
ORIGINAL RESEARCH ARTICLE
published: 14 November 2014

doi: 10.3389/fpsyg.2014.01248

Auditory driving of the autonomic nervous system:
Listening to theta-frequency binaural beats post-exercise
increases parasympathetic activation and sympathetic
withdrawal
Patrick A. McConnell 1,2*, Brett Froeliger 2 , Eric L. Garland 3, Jeffrey C. Ives1 and Gary A. Sforzo1

1 Department of Exercise and Sport Sciences, Ithaca College, Ithaca, NY, USA
2 Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
3 College of Social Work and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA

Edited by:

Barbara Tomasino, University of
Udine, Italy

Reviewed by:

Costantini Marcello, University of
Chieti, Italy
Evin Aktar, University of Amsterdam,
Netherlands

*Correspondence:

Patrick A. McConnell, Department of
Neurosciences, Medical University of
South Carolina, 96 Jonathan Lucas
Street, Charleston, SC 29403, USA
e-mail: mcconnep@musc.edu

Binaural beats are an auditory illusion perceived when two or more pure tones of
similar frequencies are presented dichotically through stereo headphones. Although this
phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies
have reported on whether binaural beats produce changes in autonomic arousal.Therefore,
the present study investigated the effects of binaural beating on autonomic dynamics
[heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18–29 years
old) participated in a double-blind, placebo-controlled study during which binaural beats
and placebo were administered over two randomized and counterbalanced sessions
(within-subjects repeated-measures design). At the onset of each visit, subjects exercised
for 20-min; post-exercise, subjects listened to either binaural beats (‘wide-band’ theta-
frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet,
low-light environment. Dependent variables consisted of high-frequency (HF, reflecting
parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic
activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared
to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation,
increased parasympathetic activation and increased sympathetic withdrawal. By the end of
the 20-min relaxation period there were no observable differences in HRV between binaural-
beat and placebo visits, although binaural-beat associated HRV significantly predicted
subsequent reported relaxation. Findings suggest that listening to binaural beats may exert
an acute influence on both LF and HF components of HRV and may increase subjective
feelings of relaxation.
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INTRODUCTION
Binaural beating is an auditory illusion that is perceived when two
or more pure-tone sine waves of similar but different frequen-
cies (under 1500 Hz and less than 40 Hz apart) are presented
dichotically via stereo headphones (Draganova et al., 2008). For
example, if a 510 Hz pure tone is presented to a listener’s right
ear while a 500 Hz pure tone is presented to the listener’s left ear,
the listener perceives an illusory binaural beat with a frequency
(perceived tempo) of 10 Hz. Binaural-beat perception originates
in the brainstem’s inferior colliculi (Smith et al., 1975) and supe-
rior olivary nuclei (Oster, 1973), where sound signals from each
ear are integrated, and continues as the neural impulses travel
through the reticular formation up the midbrain to the thalamus
(Swann et al., 1982), auditory cortices and other cortical regions
(Draganova et al., 2008).

Research findings suggest that music and sound can modulate
autonomic arousal through entrainment (Trost and Vuilleumier,
2013; Regaçone et al., 2014). Entrainment is a process through
which two autonomous rhythmic oscillators with similar but

different fundamental frequencies interact, resonate, and syn-
chronize (Cvetkovic et al., 2009). Classic examples of entrainment
include the synchronizing of human sleep-wake cycles to the 24-h
cycle of light and dark (Clayton et al., 2005), the synchronization
of a heartbeat to a cardiac pacemaker (Cvetkovic et al., 2009), and
the use of rhythmic auditory stimulation in the rehabilitation of
motor functions (Thaut and Abiru, 2010).

Numerous studies have reported positive effects of purported
binaural-beat entrainment on clinically relevant outcomes includ-
ing: heart rate, blood pressure, electrodermal response, and finger
temperature (Kennerly, 2004), performance vigilance and mood
(Lane et al., 1998), hypnotic susceptibility (Brady and Stevens,
2000), mental and physical relaxation (Foster, 1990), attention
and memory (Kennerly, 1994), depression and mood regulation
(Cantor and Stevens, 2009), generalized anxiety (Le Scouarnec
et al., 2001), as well as pre-operative anxiety and intra-operative
anesthesia requirements (Kliempt et al., 1999; Lewis et al., 2004;
Padmanabhan et al., 2005; Dabu-Bondoc et al., 2010). Many of
these studies employed the Hemi-Sync® auditory-guidance system
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(which combines binaural beats, music, pink noise, natural surf
sounds, and verbal guidance) which is designed to employ ‘brain-
wave entrainment’ and facilitate ergotropic (increasing arousal)
or trophotropic (decreasing arousal) changes in consciousness
(Atwater, 2004). In spite of these prior positive findings, it
remains uncertain whether binaural beats alone modulate auto-
nomic arousal. In order to ascertain the clinical effectiveness of
binaural beats, they must be experimentally isolated from possible
confounding variables such as verbal guidance and instrumental
music.

In the present study, we chose to employ theta-frequency
(4–7 Hz) binaural beats to facilitate the post-exercise relaxation
response. The relaxation response is an innate physiological
response characterized by diminished sympathetic nervous sys-
tem (SNS) activity and increased theta-brainwave activity (Ben-
son et al., 1981). Interestingly, it has recently been shown that
combining exercise—a practice known to produce anxiolytic
effects (Raglin and Morgan, 1987) and improve long-term stress-
resiliency (Salmon, 2001)—with subsequent relaxation training
significantly reduced blood pressure and post-exercise blood pres-
sure response to a laboratory stressor (Santaella et al., 2006).
Therefore, exercise followed by conscious relaxation may pro-
vide for a deeper relaxation response than either intervention
alone – a finding that might inform treatment for a wide-
variety of stress-related conditions. In addition to the afore-
mentioned positive effects of combined exercise and relaxation
training, the decision to investigate binaural-beat effects post-
exercise was made in an effort to capitalize on known auto-
nomic effects of exercise and exercise-recovery (Parekh and Lee,
2005).

Briefly, exercise serves as an ergotropic stimulus which increases
SNS activity (Bricout et al., 2010). In healthy populations, exer-
cise elicits characteristic intensity- and duration-dependent effects
which can interact with fitness level (i.e., VO2max; Buchheit
and Gindre, 2006). We aimed to induce sympathetic activa-
tion via exercise, and then compare the effects of binaural beats
to those of a placebo on post-exercise autonomic arousal, as
indicated by heart rate variability (HRV) – a sensitive probe
of autonomic tone. HRV was chosen as an autonomic probe
(opposed to other measures such as event-related potentials or
skin conductance) due to the monitor’s low-cost, minimal inva-
siveness, and portability. Generally, the effects of exercise include
increased low-frequency (LF) power [a measure of both parasym-
pathetic (PNS) and sympathetic (SNS) activity] and decreased
high-frequency (HF) power (reflecting PNS activity) relative to
pre-exercise values, with the net effect of increasing sympathetic
dominance (i.e., LF/HF ratio; Parekh and Lee, 2005). Recov-
ery from moderate/intense exercise normally involves an acute
reduction in LF power and an increase in HF power, which
then typically return to near baseline levels within 30-min to
an hour – resulting in the eventual restoration of baseline sym-
pathovagal balance (Terziotti et al., 2001; Gladwell et al., 2010).
It is important to note that while exercise-induced increases
in SNS activity can be inferred through the LF component of
HRV, LF HRV signal is contributed to by both SNS and PNS
components – making interpretations based on LF power alone
somewhat dubious (Camm et al., 1996). HF HRV signal, however,

is considered to be exclusively mediated by PNS. Post-exercise,
heart rate decreases towards baseline levels, reputedly through
a combination of SNS withdrawal and increased PNS activa-
tion (Pierpont and Voth, 2004). For heart rates above 100 bpm,
SNS withdrawal dominates; as heart rate falls below 100 bpm,
further reductions are primarily mediated by PNS activation
(Pierpont and Voth, 2004).

First, we hypothesized that exercise would decrease parasym-
pathetic activity (as measured through decreased HF HRV com-
ponent) and increase sympathetic activity (as measured through
increases in the LF HRV component). Second, we hypothe-
sized that exposure to theta-frequency binaural beats (relative
to placebo) would result in increased parasympathetic activ-
ity following exercise (increased HF HRV component). Third,
we also hypothesized concomitant decreases in the LF HRV
component (reflecting a combination of parasympathetic and
sympathetic activity), as well as in overall LF/HF ratio – often
referred to as sympathovagal balance. Lastly, we hypothesized
that binaural beats would facilitate entry into a deeper state of
relaxation, with participants reporting increased perceived relax-
ation during the binaural-beat condition relative to the placebo
condition.

MATERIALS AND METHODS
SUBJECTS
Twenty-two college students were recruited by announcement and
signed informed consent approved by Ithaca College’s institutional
research review board. Subjects remained naïve to the true nature
of the experiment; they were told only that the study was designed
to examine the effects of music on exercise recovery. Subjects’
health-histories were assessed; exclusion criteria included high
cardiovascular risk, habitual smoking, chronic alcohol usage, pre-
scription medication usage or a history of diagnosed mental or
physical illness. One subject’s data were excluded from analyses
due to failure to complete both sessions, resulting in an n of 21
for final analyses. Eleven subjects received placebo condition first
and ten subjects received binaural-beat condition first; no sig-
nificant differences between assignment groups for any variable
were observed (p > 0.05). Baseline and post-exercise descriptive
statistics for subjects are found in Table 1.

Cardiovascular measures and analyses
A Polar RS800CX heart rate monitor (Polar Electro Oy, Kempele,
Finland) was used to record heart rate, as it has been previously
demonstrated to provide reliable measures to calculate HRV (Wal-
lén et al., 2011) – an important indicator of relaxation (Peng et al.,
2004) and sympathovagal balance (Sharpley et al., 2000). Subjects’
R–R interval data were sampled at a 1000 Hz sampling frequency,
allowing for a 1-ms temporal resolution of HRV (Polar RS800CX
User Manual, 2011). Heart rate data for each subject were uploaded
to Polar ProTrainer 5 software (Version 5.40.172).

Acoustic equipment
A sound level meter (Model 33-2050, Radio Shack, Tandy Cor-
poration, Fort Worth, TX, USA) was used with a C-weighted
slow-response setting to calibrate a pair of Koss HQ1 collapsible
full-size headphones (Milwaukee, WI, USA), and to standardize
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Table 1 | Descriptive statistics for subjects’ baseline and post-exercise

data.

Mean (M) Standard

Deviation (SD)

Age 20.33 2.69

Height (cm) 171.12 10.24

Weight (kg) 77.41 15.31

Body mass index 26.1 4.1

VO2max (mL/kg/min) 48.3 6.5

ExRx-MPH 5.8 0.8

Sex (no.) 14 male/7 female

Ethnicity (no.)

White/Caucasian 16

Black/African American 2

Asian 1

Hispanic/Latino(a) 1

Unreported 1

VO2max = maximal predicted volume of oxygen consumption; ExRx-MPH = exer-
cise prescription in miles per hour.

volume levels. Volume levels for both left and right earpieces, and
for both placebo and binaural-beat audio tracks, ranged from 61
to 63 decibels (dB).

During the experimental session, multiple carrier tones were
presented over a background of pink noise (20–20,000 Hz with
power attenuated in non-audible frequency ranges) with a 7 Hz
interaural frequency difference that was continuously varied by
plus or minus 1.5 Hz over a 4-s period (i.e., looped from 7 to
8.5 to 7 to 5.5 Hz and back; The Monroe Institute, Faber, VA,
USA). Over the course of a 20-min presentation, carrier tones
were changed in seamless ten-second cross fades to facilitate lis-
tener vigilance. This ‘wide-band’ binaural-beat effect was created
through the presentation of the following carrier tone chords: zero
to 3-min, C-Major-seventh; 3-min to 5-min, C-Major; 6-min to
10-min, G-Major; 10-min to 15-min, D-Minor; and 15-min to
20-min, C-Major (Brady and Stevens, 2000). The audio tracks
(placebo vs. binaural-beat) were designed to be perceptually indis-
tinguishable from one another in naïve listeners. Both audio
tracks were provided by The Monroe Institute, Faber, VA, USA
(Atwater, unpublished manuscript). During the placebo session,
subjects listened to pink noise with identical carrier tones as in
the binaural-beat condition but with no varying interaural phase
difference.

Perceived relaxation scales
At the end of each experimental session, subjects were asked to
rate the degree of their perceived relaxation during the relax-
ation protocol on a scale of 1–10, with one indicating the
least relaxed and 10 indicating the most relaxed. Single-item
numeric rating scales have been previously used in the litera-
ture to measure subjective responses to music (Iwanaga et al.,
2005; Tan et al., 2012) as well as to other interventions (Strauser,
1997).

PROCEDURES
Prior to each experimental session, subjects were emailed instruc-
tions to avoid strenuous exercise, alcohol, and over-the-counter
medication for 24-h prior to the session, and caffeine within
3-h of the session. A 24-h history questionnaire was admin-
istered to each subject at the beginning of each experimental
session to assess compliance with study instructions. Participants
who failed to comply with all study requirements over the 24-h
period prior to testing were excluded from participation (one
subject due to medical reasons). To control for diurnal hor-
mone fluctuations known to play a role in HRV, each subject
was scheduled at the same time of day for each experimental ses-
sion (Armstrong et al., 2011). Subjects were alternately assigned
to A–B and B–A conditions to control for order effects and the
researcher conducting the experiment was blinded to condition.
Subjects returned within a 2-week period to complete the alternate
condition. On subjects’ first visit, height and weight were mea-
sured. Subjects were seated and instructed to complete paperwork
required for a predicted VO2max regression formula (Bradshaw
et al., 2005). After completion, they were told to sit quietly and
relax for 5-min. An exercise protocol was individually deter-
mined as per American College of Sports Medicine guidelines
for moderate cardiovascular exercise (70% of predicted VO2max;
Thompson, 2010) with a 5-min warm-up and cool-down at 50%
of prescribed workload. Subjects performed treadmill (Precor
956; Woodinville, WA, USA) exercise in order to elicit a strong
sympathetic nervous system response. Heart rate was recorded
continuously throughout the experiment. HRV was sampled dur-
ing 2-min windows of quiet rest while in an upright position: at
baseline, post-exercise, and at the beginning (RELAX-1), mid-
dle (RELAX-2), and end (RELAX-3) of the relaxation protocol
(Figure 1).

After completion of post-exercise measurements, subjects were
instructed to sit in a recliner, lights were dimmed, a curtain was
drawn around the recliner, and the following short script was read:

“This relaxation period will last 20-min. I will close this curtain and leave
the room so you can relax and have the space to yourself. I will return
after 20-min and open the curtain and we will move back over to the other
chair. Once you put on the headphones and begin listening to the music,
I need you to close your eyes, focus attentively on the music and relax as
deeply as you can. Do you have any questions?”

Subjects attended two laboratory sessions: once while listen-
ing to binaural beats, once while listening to a placebo (carrier
tones and pink noise only). Following 20-min of stimulus expo-
sure via stereo headphones at a standardized volume, subjects
were asked to rate their perceived degree of relaxation during
the relaxation protocol. After completion of the study, subjects
were debriefed (i.e., provided with information about binaural-
beats).

DATA PROCESSING
All heart rate signal time series were inspected for artifacts using-
Polar ProTrainer to ensure that no signal contained more than
2% artifacts (Camm et al., 1996; Bricout et al., 2010). Heart rate
R–R interval data were subsequently processed in Kubios HRV
(Version 2.1; Tarvainen and Niskanen, 2008). Time series for
all subjects were detrended using a smoothness priors based
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FIGURE 1 |Testing schedule and data collection time points.

Wavy line represents example R–R interval time series over
the course of one experimental session, including the following
time points: 2-min baseline, 5-min warm-up, 20-min exercise,

5-min cool-down, 2-min post-exercise, 20-min relaxation [heart
rate variability sampled during 2-min windows at beginning
(RELAX-1), middle (RELAX-2), and last 2-min (RELAX-3) of
relaxation].

detrending approach with λ = 500 (smoothing parameter with
cut-off of 0.010 Hz times the sampling frequency), fc = 0.035 Hz
(estimated cut-off frequency of the filter). Detrending removes
slow-trend (Schmidt et al., 2010), and non-linear trend (Manim-
manakorn et al., 2011), components which can cause distortion
in the signal. Next, a conservative interpolation artifact cor-
rection algorithm was employed, using a ‘medium’ level of
correction which excluded all obvious artifacts from analysis
(Tarvainen and Niskanen, 2008). No more than 0.78% of R–R
time-series (32/4069 beats) were interpolated. Frequency-domain
HRV indices were calculated using a Fast-Fourier Transform
(FFT) based Welch’s Periodogram method (Tarvainen and Niska-
nen, 2008), with a 256-s window width and a 50% window
overlap. A standard setting with a 4 Hz interpolation rate was
used with the following frequency bands: very-low frequency
(VLF, 0–0.04 Hz), LF (0.04–0.15 Hz), and HF (0.15–1.0 Hz;
Tarvainen and Niskanen, 2008). Consistent with prior exercise
research, the extended HF band was included for analysis as
so to include frequencies resulting from post-exercise tachypnea
which might otherwise be missed (Brenner et al., 1998; Sumi et al.,
2006). After detrending and applying artifact correction, each
signal was cut into five 2-min samples (baseline, post-exercise,
beginning, middle, and end of relaxation protocol) provid-
ing adequate duration to assess short-term spectral components
(Camm et al., 1996).

DATA ANALYSIS
Preliminary analyses
First, all HRV variables were natural-log transformed to ful-
fill normality assumptions of parametric statistical testing.
All data were then reverse-log transformed prior to report-
ing. Cohen’s d, a non-biased measure of effect size, was
calculated for significant within-subjects results based on a
correction for dependent means (Morris and DeShon, 2002;
Wiseheart, 2013). For significant interactions, η2 is reported

as an indicator of effect size. All analyses were two-tailed with
α = 0.05.

Repeated-measures ANCOVA were performed for all baseline
and post-exercise measures of HRV to test for differences between
conditions in pre-relaxation HRV values (Table 2). In an effort
to isolate potential binaural-beat treatment effects from any con-
founding effect of exercise, delta scores for each session (2-min
immediately post-exercise minus the 2-min baseline) were com-
puted and included as nuisance covariates in all HRV analyses –
the intended effect being to explain known variance in HRV at the
onset of relaxation resulting from baseline and post-exercise differ-
ences in HRV between conditions. In order to control for known
differences in vagal mediation of cardiac control due to aerobic fit-
ness level, sex/gender, and age (Stein et al., 1997; Rossy and Thayer,
1998), VO2max, sex, and age were included as nuisance covariates
in all HRV analyses.

Given that the sample mean body mass index (BMI) was 26.1
(slightly overweight), additional correlational and ANCOVA anal-
yses were performed to rule out a potentially confounding effect
of BMI. To rule out a potentially confounding effect of condi-
tion order, this variable was included in all ANCOVA models as
a between-subjects factor post hoc. When condition order was
included in the ANCOVA models as a between-subjects factor,
in each case significant findings became more significant and
Condition × Time error was moderately reduced. No significant
Condition × Time × Condition Order interactions were observed.

Primary analyses: Heart rate variability
To assess whether theta-frequency binaural-beats significantly
altered sympathovagal balance (i.e., LF to HF normalized power
ratio; LF/HF) over the course of the relaxation session (i.e.,
beginning, middle, and end), a 2 (Condition) × 3 (Time)
repeated-measures analysis of covariance (RM-ANCOVA) was
employed. Normalized LF and HF components were then assessed
independently via 2 × 3 RM-ANCOVAs with the same covariates.
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Table 2 | Baseline and post-exercise measures of heart rate variability.

Placebo M (SE ) Binaural-beat M (SE ) F (p)

Baseline heart rate 71.88 (1.03) 69.55 (1.03) 0.49 (0.492)

Baseline LF power 66.62 (1.05) 57.86 (1.05) 4.00 (0.063)

Baseline HF power 27.61 (1.11) 31.41 (1.07) 4.43 (0.051)

Baseline LF/HF ratio 2.42 (1.17) 1.84 (1.11) 5.25 (0.035)*

Post-Ex heart rate 98.00 (1.04) 97.61 (1.03) 0.02 (0.884)

Post-Ex LF power 82.76 (1.03) 82.76 (1.03) 1.34 (0.255)

Post-Ex HF power 13.64 (1.16) 14.00 (1.15) 1.10 (0.310)

Post-Ex LF/HF ratio 6.07 (1.19) 5.91 (1.18) 1.17 (0.295)

All power measures expressed in normalized units. Age, sex, and VO2max included as covariates in model. *p < 0.05.

Significant Condition × Time interactions were followed up with
planned within-subjects repeated-measures contrasts (RELAX-1
to RELAX-2 and RELAX-2 to RELAX-3). To further characterize
the nature of observed Condition × Time interactions, simple
main effects of Time were assessed via within-subjects F-test
within each condition separately; where significant F-statistics
were observed, planned within-subjects contrasts were reported.
Simple main effects of Condition were assessed at each time point,
again via RM-ANCOVA. When observed, significant covariate
interactions were explored by plotting said covariate against each
condition’s delta regressor (i.e., RELAX-3–RELAX-1). In order to
rule out gross patterns of autonomic difference, mean heart rate
was also evaluated at baseline, post-exercise, and at each relaxation
time point using RM-ANCOVA. Given the short duration of HRV
recording samples, time-domain, and non-linear measures were
not explored.

Secondary analyses: Perceived relaxation
Perceived relaxation ratings were assessed through paired-
samples t-test. Effects of baseline variability in HRV on per-
ceived relaxation were assessed using RM-ANCOVA; marginal
means for significant results were reported. Relationships
between in-session HRV measures and perceived relaxation were
explored using bivariate correlation, partial correlation and linear
regression.

RESULTS
BASELINE AND POST-EXERCISE MEASURES OF HEART RATE
VARIABILITY
After controlling for age, sex, and VO2max, a significant differ-
ence was observed between conditions for baseline LF/HF ratio,
with subjects exhibiting reduced baseline sympathovagal balance
during the binaural-beat session (Table 2). No differences were
observed between conditions for post-exercise HRV values, even
after including baseline HRV values as covariates. Mean heart rate
did not differ between conditions at any time point and was not
significantly higher than baseline at RELAX-3 (all p > 0.05). Exer-
cise significantly decreased HF power and increased LF and LF/HF
powers during both conditions (all p < 0.05).

Body mass index was not correlated with any measure of
HRV (i.e., HF, LF, or LF/HF components) during the relaxation

protocol during either experimental condition (all p > 0.05).
This remained the case after running partial correlations con-
trolling for age, sex, and VO2max. To assess group differences
while maintaining statistical power, participants were categori-
cally coded in to low (BMI ≤ 25; n = 10), high (BMI ≤ 30;
n = 8), and very high (BMI > 30; n = 3). This categori-
cal variable, ‘BMI-level,’ was then added into the general linear
model for each ANCOVA as a between-subjects variable. For
HF, LF, and LF/HF, within-subjects ANCOVA results still showed
a significant Condition × Time effect (all p < 0.05) with no
significant Condition × Time × BMI-level interactions (all
p > 0.05).

EFFECTS OF BINAURAL-BEATS ON HEART RATE VARIABILITY
The effects of binaural-beats were assessed through three indepen-
dent 2 × 3 RM-ANCOVAs for LF/HF, LF, and HF. Marginal means
for HRV measures at the beginning (RELAX-1), middle (RELAX-
2), and end (RELAX-3) of the relaxation protocol are shown in
Table 3.

Low-frequency to high-frequency ratio
2 × 3 RM ANCOVA revealed a significant Condition × Time
interaction for LF/HF, F(2,30) = 5.130, p = 0.012, η2 = 0.255
(Figure 2). LF/HF ratio increased in the placebo condition but
decreased in the binaural-beat condition from the beginning to
the middle of the relaxation protocol (i.e., from RELAX-1 to
RELAX-2), F(1,15) = 5.427, p = 0.044, η2 = 0.245. No sig-
nificant interactions between conditions were observed from the
middle to the end of the relaxation protocol. There was a sig-
nificant Condition × Time × VO2max interaction observed for
LF/HF, F(2,30) = 3.793, p = 0.034, η2 = 0.202. However, the inter-
action of Time × VO2max was not significant in either condition
(p > 0.05). When VO2max was regressed against delta (RELAX-
3–RELAX-2) for the binaural-beat condition, β = −0.268; in the
placebo condition, β = 0.139.

Follow-up simple main effects of Condition RM-ANCOVAs
showed no significant difference between conditions for any time
point (all p > 0.05; see Table 3 above). No simple main effect
of Time was observed for the placebo condition (p = 0.270);
however a simple main effect of Time was observed in the binaural-
beat condition [F(2,32) = 3.866, p = 0.031, η2 = 0.195]. No
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Table 3 | Marginal heart rate variability means at onset, middle, and end of relaxation protocol.

Placebo M (SE ) Binaural-beat M (SE ) F (p)

Onset of relaxation

RELAX-1 Heart Rate 85.03 (1.03) 84.35 (1.03) 0.03 (0.873)

RELAX-1 LF Power 66.89 (1.06) 61.62 (1.07) 7.93 (0.013)*

RELAX-1 HF Power 27.91 (1.11) 28.56 (1.14) 2.44 (0.139)

RELAX-1 LF/HF Ratio 2.4 (1.17) 2.16 (1.21) 4.03 (0.063)

Middle of relaxation

RELAX-2 Heart Rate 77.56 (1.03) 77.09 (1.04) 0.00 (0.961)

RELAX-2 LF Power 65.04 (1.07) 61.37 (1.07) 0.095 (0.762)

RELAX-2 HF Power 26.41 (1.14) 30.17 (1.13) 0.678 (0.423)

RELAX-2 LF/HF Ratio 2.46 (1.22) 2.03 (1.19) 0.543 (0.473)

End of relaxation

RELAX-3 Heart Rate 75.04 (1.03) 73.70 (1.04) 0.03 (0.858)

RELAX-3 LF Power 59.2 (1.07) 59.15 (1.07) 1.33 (0.267)

RELAX-3 HF Power 34.47 (1.12) 32.95 (1.11) 2.10 (0.169)

RELAX-3 LF/HF Ratio 1.72 (1.20) 1.8 (1.17) 2.03 (0.174)

All power measures expressed in normalized units. Age, sex, VO2max, and �HRV (post-exercise – baseline; for each respective HRV variable) are included as covariates
in the model. *p < 0.05.

FIGURE 2 | Differences in sympathovagal balance (i.e., LF/HF) between

binaural-beat and placebo conditions. Error bars represent ±1 SE of the
marginal mean. *Condition × Time interaction is significant at p < 0.05.
†Simple main effect of Time is significant at p < 0.05 (for binaural-beat
condition only). *Interaction is significant at p < 0.05.

within-subjects contrasts were significant in the binaural-beat
condition (all p > 0.05).

Low-frequency normalized power
2 × 3 RM ANCOVA showed a significant Condition × Time
interaction for LF, F(2,30) = 7.202, p = 0.003, η2 = 0.324
(Figure 3). LF/HF ratio increased in the placebo condition but
decreased in the binaural-beat condition from the beginning to
the middle of the relaxation protocol (i.e., after 10-min of stim-
ulus exposure), F(1,15) = 5.427, p = 0.044, η2 = 0.245. No
significant interactions between conditions were observed from
the middle to the end of the relaxation protocol. There was a
significant Condition × Time × VO2max interaction observed

FIGURE 3 | Differences in the trajectory of low-frequency (LF) power

(representing a combination of sympathetic and parasympathetic

influences) over the course of relaxation between binaural-beat and

placebo conditions. Error bars represent ±1 SE of the marginal mean.
*Condition × Time interaction is significant at p < 0.05. ηMarginal means
are significantly different at p < 0.05. †Simple main effect of time is
significant at p < 0.05 (for binaural-beat condition only). **Within-subjects
contrast from RELAX-2 to RELAX-3 is significant at p < 0.05.

for LF, F(2,30) = 4.806, p = 0.015, η2 = 0.243. The interac-
tion of Time × VO2max was not significant in either condition
(p > 0.05). When VO2max was regressed against delta (RELAX-
3–RELAX-2) for the binaural-beat condition, β = −0.267; in the
placebo condition, β = 0.272.

Follow-up simple main effects of Condition RM-ANCOVAs
showed no significant difference between conditions for any time
point (all p > 0.05; see Table 3 above). No simple main effect
of Time was observed for the placebo condition (p = 0.183),
however, a simple main effect of Time was observed in the
binaural-beat condition [F(2,32) = 4.057, p = 0.027, η2 = 0.202].
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FIGURE 4 | Differences in the trajectory of high-frequency (HF) power

(representing parasympathetic influence) over the course of relaxation

between binaural-beat and placebo conditions. Error bars represent ±1
SE of the marginal mean. †Simple main effect of Time significant at
p < 0.05 (for binaural-beat condition only).

Within-subjects contrasts were significant in the binaural-beat
condition from RELAX-2 to RELAX-3.

High-frequency normalized power
2 × 3 RM ANCOVA showed a significant Condition × Time
interaction for HF, F(2,30) = 3.811, p = 0.034, η2 = 0.203
(Figure 4). Planned follow-up within-subjects contrasts indi-
cated an approach towards significance for HF, F(1,15) = 3.305,
p = 0.089, from the beginning to the middle of the relaxation
protocol. No significant interactions between conditions were
observed from the middle to the end of the relaxation protocol.
No Condition × Time × Covariate interactions were observed
(p > 0.05).

Follow-up simple main effects of Condition RM-ANCOVAs
showed no significant difference between conditions for any time
point (all p > 0.05; see Table 3 above). No simple main effect
of Time was observed for the placebo condition (p = 0.295);
however, a simple main effect of Time was observed in the
binaural-beat condition [F(2,32) = 3.269, p = 0.051, η2 = 0.170].
No within-subjects contrasts were significant in the binaural-beat
condition (all p > 0.05).

EFFECTS OF BINAURAL BEATS ON PERCEIVED RELAXATION
Paired-samples t-test of post-treatment self-reported relaxation
ratings revealed that subjects reported significantly more relax-
ation in the binaural-beat condition relative to the placebo
condition (p = 0.036, d = 0.493; Figure 5). Importantly, this dif-
ference remained significant after including baseline LF/HF ratios
as covariates in a RM-ANVOCA [F(1,18) = 5.75, p = 0.027,
η2 = 0.242]. This provides some support for the idea that dif-
ferences in self-reported relaxation were driven by binaural-beat
exposure, not by baseline differences in autonomic tone.

RELATIONS BETWEEN PERCEIVED RELAXATION AND HEART RATE
VARIABILITY
In the binaural-beat condition (but not in the placebo condition),
LF/HF during the middle of relaxation was negatively correlated
with, (r = −0.695, p < 0.001), and significantly predictive of,
[F(1,20) = 17.786, p < 0.001], reported relaxation at the end of

FIGURE 5 | Self-report ratings of perceived relaxation post-treatment

(t = 2.248, p = 0.036, d = 0.493). Error bars represent ±1 SE of the
marginal mean.

the session (Figure 6). This was the case for LF, (r = −0.640,
p = 0.002; F(1,20) = 13.204, p = 0.002) as well; whereas HF
was positively correlated with (r = 0.699, p < 0.001), and pre-
dictive of [F(1,20) = 18.203, p < 0.001], relaxation at the end of
the session. To rule out the possibility that baseline LF/HF was
responsible for the observed differences in perceived relaxation,
a regression model was performed for each condition between
baseline LF/HF, RELAX-2 LF/HF, and perceived relaxation. While
both conditions’ baseline LF/HF values were significantly predic-
tive of LF/HF mid-relaxation [F(1,20) = 8.409, p = 0.006 and
F(1,20) = 12.566, p = 0.002, respectively], neither conditions’
baseline LF/HF values were significantly predictive of self-reported
perceived relaxation at the end of the study (all p > 0.05). Par-
tial correlations remained significant after controlling for age, sex,
VO2max, and delta HRV regressor (all p < 0.05). Changes in self-
reported relaxation between conditions were not correlated with
changes in HRV between conditions or with changes in HRV from
the beginning to the end of the relaxation sessions (all p > 0.05).

DISCUSSION
OVERVIEW OF HEART RATE VARIABILITY FINDINGS
The present study investigated the effectiveness of theta-frequency
binaural beats in enhancing the post-exercise relaxation response,
quantified as trophotropic modulation of autonomic nervous sys-
tem dynamics (i.e., HRV), and perceived relaxation. We hypothe-
sized that binaural beats would increase HF power and decrease LF
power and LF/HF ratio in a manner consistent with the binaural-
beat entrainment model (i.e., that theta-frequency entrainment
would effect trophotropic changes in autonomic arousal).

Consistent with our hypotheses, results demonstrate that, rela-
tive to placebo, 20-min of exposure to binaural beats significantly
increased HF power – a known marker of parasympathetic activa-
tion that is driven by activity in regions of the anterior cingulate
and medial prefrontal cortex (Wager et al., 2009). Binaural-beat
exposure also decreased LF power and LF/HF ratio. Initial response
to binaural beats (i.e., within the first 2-min) was characterized by
significantly reduced LF power relative to placebo, with no dif-
ferences in HF power or LF/HF ratio. This was the only time

www.frontiersin.org November 2014 | Volume 5 | Article 1248 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Cognition/archive


McConnell et al. Auditory driving of the autonomic nervous system

FIGURE 6 | Sympathovagal balance (LF/HF) mid-relaxation predicts 43% of variance in self-reported ratings of perceived relaxation in binaural-beat

but not placebo condition.

point where subjects showed a significant difference in mean HRV
between conditions. However, significant interactions indicated
a differential response to binaural beats vs. placebo, with subjects
exhibiting an increase in parasympathetic dominance while listen-
ing to binaural beats, but an increase in sympathetic dominance
while listening to placebo. Subjects exhibited a decrease in LF
power over the first 10-min of listening to placebo but showed no
change during the same period while listening to binaural beats.
These findings suggest that theta-frequency binaural beats ini-
tially modulate LF power post-exercise, followed by subsequent
modulation of HF power, with an overall net effect of increasing
parasympathetic dominance. It appears that even a brief adminis-
tration (e.g., <2-min) of binaural beats may produce acute effects
on autonomic nervous system response post-exercise.

Notably, subjects entered into the relaxation protocol with a
mean post-exercise heart rate of 98 bpm, which did not vary
significantly by condition. After 2-min of the relaxation proto-
col, mean heart rate had dropped to 85 bpm, which also did not
differ by condition. Research has shown that post-exercise heart
rate recovery is initially mediated by a combination of sympa-
thetic withdrawal and parasympathetic activation, but as heart
rate falls below 100 bpm, parasympathetic activation begins to
dominate (Pierpont and Voth, 2004). Over the course of the relax-
ation period, mean heart rate dropped to 74 bpm. This suggests
that initial decreases in heart rate may have resulted from a com-
bination of sympathetic and parasympathetic modulation, while
subsequent decreases were increasingly mediated by parasympa-
thetic activation (i.e., increases in HF power as well as decreased
LF and LF/HF ratio).

Somewhat unexpectedly, aerobic fitness level was found to
significantly interact with both Time and Condition, producing
differential LF and LF/HF responses to binaural-beat vs. placebo.
Specifically, in the placebo condition, greater aerobic fitness was
associated with larger change scores for LF and LF/HF – suggesting
that fitter individuals exhibited less sympathetic withdrawal over
the course of the placebo relaxation period. Conversely, while in
the binaural-beat condition, aerobic fitness was negatively corre-
lated with relaxation LF and LF/HF change scores, suggesting that

fitter individuals exhibited greater sympathetic withdrawal while
listening to binaural beats. In part, this explains why simple main
effects of Time were observed for the binaural-beat condition but
not for the placebo condition, when aerobic fitness was included
as a covariate.

PERCEIVED RELAXATION FINDINGS
Interestingly, subjects’ sympathovagal balance during the middle
of the relaxation protocol significantly predicted 43% of the vari-
ance in self-reported relaxation while listening to binaural beats,
but none of the variance during the placebo condition. Further,
subjects also reported being significantly more relaxed while listen-
ing to binaural beats then while listening to the placebo. Findings
from this double-blind placebo-controlled study may suggest a
role for binaural beats in facilitating access to more restorative
states of post-exercise relaxation with subtle, yet somewhat durable
psychophysiological effects. These findings should be interpreted
with caution, however, given that the change in HRV measures
during relaxation were not correlated with the change in relax-
ation scores. Regardless, results may suggest that binaural-beat
associated HRV may be coupled with subjective perceptions of
relaxation more so than HRV associated with standard music
perception.

LIMITATIONS AND FUTURE DIRECTIONS
In summary, we present preliminary evidence for a role of binau-
ral beats in acutely modulating autonomic arousal, as measured
through HRV. We also provide evidence linking autonomic cor-
relates of binaural-beat exposure with a subsequent behavioral
measure – perceived relaxation. Given that our sample comprised
young, healthy college students, it is important for future research
to investigate how binaural beats might interact with autonomic
activity in a broader demographic (e.g., high-stress and clinical
populations, meditation practitioners). Future studies, outside of
the exercise context, that include measures of control for baseline
differences in autonomic tone are warranted in order to evaluate
the putative beneficial effects of theta-frequency binaural beats on
the facilitation of relaxation. Further, binaural-beat technology
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is often designed as a training device: to assist users in accessing
various altered states of consciousness. Future research will need
to ascertain the extent to which structured binaural-beat training
might provide for a cumulative training effect.

Although these findings suggest that theta-frequency binau-
ral beats may facilitate relaxation post-exercise, it is important to
note that other factors may have contributed to these findings.
First, no measure of relaxation was taken prior to the relaxation
protocol; thus, it is uncertain whether or not the observed results
were a direct result of binaural-beat exposure or some other fac-
tor affecting perceived relaxation. Second, at baseline, subjects
exhibited significantly lower sympathovagal balance during the
binaural-beat condition relative to the control condition. It is
possible that this caused the timeline of the exercise-recovery
period to be offset, potentially explaining the differential auto-
nomic response observed during the relaxation protocol between
conditions. However, baseline HRV differences were controlled
for in our analyses, and as previously noted, baseline sympatho-
vagal balance predicted mid-relaxation HRV, but did not predict
self-reported perceived relaxation. Only HRV indices while listen-
ing to binaural beats predicted subsequent reported relaxation.
Furthermore, exercise served to bring subjects into a compara-
ble state of physiological arousal which did not significantly differ
by condition. Third, the study’s small sample size is an impor-
tant limitation, although we attempted to offset this through our
repeated-measures design. Future studies should attempt to repli-
cate these findings with a sample larger than 30. Fourth, according
to the BMI scale, our sample was, on average, classified as slightly
overweight. It is important to note that BMI was not a pri-
mary independent variable, dependent variable, or covariate in
our study. Height and weight were necessarily collected as they
were used in the regression formula for predicted VO2max. Fur-
ther, it is also important to mention that many of our study’s
participants were collegiate athletes with elevated lean muscle
mass, a demographic that is notoriously misclassified as ‘over-
weight’ or ‘obese’ by the BMI (Ode et al., 2007). Lastly, given that
subjects showed an initial decrease in LF power while listening
to the placebo, it is unclear to what extent the observed differ-
ences in LF power, and absence of placebo-associated changes
in autonomic tone over the course of the relaxation protocol,
are a result of binaural-beat assisted sympathetic withdrawal, or
placebo-associated inhibition of sympathetic withdrawal. Further
research with a ‘no-music’ condition will be needed to resolve this
issue.

Crucially, however, the primary aim of this study was to evaluate
the putative role of binaural beats in affecting autonomic nervous
system activity in isolation from common confounds such as ver-
bal guidance or instrumental music. Therefore, while the current
study is not without limitations, when taking these limitations
into consideration in our analytic strategy, we still demonstrated
acute binaural-beat effects on parasympathetic activation and
sympathetic withdrawal post-exercise.

CONCLUSION
Acute exposure to theta-frequency binaural beats in a young,
healthy sample of college students resulted in increased
parasympathetic activation, increased sympathetic withdrawal,

and increased self-reported relaxation post-exercise. Binaural-
beat-associated HRV appeared to be more tightly coupled with
self-reported relaxation than placebo-associated HRV. These find-
ings support the putative clinical effectiveness of binaural beats
in their own right, the effects of which may be synergistically
enhanced through combination with other therapeutic factors
such as verbal guidance and music.
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