIVIDUAL DIFFERENCES IN CATEGORY LEARNING
In addition to sequence effect, whether there are individual
differences concealed in the averaged data is our second con-
cern. In the literature of category learning, heaps of individual
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differences are reported, providing us clues to understand indi-
vidual participant’s categorization strategy (Nosofsky et al., 1989;
Johansen and Palmeri, 2002) and to evaluate models (Maddox
and Ashby, 1993; Nosofsky et al., 1994). For instance, Yang and
Lewandowsky (2004) examined human’s category learning with
multi-dimensional stimuli. Among all dimensions, one was the
context dimension. In their experimental design, no matter the
context dimension was attended to or not, participants could
get perfect learning performance. The results showed a clear
difference on categorization strategy. One group of participants
learned to attended to the context dimension for categorization,
whereas the other group did not. The modeling results further
showed that ATRIUM (Erickson and Kruschke, 1998) (with rule
plus exemplar) can account for the performance of both groups,
whereas ALCOVE (Kruschke, 1992) (with exemplar only) had
difficulty doing so. Thus, these authors suggested that multiple
representations are used in categorization.

Perhaps, the most salient contribution of individual-difference
analysis is to turn over our understanding of an old phenomenon.
For instance, in order to examine the allocation of attention over
stimulus dimensions during category learning, Lee and Wetzels
(2010) reanalyzed the data of Kruschke (1993) study. In the con-
densation condition of this study, the category structure could be
perfectly learned, if the information from two stimulus dimen-
sions were integrated for categorization. Lee and Wetzels (2010)
first fit GCM to the averaged data. The estimated attention
weight on one dimension was about 0.55, suggesting that the
participants did spread their attention equally on the two dimen-
sions. However, when fitting GCM to the individual data, clear
individual differences were observed. One group of participants
focused their attention on one dimension, whereas the other
group strongly attended to the other dimension. The averaged
data disguised this fact and erroneously suggested that people
evenly divided attention on the two dimensions when learning
the condensed category structure. Therefore, the individual dif-
ferences provide a more transparent understanding about how
attention can be allocated during category learning.

Back to the issue of CVE. The past studies all reported the
averaged data. As shown by Lee and Wetzels (2010)’s work, the
averaged data might be not too much informative. Thus, it is
reasonable to suspect that the non-CVE result reported in the
past studies might actually contain the positive evidence of CVE
as well. Thus, in this study, we would also like to examine the
occurrence of CVE via the analysis of individual differences.

4. EXPERIMENTS
According to previous discussions, we proposed two hypotheses
to address the question why CVE was not consistently observed
in category learning. First, there might be some individual dif-
ferences buried under the averaged data. Perhaps those non-CVE
reports actually included some participants who did show CVE
and some others did not. Second, the classification for the mid-
point item might be influenced by the preceding item, namely
the sequence effect. As a result, the midpoint item may be clas-
sified as the high-variability category following some precedent
and not following some others. In order to get rid of confounding
from the regimen of experiment, we conducted this experiment

in the conventional feedback-learning paradigm. All participants
were asked to do the learning phase and then the transfer phase.
The emphasis of data analysis was placed on verifying these two
hypotheses.

In addition, we used single tones varying in frequency as stim-
uli in this experiment. In order to make the scale of stimuli
equal in distance from one another, we transferred the fre-

quency f to the psychological scale mel, mel = 1127loge( f
700 + 1)

(Steinberg, 1937; Stevens et al., 1937). The category structure
was shown in Figure 1. There were five items in each category.
The low-variability category (called Category 1) took the region
between 480 and 520 mel and the high-variability category (called
Category 2) took the region between 670 and 970 mel. The inter-
val between the members of Category 1 was 10 mel and that of
Category 2 was 75 mel. The critical item was the tone of 595 mel,
which was denoted as the white bar in Figure 1. Therefore, if
the probability of Category 1 for the critical item was less than
0.50, CVE occurred. All tones were played at a constant amplitude
of 60 dB.

4.1. METHODS
4.1.1. Participants and apparatus
In total, 41 undergraduate students from National Chengchi
University aged from 18 to 30 were recruited in this experiment.
The whole experiment was conducted in a quiet dim booth.
The display of stimuli, the procedure of testing, and the data
collection were all controlled by the scripts of MATLAB on an
IBM compatible PC. On average, every participant would finish
this experiment in 30 min and got reimbursed with NTD$ 60
(� US$ 2) for their time and travel expense. Before doing the
experiment, all participants were confirmed to be able to hear
two extreme tones (i.e., 470 and 980 mel, covering the range of
stimulus tones) each presented twice in a headset.

FIGURE 1 | The category structures. HV, high variability; LV, low variability.
Axis X represents tones and axis Y shows the mel of the stimuli.
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4.1.2. Materials and procedure
Following the design of past studies (e.g., Sakamoto et al., 2008;
Hsu and Griffiths, 2010), the two categories were defined as two
uniform distributions. In the low-variability category, there were
5 tones equally spreading from 480 mel to 520 meal with 10 mel
as the interval. In the high-variability category, there were also
5 tones equally spreading from 670 to 970 mel with 75 mel as the
interval. There were 5 learning blocks, each of which was followed
by a transfer block. Therefore, there were in total 10 blocks in
this experiment. In the learning block, the 10 tones of the two
categories were presented twice in random order. In the transfer
block, the transfer stimuli consisted of 2 tones randomly sampled
from each category and 1 critical item, which was 595 mel at the
mid point between the edges of two categories. The transfer stim-
uli were presented once, except that the critical item was presented
twice. Thus, there were 6 trials in total in the transfer block, which
of course were presented in random order.

On each learning trial, a tone was presented to the participants
from a headset for 1 s. After the stimulus disappeared, the par-
ticipants were asked to predict which alien (i.e., Category 1 or
Category 2) would make this sound by pressing the “s” key or
the “;” key. Once the response was made, a “correct” or “wrong”
feedback signal was presented on the computer screen for 500 ms.
After 2 s, next trial began. The participants were instructed to do
this task as accurately as they can. On each transfer trial, the pro-
cedure was the same as on the learning trial, except that there was
no corrective feedback.

4.2. RESULTS
4.2.1. Learning phase
The participants learn the categories quite well. The accuracy in
the first block is as high as 0.86 and it increases significantly to
0.95 in the fifth block, F(4, 160) = 13.08, MSe = 0.003, p < 0.01.
Clearly, this task is very easy to the participants.

4.2.2. Transfer phase
The mean probability of Category 1 on transfer item across five
transfer blocks is shown in Figure 2. Axis X denotes the item mel
and axis Y the probability of Category 1 predicted by the partic-
ipants. For the items which have been presented in the learning
phase, a Category (2) × Block (5) within-subject ANOVA shows
that they are correctly classified as their own categories [F(1, 40) =
3786, MSe = 0.02, p < 0.01]. However, the overall tendency to
make a Category 1 response is influenced by the transfer block
[F(4, 160) = 6.564, MSe = 0.018, p < 0.01]. This is because there
is a drop on the mean probability of Category 1 (0.46) in the final
block. With no doubt, the response for the item from each cate-
gory is not changed in different blocks [F(4,160) = 1.364, MSe =
0.016, p = 0.25]. Thus, the participants’ categorization for the
learning items is accurate and consistent through the transfer
blocks.

Of most interest is how the participants would predict the cat-
egory of the critical item. The mean probability of Category 1 on
the critical item across five blocks is 0.54, which is not signifi-
cantly different from 0.50 [t(40) = 0.96, p = 0.34]. Thus, there is
no evidence of CVE, as the critical item is not significantly classi-
fied as Category 2 (the high-variability category). However, the

FIGURE 2 | The transfer performance.

critical item is decreasingly classified as Category 1 in a linear
trend from the first block [p(Category1) = 0.68] to the fifth block
[p(Category1) = 0.41], with F(1, 40) = 15.63, MSe = 0.15, p < 0.01.
In the final block, the probability of Category 1 for the critical
item is still not different from 0.50 [t(40) = −1.42, p = 0.16].

4.2.3. Sequence effect
As discussed in the previous section, how to classify an item might
depend on which item it follows. In this experiment, the criti-
cal item is presented twice in every transfer block, once following
a different item. Thus, it is reasonable to suspect that the criti-
cal item actually be classified as the high-variability category in
one time, but as the low-variability category in another, so the
aggregated result shows no CVE.

In order to verify this hypothesis, we examine for any sequence
effect in our transfer data. Following the idea of the MAC strategy,
we redefine the trials to four cases (C1+Up, C1+Down, C2+Up,
and C2+Down)1 , according to the category of the preceding
item (Category 1 or Category 2) and the change of direction on
frequency from the preceding item to the current one (Up or
Down). One point is worth noting. In the transfer phase, there
is no feedback, hence no correct answer for the preceding item.
We substitute the participants’ response for the category answer,
due to the high learning accuracy they made in the experiment
(mean = 0.94). If the participants rely on some long-term rep-
resentations to do categorization (i.e., rule or exemplars of the
two categories), the preceding category has nothing to do with
the current response and so is the direction change between the
frequencies of successive tones.

1Thus, the first trial is omitted.
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FIGURE 3 | Sequence effect in learning phase, transfer phase, and on the critical item.

The results are revealed in Figure 3. See the left and middle
panels for the overall results in the learning and transfer phases.
Visual inspection shows when the direction of frequency change
provides sufficient information, namely the cases of C1+Down
and C2+Up, the participants strongly repeat the preceding cat-
egory as the current response. For the cases of C1+Up and
C2+Down, this tendency is not as strong. Across the learning
and transfer phases, when the tone sounds higher than the pre-
ceding one, the participants tend to make a Category 2 response
and when the tone sounds lower, they tend to make a Category
1 response [F(1, 40) = 2695, MSe = 0.005, p < 0.01]. However,
regardless of the direction of frequency change, the participants
seem to repeat the preceding category as the current response to
a certain extent that the main effect of the preceding category is
significant [F(1, 40) = 513.60, MSe = 0.01, p < 0.01]. The over-
all mean probability of Category 1 made for the current item is
not different between the learning phase and the transfer phase
[F(1, 40) = 3.29, MSe = 0.006, p = 0.07]. The response pattern of
the cases when the preceding item is from different categories is
not different in different phases [F(1, 40) = 1.03, MSe = 0.01, p =
0.32]. Also, the response pattern of the cases when the frequency
change in different directions is not different in different phases
[F(1, 40) < 1]. There is no significant interaction effect between
the preceding category and the direction of frequency change
across all phases [F(1, 40) < 1]. However, the three-way interac-
tion effects between the experiment phase, the preceding category,
and the frequency change direction is significant [F(1, 40) = 5.55,
MSe = 0.006, p < 0.05].

We also examine sequence effect on the critical item. See the
right panel in Figure 3. Recall the critical item is actually higher
in frequency than the members of Category 1 and lower than
the members of Category 2. Thus, the cases of C1+Down and
C2+Up theoretically do not exist. The two bars for these two
cases represent the response made for the current critical item
when the preceding item was also the critical item. However, for
some participants who have never seen the critical item being
presented twice in turn, we substitute the mean of the rest par-
ticipants’ data for the missing value. A Category (2) × Direction
(2) within-subject ANOVA shows that the prediction for the criti-
cal item is influenced by the preceding response [F(1, 40) = 139.2,
MSe = 0.08, p < 0.1] and the change in direction of frequency
from the preceding item [F(1, 40) = 46.57, MSe = 0.08, p < 0.01].
However, there is no interaction effect between Category and
Direction [F(1, 40) < 1].

Although these results seem to be the evidence of sequence
effect, the two cases C1+Down and C2+Up are actually not that
informative. As the current item in these two cases can also be
correctly categorized by a rule or by all exemplars of categories.
Thus, the cases of C1+Up and C2+Down are our focus. It is clear
that the participants tend to predict the current item as the cat-
egory which is contrasting to the preceding one in the left and
middle panels in Figure 3. However, this pattern is not held in
the right panel for the critical item. In fact, the participants seem
to predict the critical item as the same category of the preceding
item, although the tendency is not strong. This is not surpris-
ing. When the critical item is in the C1+Up or C2+Down cases,

www.frontiersin.org October 2014 | Volume 5 | Article 1122 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Yang and Wu Category variability effect

similarity to the preceding item is the sole basis to predict its
category. As the critical item is at the center position of all stim-
uli, the similarity between it and any other item is on average
higher than that between any other pairs. Thus, in the C1+Up
and C2+Down cases, the critical item would be more likely classi-
fied as the category of its preceding item. The analysis of sequence
effect seems to suggest that the negative finding of CVE results
from mixing all different influences brought by the preceding
items in different testing situations. However, this conclusion
is better not made quickly until we check out the individual
differences.

4.3. INDIVIDUAL DIFFERENCES ANALYSIS
The sequence effect on the critical item may provide an expla-
nation to why there is no CVE observed in the averaged data.
However, we do not know whether this is a general case for all
participants or there are some rule-use strategies2 mixed up in the
averaged data. In fact, it is hard to detect those rule users by sim-
ply looking at the averaged sequence effect data. This is because
their predictions for the critical item would be independent of the
preceding item, that makes their influence as a constant added to
the four categorization conditions. Therefore, we intend to inves-
tigate the individual differences by fitting the MAC model and
the decision bound model3 to each participant’s data. If the MAC
model provides a better fit, the participant is regarded as a MAC
strategy user. If the decision bound model provides a better fit, the
participant is regarded as a rule user. Presumably, the participants
who show CVE must be in the group of rule user. We can check
out the probability of high-variability category predicted for the
critical item to identify them. If there exist rule users, especially
those who show CVE, the sequence effect should not be regarded
as the reason for not observing CVE.

For each participant, we fit these two models to the transfer
data separately. For the MAC model, only the specificity c is freely
estimated. If the preceding item is from Category 2, the output
will be transferred to p(1) = 1 − p(2) to make sure all MAC pre-
dictions are the probability of Category 1. For the decision bound
model, the probability of Category 2 for item X is transferred
from the area below the percept of X on the normal distribution
with category boundary b as mean and perceptual error ε as stan-
dard deviation. The larger the covered area, the larger probability
of Category 2 is4. The parameters b and ε are freely estimated. The
stimulus values are normalized between 0 and 1 for modeling.
The aim of parameter estimation is to maximize the likelihood
of the model to predict the observed probability of Category 1
in the four categorization conditions (i.e., C1+Up, C1+Down,
C2+Up, and C2+Down). The goodness of fit is AIC = −2LogL +
2N (Aakike’s Information Criterion; Akaike, 1974) with N =
parameter number. The smaller AIC the better fit. The log
likelihood is

2Since the exemplar model such as GCM is evident to have difficulties
accounting for CVE, in order to detect the participants who actually show
CVE, we search for them in rule users.
3GCM is precluded, as GCM is known unable to predict CVE.
4For fitting the participants data, probability of Category 2 would be trans-
ferred to probability of Category 1 by p(1) = 1 − p(2).

LogL =
∑

i

log

(∑
k

fik

)
! −

∑
i

∑
k

(
logfik

)! +∑
i

∑
k

fiklog
(
pik
)
,

(2)
where k is the number of categories and i is the number of the
categorization conditions.

According to the modeling results, the participants can be
divided into three groups. See the AIC of each model for each
group in Table 1. The group number is made in accordance with
the tendency to predict the critical item as Category 1. Group 1
(n = 11) and Group 3 (n = 12) are consistent with the decision
bound model, except that Group 1 tends not to classify the criti-
cal item as Category 1 and Group 3 strongly predicts the critical
item as Category 1. Group 2 (n = 18) is identified as the MAC
strategy user. The observed probability of Category 1 on the crit-
ical item made for each group is shown as the bars in Figure 4.
Here we present the data collected in the C1+Up and C2+Down
conditions. This is because the critical item is in between the
two categories and it is always larger than a preceding item from
Category 1 and smaller than a preceding item from Category 2.
Thus, the cases of C1+Down and C2+Up are nearly impossible
to happen for the critical item.

Group 1 strongly classifies the critical item as Category 2, mean
p(1) = 0.26, in either the C1+Up or C2+Down case. The perfor-
mance of Group 1 in these two cases is not significantly different
[t(10) = 0.10, p = 0.92]. This result is better accommodated by
the decision bound model. See the triangle in Figure 4, which
represents the prediction of the winning model. For Group 1,
the winning model is the decision bound model. See Table 2 for

Table 1 | Model performance (AIC) on fit to transfer performance.

MAC Decision bound

Group 1 52.34 43.50

Group 2 74.59 106.29

Group 3 61.84 53.34

FIGURE 4 | The observed and predicted group difference on the critical

item.
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Table 2 | Best-fitting parameter values.

MAC Decision bound

c b ε

Group 1 1.32 0.137 0.035

Group 2 1.10 0.079 0.007

Group 3 1.06 0.244 0.029

the parameter values, which provide best fits. The mean best-fit
boundary b is 0.137, which equals 543 mel, locating in between
the highest edge of Category 1 (520 mel) and the critical item
(595 mel). Consequently, Group 1 shows CVE with no doubt.

Group 2 clearly shows sequence effect on classifying the critical
item. On classifying the critical item, when following a Category
1 item [p(1) = 0.71 for C1+Up], Group 2 tends to make a
response of Category 1, whereas when following a Category 2
item, Group 2 tends to make a response of Category 2 [p(1) =
0.28 for C2+Down]. The difference on probability of Category
1 between these two cases is significant [t(17) = 3.89, p < 0.01].
The mean probability of Category 1 is about 0.50. The trian-
gle shown for Group 2 in Figure 4 is the prediction of the MAC
model.

Group 3 is a bit tricky, as these participants predict the crit-
ical item as Category 1 in the C1+Up case [p(1) = 0.81] and
the C2+Down case [p(1) = 0.75]. For Group 3, the tendency to
make classification for the critical item is not different in different
categorization conditions [t(11) = 0.91, p = 0.38]. The perfor-
mance of Group 3 is better fit by the decision bound model. The
mean best-fit boundary b is 0.244, which equals 599.56 mel. This
boundary is larger than the critical item, hence predicting the
critical item as Category 1. The decision bound model’s predic-
tion for Group 3 can be seen in Figure 4. However, this result
presumably can also be accommodated by GCM. Since GCM
would always predict the critical item as the low-variability cate-
gory (i.e., Category 1), it is hard to say that Group 3 relies on rule
or exemplars for categorization. One thing for sure is that Group
3 does not show CVE and does not rely on some short-term
representation for categorization.

To sum up, a number of interesting findings in this experiment
are listed as follow. First, CVE does occur in perceptual category
learning (i.e., Group 1). Second, although some participants show
CVE, some others do not, suggesting clear individual differences.
Third, among those participants who do not show CVE, some
take on the MAC strategy for categorization (i.e., Group 2) and
some can be realized as doing categorization without considering
the category variability (i.e., Group 3).

5. GENERAL DISCUSSION
In this study, we would like to figure out why CVE is seldom
reported in the past studies. The analysis for the averaged data
shows that there is no CVE. This is the same as what is reported
in the past studies. We further examine two hypotheses for this
result. One hypothesis is that the sequence effect in four catego-
rization conditions, when being combined, would conceal CVE.
The other is that the non-CVE report results from mixing up

the uses of different categorization strategies, including the one
which shows CVE. Although we find clear sequence effect, indi-
vidual differences seem to provide a better account for why CVE is
seldom reported. We fit the MAC model and the decision bound
model to participants’ transfer data with the attempt to detect any
individual differences. The modeling results show three different
groups. Group 1 shows CVE and is consistent with the decision
bound model. Group 2 obviously adopts the MAC strategy, as
supported by the clear sequence effect. Group 3 again is fit bet-
ter by the decision bound model. However, this group tends to
classify the critical item as the low-variability category.

In spite of positive evidence for CVE, a few constraints of
this study need to mention. First, although it should be clear
that Group 1 adopts rule for categorization and Group 2 adopts
the MAC strategy, it is still not clear which representation, rule
or exemplars, Group 3 forms for categorization. Second, we use
only one item, namely the critical item, as the probe to examine
CVE, that might decrease the power of our experiment. Instead
of using one item, a line of novel items between two categories
might be better as transfer items. Third, due to the randomiza-
tion of trial orders, we cannot guarantee that the odds of each of
the four categorization conditions (C1+Up, C1+Down, C2+Up,
and C2+Down) are the same. Nonetheless, the implications of
this study are discussed as follow.

5.1. INDIVIDUAL DIFFERENCES
Of our great interest is the individual differences revealed in this
study. Group 1 classifies the critical item as the high-variability
category, Group 2 classifies it as both categories depending on
which item precedes it, and Group 3 classifies the critical item
as the low-variability category. The reason why we have these
individual differences might be relevant to the design of category
structure and the individual participant’s cognitive capacity. As
to the category structure, the two categories in our experiment
can be perfectly distinguished by a category boundary located
on anywhere between them. When the boundary is put close to
the low-variability category, we have Group 1, whereas when the
boundary is put close to the high-variability category, we have
Group 3.

Similarly, the study of Yang and Lewandowsky (2004) showed
clear individual differences with a particular category structure,
which could be represented by at least two different ways. The cat-
egories were constructed in a three-dimensional space, in which
one dimension was context and could not directly predict the cat-
egories. The perfect learning performance could be achieved via
either focusing on the related dimensions, ignoring the context
dimension, to generate the true rule for categorization, or gener-
ating two different partial 2-D rules for categorization in different
contexts. The participants did not know in advance this tricky
part of the experiment, yet some of them learned to ignore context
and some others learned to apply different rules for categorization
in different contexts.

In a following study, the participants who relied on con-
text to generate different rules for categorization were found to
have a larger working memory capacity (operational span) than
those who ignore context (Yang et al., 2006). This is reason-
able, as attending more information does require more cognitive
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resource. In addition, a psychometric-approach study provides
evidence that working memory capacity which is measured by the
tasks of operational span, sentence span, memory updating, and
spatial short-term memory is correlated with learning accuracy
(r = 0.44) (Lewandowsky et al., 2012). Therefore, it is reasonable
to expect that working memory capacity might have something
to do with the individual differences we observed in this study. At
least, we can expect that Group 2 might have a smaller working
memory capacity than the other two groups. This is because they
only need to retain the preceding item’s information for current
categorization, that consumes not too much cognitive capacity.
The other two groups might need more efforts to generate the
rule, which should be suitable for classifying all items. In the
future study, the relationship between working memory capacity
and category learning performance is worth investigating in more
detail.

5.2. SHORT-TERM vs. LONG-TERM CATEGORY REPRESENTATION
Most of contemporary models for category learning posit that
categorization is accomplished by some long-term representation.
For Group 1 and Group 3 in our study, it is true that some long-
term representation must be formed for categorization. It could
be a rule or exemplars of categories. Although Group 3 is fit
better by the decision-bound model than the MAC model, it pre-
sumably is consistent with the prediction of GCM. Nonetheless,
for Group 2, it is implied that the short-term exemplar memory
might be relied on for categorization. Also, we should be able
to find the evidence for the use of short-term representation in
other experiments, as long as more one test trial is adopted. In
fact, Navarro et al. (2013) recently ask the participants to learn
the category structure, which varies along with learning trials.
The task is not easy to learn, yet the participants’ performance
is above the chance level. They also report that the conventional
exemplar model and prototype model cannot account for their
data. Instead, their data can be fit by a heuristic model, which
based on the preceding item to predict the category boundary
for the next item. That is, the category boundary keeps shifting
from one trail to the next. Together with their finding, the role
of short-term representation in categorization should be more
emphasized.

5.3. CONCEPTUAL vs. PERCEPTUAL PROCESSING IN CATEGORIZATION
Although the present study provides insights to why CVE was
not reported in the perceptual categorization task, we do not
think that these findings can properly benefit the conceptual
categorization task, as the conceptual and perceptual processing
differs substantially. In perceptual categorization, a rule can be
defined mathematically as a boundary in the psychological space.
Thus, as which category an item would be classified depends on
which region in the psychological space the percept of this item
locates in.

However, in conceptual categorization, a rule is often a logical
statement such as “If necessary feature Y, then category X.” For
example, an animal with a feature of “being born of cat parents”
must be a cat, as our lay theory of animals demands that they must
be of the same species as their parents. In the study of Rips (1989),
the rule might state “If an object is more than 1 inch in diameter,

it must be a PIZZA,” since quarters are severely restricted in size
but pizzas are not. The feature “3-inches in diameter” is not
characteristic of either PIZZA or QUARTER, but diagnostic of
PIZZA, as a pizza can be as small as 3 inches in diameter. As shown
in the study of Smith and Sloman (1994), when no characteristic
features of QUARTER (e.g., silver colored) are present, the rule-
based categorization is triggered and classifies the circular object
with a 3-inches diameter as PIZZA. Clearly, CVE with conceptual
categories is construed in a very different way.

In addition, in our study, the understanding of each category
is established in the trial-by-trial learning experience, whereas the
structure of conceptual category reflects our common knowledge
of the world, which is acquired out of laboratory. Thus, the MAC
strategy is not possible to be applied in the conceptual categoriza-
tion task. On the other hand, it is expected that the sequence effect
or the MAC strategy can be observed in other perceptual category
learning tasks.

To sum up, our study provides evidence for the individual dif-
ferences on classifying the critical item. This is regarded as one
reason for why some studies report CVE but some others do not.
Also, sequence effect is clearly observed in our experiment, which
suggests the use of short-term representation for categorization.
However, the success of the decision bound model suggests that
long-term representation would also be used for categorization.
Therefore, we find evidence for both short-term and long-term
representation in a single study. However, it is still not clear why
these individual differences occur, or how to induce a particu-
lar categorization strategy. These issues need to be addressed in
future studies.
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