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In recent years, researchers in social cognition have found the “perceptual crossing
paradigm” to be both a theoretical and practical advance toward meeting particular
challenges. This paradigm has been used to analyze the type of interactive processes that
emerge in minimal interactions and it has allowed progress toward understanding of the
principles of social cognition processes. In this paper, we analyze whether some critical
aspects of these interactions could not have been observed by previous studies. We
consider alternative indicators that could complete, or even lead us to rethink, the current
interpretation of the results obtained from both experimental and simulated modeling in
the fields of social interactions and minimal perceptual crossing. In particular, we discuss
the possibility that previous experiments have been analytically constrained to a short-term
dynamic type of player response. Additionally, we propose the possibility of considering
these experiments from a more suitable framework based on the use and analysis of
long-range correlations and fractal dynamics. We will also reveal evidence supporting the
idea that social interactions are deployed along many scales of activity. Specifically, we
propose that the fractal structure of the interactions could be a more adequate framework
to understand the type of social interaction patterns generated in a social engagement.

Keywords: perceptual crossing, social engagement, long-term correlations, multiscale interaction, 1/f noise,

multifractality

1. INTRODUCTION
There are emergent social processes in collective online
situations—when two persons are engaged in real-time
interactions—that can not be captured by a traditional offline
perspective, whereby the problem is considered from the perspec-
tive of an isolated individual who acts as an observer exploiting
their internal cognitive mechanisms to understand people.
Although the study of how people process social information can
be considered an old problem, in recent years, social cognitive
processes have generated significant interest. On the one hand,
theoretical interest, for example, a promising theoretical proposal
has been developed about the possible “constitutive” role of social
interaction for social cognition (De Jaegher, 2009; De Jaegher
et al., 2010) that suggests that interactivity capabilities of the
“second-person perspective” (Gomila, 2013) are the basis that
support the “first and the third person approaches” and their
related structure of mental states (Reddy, 2008; Wilms et al.,
2010). On the other side, experimental interests; for example,
the recent development of a minimal and simple framework
for studying social online interactions, and for understanding
the mechanisms that give support to minimal social capabilities
(Auvray et al., 2009) that is known as the “perceptual crossing
framework.” This experimental frame is a way to study online
dyadic interactions and to analyze the perception of someone
else’s agency in different situations implemented in a minimal
virtual world. Through the self-organized collective patterns
that emerge from the interactions (like emergent coordination,

turn-taking, etc.), hypotheses about the human capacity for
social cognition can be extracted.

Perceptual crossing paradigm constitutes a simple framework
for studying social online interactions in its simpler form. It con-
sist of a minimal scenario in which two participants, sitting in
different rooms, interact each other by moving a sensor along a
shared virtual line using a computer mouse. The subjects are only
allowed to move laterally in a one-dimensional world and per-
ceive the collisions with other human subjects or artificial agents.
In the last few years, the perceptual crossing paradigm has become
a promising experimental tool for the analysis of dynamic inter-
actions of human social processes. A more detailed analysis leads
to two types of experiments: (i) behavioral experimental research
and (ii) simulated agent modeling. Relating to the former, numer-
ous experiments where real subjects try to identify each other in a
virtual world have been carried out, and researchers have analyzed
the type of behaviors that seem to offer support for social coor-
dination patterns [for example, in one-dimensional experiments
(Auvray et al., 2009) and also in their extensions to two dimen-
sions (Lenay et al., 2011)]. In some cases, real experiments and
phenomena previously tested in simulations were combined, for
example in Iizuka et al. (2009, 2012), where authors explored how
participants modulated the interaction dynamics to figure out if
an interaction was live or not. Regarding the latter, i.e., focus-
ing now on the computational modeling context (for example in
Iizuka and Paolo, 2007; Iizuka et al., 2012), virtual agents have
been evolved to locate others in an experimental set-up analogous
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to that used in Auvray’s version (Auvray et al., 2009), providing
a mathematical analysis that explained how virtual agents man-
aged their own variables, such as size or velocity, to coordinate
with others in an extremely robust way. Simulation models to
build “social software agents” have demonstrated that this kind of
behavior can emerge from very simple structures without explicit
social reasoning capabilities (Froese et al., 2014a). In general, the
studies on simulation models complimented the experimental
work with humans, sometimes providing proofs of concept and
a methodological alternative to explore social interactions.

A common feature exists in the way in which we deal with
the experimental results obtained in both cases cited (consider-
ing behavioral modeling experiments and simulated agents): the
participants’ behavior is analyzed only in a short-time scale (this
point is explained in detail in the next section). As how later, in
this paper we propose to get a quantitative indicator that works
as a complementary measure of the analysis addressed in previ-
ous perceptual crossing experiments, an indicator that consists of
characterizing the cross-scale nature of the interaction through
fractal and multifractal analysis (Van Orden et al., 2003) of the
collective dynamics. We argue that this indicator can help to shed
some light on the understanding of social constitutive processes
and related questions and will be useful in order to characterize
the genuine constitution of social interactions.

This is a brief outline of the paper: in Section 2, our working
proposal is detailed and we propose that a multiscale analy-
sis is needed to identify the type of pattern that emerges in
a social interaction. Notions of 1/f patterns and fractal mea-
sures are explained in order to support the idea that “1/f noise
analysis” (Van Orden et al., 2003, 2005) can be a genuine indi-
cator able to discriminate between “human-human” or “human-
software agent” interactions in a perceptual crossing experiment.
In Section 3, we explain the type of experiments that we have car-
ried out and the fractal and multifractal analysis on the results
obtained. We also deliberate whether or not our results imply new
insights into the characterization of social interactions. In Section
4, we discuss whether or not the results are statistically significant.
Finally, Section 5 includes a review of the most notable points
related to our analysis and future lines of research to be explored.
An Appendix of Supplementary Material are included at the end
of the paper. The first S.1 relates to the software platform and the
protocols used for the experiments. The second focuses on the
statistical foundations that give support to the results obtained.

2. THEORETICAL FRAMEWORK
Studies of the perceptual crossing experiment have provided
insightful evidence about the importance of inter-individual
coordination for the emergence of social cognition and agency
detection. However, we think that still more advances are needed
in order to characterize and better understand how coordinated
interactions may give rise to collective social processes. Recently,
some authors have emphasized the importance of understanding
how distinct time scales and organizational levels are intertwined
for the emergence of social cognition (Dumas et al., 2014).
At neural level, there is experimental evidence of the impor-
tance of non-linear cross-scale interactions for brain organization
(Le Van Quyen, 2011), and in social neuroscience, inter-brain

synchronization in multiple frequency bands has been found
during imitation of hand movements (Dumas et al., 2010) or
synchronization patterns are found during guitar improvisation
showing a complex interplay of different frequencies (Müller
et al., 2013). It is still missing to our knowledge a detailed analysis
of this kind of phenomena at a behavioral level. These examples
show the potential of a multi-scale account of social cognition and
lead us to think that sometimes the analyses developed so far to
understand perceptual crossing dynamics may fall short in their
ability to characterize the emergent multi-scale nature of social
interaction.

As previously stated, we contend that some of the conclusions
about the original perceptual crossing experiments only focus on
the reaction to short-term interactions. For example, in Auvray
et al. (2009) the analyzed is limited to analyzing the probability of
clicking in a 2 s window after the subject encounters another sub-
ject or object and by standard statistical variables of some system
variables (frequency of crossings, correlation between velocity
and acceleration, etc.). Thus, it is implicitly assumed that the
emergence of social engagement can be reduced to a scale of
short-term activity and that there is no influence of other scales or
any inter-scale correlations that are relevant for the subject behav-
ior (for example, assuming that there is no interference between
the previous collisions of the subject with different kinds of agents
and the decision of clicking or not clicking). A similar assumption
is also found in the agent modeling field, for example in Di Paolo
et al. (2008), where the simulated model is focused on finding
what kind of short term dynamics (modeled in terms of delays
between the perceptual stimulation of the agent and its motor
response) is able to create the stable pattern of social interaction
that allows a dynamic of co-regulation to emerge. Again, inter-
scale correlations in the social interaction process are left out of
the analysis and modeling.

In this context, we propose that it may be useful to analyze
the dynamics in the perceptual crossing experiment from a con-
ceptual framework that is not constrained by the assumption of
one dominating scale of behavior. Despite its apparent simplicity,
we propose that the perceptual crossing paradigm could comprise
several embedded levels of dynamic interaction, resulting in cor-
relations of the signals over different time scales. Therefore, in
the next section we propose a framework of analysis that is capa-
ble of capturing the multiple relations between different scales of
behavior. Specifically, in this next section we propose the analy-
sis of fractal and multifractal patters for obtaining evidence of the
multi-scale nature of social interaction in the perceptual crossing
experiment.

2.1. 1/F NOISE AND MULTIFRACTALITY FOR CHARACTERIZING
SOCIAL INTERACTION

During the last two decades, the 1/f noise approach to cognitive
science has achieved considerable progress in toward conceptu-
alizing cognitive and mental organization (Dixon et al., 2012).
Dynamical systems concepts as self-organized criticality or scale-
free patterns have provided new insights about how the brain
and the mind operate in a non-linear dynamic manner, self-
organizing its activity always at the brink of criticality. The
concept of self-organized criticality (SOC) (Jensen, 1998), one of
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the main exponents of this approach, was proposed by Bak et al.
(1987) to define certain classes of dynamical systems which have
a critical point as an attractor, displaying critical behavior with-
out any significant “tuning” of the system from outside1 Critical
systems present very interesting properties: the most notable of
which is the lack of a dominant scale of activity. They show com-
plex dynamical responses and their statistical properties have to
be described by power laws. Thus, critical systems typically dis-
play temporal and spatial scale invariance in the form of fractals
and 1/f noise, reflecting the process of propagation of long-range
correlations based on local effects. The idea of long-range cor-
relations refers to the presence of long-term dependencies in a
signal between the current observation and a large set of previous
observations, displaying a slow decay of the correlation function
(typically exponential). Thus, the presence of long-range correla-
tions suggests the presence of multiple, intertwined timescales in
the system, responsible for the emergence of patterns or regulari-
ties in the system. For a multi-scale approach to cognitive science,
SOC is appealing because it allows us to imagine systems that are
able to self-regulate coordinated behaviors at different scales in a
distributed manner and without a central controller.

1/f patterns have also been widely found in cognitive science
and psychology. For example, 1/f noise is present in performance
time series (Gilden, 2001). More recently, Van Orden et al. (2003,
2005) used 1/f noise measures in different tasks to gather evi-
dence to argue that certain systems are not modular and decom-
posable but “softly assembled” systems sustained by interaction-
dominant dynamics (IDD hereafter) as opposed to component-
dominant dynamics (Van Orden et al., 2003). That is, IDD systems
do not consist of additive interactions of their components, but
multiplicative interactions that imply coordination between the
different timescales in the system. Moreover, 1/f is not a unique
and exclusive property of SOC or IDD systems (see Wagenmakers
et al., 2004, 2012) since it has been shown to be displayed by
a linear superposition of many random inputs with different
time scales (Hausdorff and Peng, 1996). To avoid the uncertainty
about the true origin of 1/f noise some authors have suggested
to complementing it by a measure of multifractality as a quanti-
tative indicator of the coordinated intermittency in the system’s
activity (Ihlen and Vereijken, 2010). Ihlen and Vereijken propose
that intermittency is displayed within the series as distinct peri-
ods of large and irregular performance variability prompted by
emergent changes in the commitment, attention to stimuli, or
intention of the participant in a cognitive task. The multifractal
spectrum width quantifies the difference between the intermit-
tent and the laminar periods, so it provides further evidence of
the interaction between different timescales in the system.

2.2. OUTLINE
In this paper we try to explore the presence and relevance of mul-
tiple scale and inter-scale or long-range correlations in the percep-
tual crossing experiment. We think that genuine social interaction
will display long-range correlations and coordinated intermit-
tency in the form of 1/f scaling and a multifractal spectrum.

1All the data used in this experiment is available at https://github.com/Isaac
Lab/datasets/tree/master/PerceptualCrossing/data-28-03-2014

Moreover, multi-scale interactions should be present in collective
variables and not only in individual variables, as an indicator of
an emergence of a social domain of interaction.

We propose a modified version of the original perceptual
crossing experiment, in which the player only faces one opponent,
which may be another human player or a programmed agent with
two possible kinds of behavior (a simple oscillatory behavior or
a “shadow” behavior that repeats the movement of the player.
More information will be given in the next section and in the
Supplementary Material Section S1). Thus, in our experimental
setup we have different kinds of social interaction: humans recog-
nizing each others as such, humans interacting with programmed
agents with artificial behavior, humans failing to recognize other
humans, bots tricking humans, etc. Can we characterize when
genuine social interaction emerges? And if so, where does it lie?

In Auvray et al. (2009), the authors propose that the sensi-
tivity for recognizing other intentional subjects, instead of being
perceived by each of the participants, arises from the dynamics
of the interaction itself. In their experiment, the distribution of
clicks suggested that social recognition arose from a combination
of (i) the ability to discriminate between mobile (human player,
shadow) and immobile objects and (ii) the stability of mutual
interaction patterns between two human partners or between
human and a immobile object. This interpretation was inspired
by the results in a simulated model which showed the importance
of the stability of coordinated behavior (Di Paolo et al., 2008).
However, we think that further evidence supporting the claim that
social recognition emerges from interaction dynamics instead of
individual sensitivity is necessary. In fact, the model presented in
Di Paolo et al. (2008) could be interpreted as showing that rel-
atively simple behaviors could account for a click distribution in
which agents appear to “recognize” each other, without a genuine,
underlying process of social recognition. We propose that genuine
social interaction should arise from the emergence of a complex
web of interactions across different timescales between the activ-
ity of different agents. For a first approach to support this claim
we propose the following schema:

1. Since we consider that inter-scale dynamics might be rele-
vant to characterize perceptual crossing dynamics, we perform
measures similar to previous work in perceptual crossing
experiments, and explore the existence of a link between our
and previous results, and cross-scale interaction dynamics
(Section 4.1).

2. We propose that if genuine social interaction is based on cross-
scale interactions a fractal distribution should be present in
collective variables of the social process. We propose the differ-
ence in the movement of the two players (using the difference
between their speeds) as a candidate variable and perform
fractal and multifractal analysis of the distribution in the indi-
vidual rounds of the game, finding a clear 1/f and multifractal
spectrum only when two human players interact (Section 4.2).

3. Finally, we suggest that as opposed to collective variables, the
fractal structure of the individual dynamics of the player or
their opponent alone should not be discriminative for the type
of interaction going on. We analyze this issue repeating frac-
tal and multifractal measures on the movement of the player
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and the movement of the opponent (using their individual
speeds) and conducting linear mixed effects models to assess
if the different variables analyzed (difference of speeds, speed
of the player and speed of the opponent) can discriminate
between the type of interaction, finding that only the collec-
tive variable of the relative speeds can discriminate the two
types of programmed agents from genuine human interaction
(Section 4.3).

3. MATERIALS AND METHODS
3.1. EXPERIMENTAL PROCEDURE
In this experiment, human participants were allocated computers
to interact in pairs, within a shared perceptual space, where some
opponents were other human participants and some opponents
were computerized agents (bots) but participants were unaware
of the nature of their opponents.

Our intention was not to make a duplication of Auvray’s
experiment where each participant simultaneously encounters a
human partner, a mobile agent and a static one. In our case, each
participant received only a single stimulus in one of the follow-
ing scenarios: human vs. human, human vs. “oscillatory agent”
and human vs. “shadow agent.” The “oscillatory agent” was pro-
grammed to deploy a sinusoidal behavior (describing a sinusoidal
trajectory of 0.5 Hz and 200 pixels of amplitude), predictable and
deterministic. In contrast, the “shadow agent” was able to show
an irregular pattern because it consists of a “shadow image” of the
participant (i.e., a bot that generates a movement strictly identi-
cal to the participant trajectory but delayed 400 ms. in time and
125 pixels in space). Participants were instructed to try to detect
wether their opponent was human or not and asked to fill a ques-
tionary (although the analysis of the participants responses is out
of the scope of this paper).

When participants arrived at the laboratory they were ran-
domly assigned to a workstation and were provided with head-
phones. They were informed that the study involved two parts,
each independent from the other and that the first one—training
stage—would take approximately 3 min and the second one—
evaluation stage—a further 10 min. In order to guarantee con-
fidentiality during the study, identification codes/nicknames were
chosen by the participants. Throughout the experiment, par-
ticipants were provided with verbal instructions regarding the
structure of the experiment and their sections.

In the training stage, the participants were informed that it was
a simple “proof of concept” stage and that the purpose was only
to learn how the platform worked. Participants were free to move
the mouse as they pleased during three sessions of 1 min each with
a short break between them. They played consecutively against
three bots of increasing difficulty in the interaction: a static bot, a
bot moving at a constant low speed and a bot moving at a constant
medium speed.

After that, they were informed of the aim and rules of the
evaluation part of the experiment. The experiment consisted of
10 sessions of 40 s each. In each session: (i) each participant was
randomly assigned an opponent (human-human or human-bot)
to explore the virtual space; (ii) participants were asked to move
their mouses in order to detect the movement of their assigned
opponents, (iii) after each session, participants were asked to

make a choice between the two options displayed on the screen
in order to guess whether their opponent was a human or a bot,
and (iv), finally, participants were informed on the screen whether
or not they had guessed successfully. After the 10 sessions were
completed, the experiment was declared finished.

A total of 13 participants (8 females and 5 males) took part in
this experiment. Their ages ranged from 16 to 19 years. However,
due to a problem with the computer of one participant, some data
were not recorded and therefore not included in the study. As well,
we removed a few samples in which no interaction between the
players was detected. The final dataset used in the analysis com-
prises a total of 106 samples of the cursor positions over time of
each participant recorded with a sampling period of 1 ms.

More detailed information related to experiment proto-
cols (study sample, characteristics of participants, experimental
stages, number of sessions, etc.), information about how the
technological platform was built (network properties, latency
estimation, etc.) or how software requirements were programmed
(virtual environment conditions, experimental devices, sensor
stimuli, etc.) can be consulted in the Supplementary Material
Section S1.

3.2. FRACTAL AND MULTIFRACTAL ANALYSIS
In order to analyze the interaction between the subjects, we take
the time series of the distance between the two players (or the
player and the bot agent). We compute the players relative velocity
(i.e., the first derivative of the distance between the player and its
opponent) to extract whether the players are approaching or dis-
tancing themselves at each moment of time. Then we use a DFA
algorithm (Peng et al., 2000) to compute the statistical self-affinity
in the data series of distance variations and, in order to verify
if the involved cognitive processes presents an intermittent non-
linear structure, we also analyze the multifractal spectrum with
the multifractal DFA (MFDFA) algorithm (Ihlen and Vereijken,
2010).

In a nutshell, the DFA algorithm removes the mean and inte-
grates (cumulatively sums) the analyzed time series x(i) into y(k)
and then divides it into segments of equal length n (i.e., of a cer-
tain time scale). For each segment, a least squares line (the trend
of the signal within that segment) is fitted to the data obtaining
a local linear approximation yn(n). The characteristic size of the
fluctuation F(n) is computed as the root mean square deviation
between the integrated signal and its trend in each segment. This
computation is repeated for every value of n.

y(k) =
k∑

i = 1

x(i) (1)

F(n) =
√√√√ 1

N

N∑
k = 1

[
y(k) − yn(k)

]2
(2)

where N is the total length of x(n). Typically, F(n) increases with
n. A linear relationship on a log-log plot with slope α indicates the
presence of fractal scaling in the analyzed signal, where α is a gen-
eralization of the Hurst exponent, and is related to the scaling in
the Power Spectrum of the Fourier analysis being β = 2 · α − 1.
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The DFA has some advantages compared to spectral analysis as
the Fourier transform. While the Fourier transform is only well
suited for stationary signals, the DFA has been reliably used in
non-stationary signals (Kantelhardt, 2011). A visual inspection
of the data revealed abrupt transitions at different moments, so
we decided to use DFA instead of the Fourier transform. Usually
pink or 1/f noise is considered to correspond to values of β

between 0.5 and 1.5. Similarly, values of β close to 0 correspond
to white noise (uncorrelated processes) and values close to 2 to
brown noise (process driven by slow timescales showing short-
term predictability). Only processes with β around 1 and a wide
multifractal spectrum are considered to display SOC (Jensen,
1998; Ihlen and Vereijken, 2010).

On the other hand, the multifractal spectrum is computed by
the MFDFA algorithm, a variation of DFA in which the squared
exponent of the root mean squares deviation becomes a variable
q, therefore allowing calculations outwith the standard euclidean
norm defined by the root mean square. Following this procedure,
positive q-values describe the scaling behavior of the segments
with large variance because the large deviations from the corre-
sponding fits will dominate the average F(n). On the contrary,
negative q-values describe the scaling behavior of the segments
with small variance because the large deviations from the cor-
responding fits will be largely attenuated on the average F(n)
(Kantelhardt, 2011). This behavior describes the regularity of
laminar periods of little performance variability vs. the regular-
ity of intermittent periods of large performance variability, and
can be quantified as the difference between the maximum and
minimum values obtained along the different q-values, namely
the width of the multifractal spectrum. A multifractal signal is
characterized by the presence of intermittent periods of large
and irregular fluctuations, denoting the interaction among time-
scales within the signal. Being the width of the multifractal
spectrum, a measure of these interment periods, it serves as an
index to quantify an structure of interactions between temporal
scales (Ihlen and Vereijken, 2010).

DFA bins for parameter n have been defined logarithmically
from 26 s to 1

4 times the size of the time series and an intervals
of 20.01 s. For the MFDFA we have used the same values for the n
bins and we have taken a value of q with values from −3 to 3 with
intervals of 0.25.

3.3. STATISTICAL APPROACH
The design of this experiment involves repeated measures per
subject and, in order to account for this characteristic, linear
mixed effect models have been computed. In a nutshell, mixed
effect models are regression models that incorporate both fixed
and random effects. Fixed effects are the independent variables
of interest while random effects replicate the structure of the
data (i.e., games within player in this case). As a consequence,
the unexplained variation can be split into the variation between
players and the residual variation between games within play-
ers. In this experimental design, the variable “type of oppo-
nent” (“human,” “shadow agent,” or “oscillatory agent”) acts
as the only fixed effect. Each player performs the experiment
several times, so we include the variable “player” in order to
account for the potential lack of independence of the repeated

measures for each participant. In the next section, these tech-
niques will be applied to the results of the experiment, showing
the statistical validity of our study. More detailed description
of the method can be found in the Supplementary Material
Section S2.

4. RESULTS
Above we proposed that some previous analysis made about the
scale in which the dynamics of the perceptual crossing should
be considered. We proposed instead that multi-scale analysis
is better suited to unveil the structure of social interaction. In
this section we perform different tests to explore the possi-
bility of multi-scale interactions shaping the dynamics within
the perceptual crossing experiment. We start by analyzing our
results with measures similar to some used in previous analysis
and propose the necessity of complementing them with other
measures that are not constrained to one particular scale of
behavior.

4.1. PRELIMINARY ANALYSIS
Typically, analysis of the interaction dynamics in the perceptual
crossing has not been concerned with the distribution of activ-
ity across different scales. For example, in Auvray et al. (2009)
the two variables that explain the detection of another human
player are the frequency of stimulation (the number of times a
player receives an input from its opponent) and the probabil-
ity of clicking (the probability of the player clicking their mouse
in a 2 s interval after a stimulation). The setup in our task dif-
fers in that the players are not asked to click if they recognize
a human player. However, here we substitute the probability of
clicking for the probability of having a new stimulation in an
interval defined as a given window after a previous stimulation.
This measure is intended to capture the probability of engage-
ment in an ongoing interaction between the two players. Unlike
Auvray et al. (2009) we will not use a single value for the window
length and will instead test the values 0.25, 0.5, 1, and 2 s (around
95% of stimulations happen within a window of 2 s after the pre-
vious stimulation). We will refer to the frequency of stimulation
as Fs and the probability of consecutive stimulations in a window
of length L seconds as PL

s .
We conduct linear mixed effects modeling of the series cor-

responding to each measure and we obtain the results shown in
Table 1. Here we show the p-value resulting from the compari-
son of the distributions corresponding to players when playing
against an other human player and when playing against each
type of bot . We can observe in the table how the frequency
of stimulation Fs does not discriminate against different types
of players. This result is different from the classical perceptual
crossing results, and maybe caused by the fact that the partic-
ipants play individually against each type of opponent. For the
probability of consecutive stimulations PL

s we observe that the
result depends largely on the chosen value of L. For example,
for the extreme values of 0.25 and 2 s we cannot discriminate
human opponents against either of the two bots (setting the sta-
tistical significance level at 5%). Oscillator opponents however
can be discriminated for windows of 0.5 and 1 s, and shadow
opponents can only be discriminated for windows of 0.5 s. Thus,
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choosing a value of 0.5 s would give us a variable that allows
us to statistically differentiate the different players, showing us
that at that particular scale some opponents have more con-
secutive stimulations with the player than others (in this case,
the shadow agent presents a higher probability of consecutive
stimulations).

To asses the significance of the statistical results without the
bias of choosing particular windows of analysis, we proceed to
compute the distribution of inter-stimulation intervals �t , that
is, the time between one stimulation and the next. However, since
the data for each player and round are scarce (around 40 mean
stimulations by game, depending on the type of agent), we aggre-
gate the data of different players and rounds (although this could
entail losing some information about the data structure). The
result of the cumulative probability can be observed in Figure 1,
where we observe that the windows of discrimination in Table 1
roughly coincide with the intervals in which the cumulative den-
sity functions overlap. This may indicate that what we are doing
when we just take the probability of stimulation (or clicking) is
integrating the density distribution of a process that unfolds over
different scales (in our case ranging from 0.1 to 10 s).

Table 1 | Results of the linear mixed-model effects for comparing

stimulation frequency Fs and probability of consecutive stimulations

PL
s between the rounds where the player was facing other human

player and the two cases of programmed agents (oscillatory and

shadow agents).

Groups p-value

F s P0.25
s P0.5

s P1
s P2

s

human-human vs.
human-oscillatory

0.2381 0.0000 0.0000 0.0000 0.0496

human-human vs.
human-shadow

0.6591 0.6159 0.0000 0.2455 0.0519

FIGURE 1 | Cumulative probability density function of the time

between collisions for different types of opponents aggregated among

participants and trials. Values for the regions illustrated are: (dotted line)
human vs. oscillatory agent, (dashed line) human vs. shadow agent, (solid
line) both participants are human players.

Here we may question whether the fact that the results for a
particular window are discriminative between agents is either the
consequence of something relevant happening at that timescale,
or it is instead caused by the different underlying structures of the
temporal density distributions. In order to shed some light on this
question we have represented the aggregated density distribution
functions of the time between stimulations �t for the three types
of opponents (Figure 2). In the figure we can observe the presence
of long tails that start around 0.5 s in the case of the shadow and
human opponents, and that these long tails have different slopes
in a logarithmic plot. This might be indicating that the statistically
significant differences in the activity between the different 0.5 s
windows are not the result of something happening at that scale,
but the product of a deeper change in the temporal structure of
the interaction. In that case the statistical difference at windows
of 0.5 s may appear because the fact that we are integrating along
all the smaller timescales.

To illustrate this point we offer the following example
(Figure 3): imagine that we have a system in which we can access
to two components x1 and x2, each one being active at a differ-
ent timescale. The same system may display different behaviors.
We can imagine that stimulating x2 the system switches from
behavior 1 to behavior 2.a. As a result of the behavior change,
we can find statistical differences between the distributions of x2

in behavior 1 and 2.a, respectively. Also, we can consider a dif-
ferent condition in which we enhance the influence of variable x1

over x2 (in a process of phase modulation), making the system
switch from behavior 1 to behavior 2.b. Again, we find statisti-
cal differences between the distributions of x2 in behavior 1 and
2.b. The important point is that, while in the first case the sta-
tistical distribution of x2 is provoked by a direct change in the
activity of this variable (directly stimulating the component that
produces it), in the second case the statistical difference in x2

can only be explained by a change in the interaction between
variables x1 and x2. Similarly, significant statistical changes in
a timescale of 0.5 s, might be the result of something relevant
happening at that scale, or it may be the result of a reconfigu-
ration of the whole temporal structure relating different scales of
behavior.

The example in Figure 3 indicates that by analyzing just one
particular scale of the system we may be failing to capture the
causes of a change in the system’s behavior even in the case that
we were able to find a statistical discrimination of the distribution
of a variable. In the case of the perceptual crossing, we propose
that previous analysis may be extended with analysis of the activ-
ity at different scales and the relation between these scales. We
contend that taking into account the changes in the temporal
structure of inter-stimulation times allows a fuller explanation
of the statistical discrimination offered by simple indices such as
the number of clicks or consecutive stimulations within a given
window. Nevertheless, the analysis of the density distribution of
aggregated data is too coarse to test this claim. We need to per-
form a more detailed analysis of the temporal structure within the
individual interaction dynamics in each round to provide more
conclusive results. We propose that statistical analysis of fractal
and multifractal time series may be a better suited tool for this
kind of problem.
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A B C

FIGURE 2 | Probability density function of the time between

stimulations for different types of opponents aggregated among

participants and trials. Values for the regions illustrated are: (A)

human vs. oscillatory agent (“vs. oscillator”), (B) human vs. shadow
agent (“vs. shadow”), (C) both participants are human players (“vs.
human”).

FIGURE 3 | Example of statistical comparison between two

multiscale systems. In case 2.a the behavior is statistically different
from 1 at scale s2 because the intrinsic levels of activity at this
scale have been increased. However, in case 2.b the statistical

differences respect to 1 at scale x2 is not due to any intrinsic
change in x2 but instead to a change in the relation between x2

and x1, that now presents a phase modulation from slower to
fastest frequencies.

4.2. FRACTAL DYNAMICS IN THE INTERACTION PROCESS
In this section we seek a more detailed analysis of the tempo-
ral structure of the interaction between the two players for the
three kinds of opponent. In doing so, we need to extract the
movements of the two players. In order to analyze the interac-
tion between the subjects, we take the time series of the distance
between the two players (or the player and the bot agent): (i) the
first derivative of the distance is computed in order to obtain the
variations in the distance (whether the players are approaching
or distancing themselves at each moment of time given that we
are interested in the coordinated movements of the players, not
their positions); (ii) we use the DFA and MDDFA algorithms to
compute the structure of correlations across scales in the data
series and (iii) we perform a linear mixed-effects modeling in
order to observe if the DFA and MDFA exponents are capable of
differentiating between the interaction dynamics depending on
the type of opponent the player is facing (oscillatory, shadow or
human).

As a first step in the analysis, we observe the results of
individual DFAs in different rounds. In Figure 4 we show

some representative examples of the types of temporal struc-
tures displayed by the interactions with each type of agents.
Since the slope of the fluctuations in a logarithmic plot is
not always linear for all scales, we check if there is any cut-
off value in which the linear relationship is truncated. We do
this by searching for negative peaks in the second derivate of
F(n). The search of cutoff values is only performed in the
right half of the n axis, in order to find only the cutoffs at
larger scales. Once the cutoff value is found, we analyze the
slope F(n) for the values of n in the decade just below the
cutoff value (e.g., Figures 4A,B) . In the cases where there is
no cutoff value (as in Figure 4C) we analyze the interval n ∈
[10−0.5, 100.5].

For the oscillatory agent, we can observe in Figure 4A a flat-
land at higher values of n, followed by a steep linear slope with
a β parameter around 1.5. For lower values of n the linear slope
disappears. This kind of fluctuation is characteristic of oscillatory
dynamics, with the transition from flat to slope being equal to
the period of the oscillations. In the other case, for the shadow
agent, Figure 4B presents something similar to a linear slope in
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A B C

FIGURE 4 | Fractal analysis calculated on interactive patterns between

two participants. Values for the regions illustrated are: (A) human vs.
oscillatory agent (“vs. oscillator”), (B) human vs. shadow agent (“vs.

shadow”), (C) both participants are human players (“vs. human”). The
examples are representative cases of the three kinds of populations in the
experiment.

A B

FIGURE 5 | (A) Boxplots distribution of β and, (B) width of the
multifractal spectrum �h in the time series of the relative velocity
between participants. Values illustrated refer to interactions between:

a human and a oscillatory agent (“vs. oscillator”), a human and a
shadow agent (“vs. shadow”) and two human participants (“vs.
human”).

the middle of the fluctuation spectrum, although the slope lin-
earity breaks at the extremes. The slope of the fluctuation gives an
exponent somewhat higher than β = 0. This suggests that weak
short-range correlations exist (close to a white noise structure),
but they do not hold for longer timescales. Finally, in Figure 4C,
when a player faces another human player, the fluctuation spec-
trum displays a linear slope with a β exponent close to a pink
noise spectrum (β = 1). In a large part of the series, the fractal
slope reaches the largest timescales, showing that the correlations
of the interaction dynamics cover a wide range of the spectrum.
In Figure 4C, fractal relations covering the hole spectrum are
illustrated, although there are many other cases which present a
cut-off point at large scales breaking the linear relation. We pro-
pose that the existence of fractal 1/f patterns covering the whole
analyzed spectrum just in some cases of human-human interac-
tion may be related with the fact that in some cases interaction
will be successful during the some round but other cases will
experience a breakdown in the interaction, leading to disruption
in correlation at longer timescales.

Figure 5 shows three particularly representative examples of
the three kinds of populations in the experiment. Particularly,

in Figure 5A we can observe the boxplots of β for the different
types of interaction. When the opponent is the oscillatory agent,
we find that the values of β in the time series are around 1.5. This
means that the interactions are closer to a brown noise structure,
signifying that the interaction is more rigid and structured than
in the other cases. This makes sense since the movement of the
oscillatory agent is constraining the interactions into its cyclic
movement structure. On the other hand, when the opponent is
the shadow agent, we have the opposite situation in which the
interaction dynamics tend to display values of β greater but close
to 0. This means that the history of interaction is more uncor-
related. Using a linear mixed-effects model we asses that indeed
the three distributions of β are different from each other. We
tested this idea appropriately using linear mixed-effects mod-
els of the three types of opponents (oscillatory agent, shadow
agent, and human) to assess the presence of statistically signifi-
cant differences between the density distributions of β. Using a
linear mixed-effects model we can test that beta is a significant
parameter for distinguishing the different kinds of interactions
depending on the type of opponent [F(2, 93) = 258.350, p <

0.0001].
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As we have mentioned above, fractal analysis is a mathemati-
cal procedure to determine scale invariant structures in a dataset.
Monofractal signals have the same scaling properties throughout
the entire signal, therefore, can be indexed by a single global
exponent (that is known as the Hurst exponent, see Section 3.2).
Alternatively, when spatial and temporal variations in a scale
invariant structure appear, we get a “multifractal structure” that
can be decomposed into different subsets characterized by dif-
ferent local Hurst exponents (denoted as h) which quantify the
local scaling of the time series. With this collection of expo-
nents, we characterize their scaling properties: any deviation from
the average fractal structure for segments with large and small
fluctuations is captured by the “multifractal spectrum width,”
denoted by D(h). In particular, the resulting multifractal spec-
trum is represented by an arc defined as the difference between
the maximum and minimum values of the local Hurst exponent
for each scale [D(h) vs. h]. Thus, the width of this spectrum is
a measure of the degree of multifractality and will be zero for a
monofractal series. The higher the value of the width the more
multifractal the spectrum will be.

In order to verify the non-linear intermittent structure of the
involved processes behind the patterns analyzed above, we also
analyze the width of the multifractal spectrum of the deriva-
tive of the distance between players. For each case, we calculate
the width of the multifractal spectrum using the MFDFA algo-
rithm and plot the distributions of the obtained values depending
on the type of opponent (Figure 5B). The probability distribu-
tion of the multifractal spectrum width �h on the oscillatory
agent is more concentrated around small widths, indicating lit-
tle interaction between the time-scale of the oscillation frequency
of the agent and the time-scales of the movement of its human
opponent. Larger values on the distribution of the shadow agent
indicate stronger interaction between its time-scales. Finally, the
distribution of the human agent reaches the largest values of the
multifractal spectrum width, suggesting a rich time-scale dynam-
ics prompted by the interactivity between the time-scales of the
movements of a pair of human opponents. Again, a linear mixed-
effects models shows us that the distributions of values of �h are
different depending on the type of opponent [F(2, 93) = 258.350,
p < 0.0001].

The fractal and multifractal spectrum results show that the
relative velocity of the player with respect to their opponent in
the interaction process present different distributions depending
if genuine social interaction is happening or the player is inter-
acting with an artificial agent with trivial (oscillatory) or complex
(shadow) patterns of movement. It is interesting that 1/f noise
emerges for a collective variable (the derivative of the distance)
only in the case of human-human interaction, suggesting that
long-range correlations emerge in the shared space of social inter-
actions and genuine social interaction is characterized by the
collective evolution of the dyadic exchange. In those cases where
the interaction between the players is too rigid or too weak, the
emergent multiscale phenomenon disappears. Multifractal seems
to support this claim. To further test this proposal and determine
if the same results can be obtained from non-collective vari-
ables, we will compare this results with the behavior of individual
variables of the player and their opponents.

4.3. COMPARING FRACTAL EXPONENTS IN INDIVIDUAL AND
COLLECTIVE VARIABLES

One of the ideas behind much of the work in the perceptual
crossing paradigm is that the interaction between subjects is a
constitutive element of social cognition (Auvray et al., 2009). If
that is true, the characteristics of a genuine social interaction
should appear only in dyadic variables such as the relative veloc-
ity between subjects and should be absent in individual variables
such as the individual movement of the player or their opponent.
For testing to what extent this is true, we repeat the fractal and
multifractal analysis above using the velocity of the player and the
velocity of their opponent, instead of the relative velocity between
the two. Thus, we can test if the differences in the fractal emergent
structure takes place in the shared space of social interaction or
are instead phenomena that may be accounted for by the changes
in individual dynamics alone.

In Figure 6 we can see how in this case the boxplots of
β and the multifractal spectrum width �h show more over-
lapping among the distributions corresponding to the different
opponents.

We tested this proposal appropriately using linear mixed-
effects models of the three types of opponents (oscillatory agent,
shadow agent and human) to assess the presence of statisti-
cally significant differences between the density distributions of
β (Table 2) and �h (Table 3) for three different cases: (i) the rel-
ative velocity between the player and its opponent (labeled in the
tables as the “interaction” case), (ii) the individual velocity of
the player (labeled as “player”) and (iii) the individual velocity
of the opponent (labeled as “opponent”). Both tables include the
corresponding p-values resulting from the modeling.

Given the results shown in both tables and setting the signif-
icance level at 5%, we can conclude that only in the case of the
relative velocity between the agents (“interaction” columns) all
three distributions are statistically significantly different for both
β and �h.

For the case of the velocity of the player, we cannot assure an
statistically significant difference between the distributions of β

and �h. In the case of the velocity of the opponent, we could
only find evidence of statistically significant differences between
the oscillatory agent and the other two kinds of opponents, but
not between the human opponent and the shadow agent.

The obtained results show that individual variables are not
suitable for discriminating between the kind of interaction going
on in the case of the shadow agent. This reveals that when the
individual behaviors have some kind of complexity, what it is rel-
evant in terms of the emergence of social interaction is what is
going on in the interaction between the two subjects and not the
complexity of their individual behaviors.

5. DISCUSSION
In this paper we have revisited some of the results of the research
program around the perceptual crossing paradigm. As we have
seen, in recent years, this paradigm has allowed the study of
social interaction in its simpler form and has offered very inter-
esting experimental results to try to understand what kind of
processes underly the emergence of social engagement. In par-
ticular, we have addressed a new version of the experiment in
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A B

C D

FIGURE 6 | Boxplots distribution of β (left side) and width of the

multifractal spectrum (right side) in the velocity of the players. The
upper figures (A,B) represent the fractal and multifractal analysis when we
take the velocity of the player. The bottom figures (C,D) represent the

case when we analyze the velocity of the opponent. Values illustrated
refer to interactions between: a human and a oscillatory agent (“vs.
oscillator”), a human and a shadow agent (“vs. shadow”) and two human
participants (“vs. human”).

Table 2 | Results of the linear mixed-model effects for comparing the

fractal β exponent from DFA results between the rounds where the

player was facing other human player and the two cases of

programmed agents (oscillatory and shadow agents).

Groups p-value

Interaction Player Opponent

human-human vs. human-oscillatory 0.0000 0.1106 0.0000

human-human vs. human-shadow 0.0017 0.6831 0.0850

The left column (interaction) reflects the results when the relative velocity

between the players is analyzed, central column (player) shows the results when

the velocity of the player is analyzed and the right column (opponent) the velocity

the opponent.

which the player can face only one human player or an arti-
ficial agent that shows either (i) an oscillatory movement or
(ii) behaves as a temporal “shadow” of the player. After ana-
lyzing the different kinds of social engagement dynamics gen-
erated, we have found that a fractal 1/f structure (with high
multifractal indices) at many timescales of the history of col-
lective interactions only emerges in the case of genuine social

Table 3 | Results of the linear mixed-model effects for comparing the

fractal �h exponents from MFDFA results between the rounds where

the player was facing other human player and the two cases of

programmed agents (oscillatory and shadow agents).

Groups p-value

Interaction Player Opponent

human-human vs. human-oscillatory 0.0000 0.1405 0.0000

human-human vs. human-shadow 0.0002 0.8594 0.4601

The left column (interaction) reflects the results when the relative velocity

between the players is analyzed. Central column (player) shows the results when

the velocity of the player is analyzed and right column (opponent) the velocity of

the opponent.

interaction (i.e., the “human vs. human” case) and not in other
cases (“human vs. agent”). In this respect, our results present a
new interpretation of the results obtained in previous percep-
tual crossing experiments: there could be some limitations in
the approach take in previous analyses of the social engagement
process, which have been often restricted to studying a single
temporal scale and consequently falling short for capturing the
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complex unfolding of the different levels of cognitive and social
interaction.

This interpretation offers a new conceptualization of the direc-
tions in which we should focus attention: given the results
shown in this paper, it is possible that the emergence of social
engagement might not depend solely on either the stability of co-
regulative dynamics between two participants as suggested in pre-
vious perceptual crossing experiments and simulations (Di Paolo
et al., 2008; Auvray et al., 2009). Furthermore, the results obtained
let us propose that genuine social engagement might be better
characterized by a structure of cross-scale interactions that we
try to capture analyzing fractal 1/f scaling and multifractal spec-
trum. Moreover, fractal and multifractal exponents showed no
statistically significant differences when we analyzed the velocity
of the player or their opponent compared to the relative velocity
between them, leading us to conclude that the emergence of a 1/f
structure for genuine social interaction is something that happens
only in the shared space between the two subjects, and the process
cannot be reduced to the individual dynamics of any of them.

However, this work leaves several questions unanswered. The
first concerns what an adequate framework of analysis might
be and how previous and new insights can be integrated in a
larger framework. The framework presented here still needs to
be extended, since 1/f scaling and the multifractal spectrum
reduce the complexity of multiscale dynamics to a single expo-
nent that, although detecting the presence of activity at different
scales, falls short of being able to characterize the nature of cross-
scale interactions in detail. Multi-scale synchronization analysis
employed for measuring inter-brain synchronization in social
tasks appears to be a suitable candidate for extending the analysis
presented here with multiscale synchronization analysis of behav-
ioral dynamics (Dumas et al., 2010; Müller et al., 2013). More
detailed analysis may also offer new points of connection with
previous work and alternative explanations for the phenomena
observed in the perceptual crossing experiment.

Another way forward may lie in modifications of the per-
ceptual crossing experiment which may prove helpful in bet-
ter understanding the cross-scale interactions in minimal social
interaction. Interesting advances following this approach include
the work of Iizuka et al. (2013), which studies the emergence of a
communication system between two participants, using the per-
ceptual crossing set up to collectively categorize different symbols.
Also, (Froese et al., 2014b) explore the evolution of interaction of
fixed pairs of players during several rounds with the objective of
establishing a team for finding each other, observing that at some
point the players simultaneously become aware of each other. This
kind of extended experiment may allow the study of correlations
at larger scales than just instantaneous online recognition, allow-
ing us to analyze interesting dynamics as learning, development
of shared patterns and joint development of the player’s mutual
dynamical entanglement.

Finally, it could also be interesting to apply some of these
ideas to the simulation domain. Some of the attempts to model
agents that could perform the perceptual crossing task were based
in an agent vs. agent joint evolution using a genetic algorithm
maximizing the number of interactions between the agents. We
are concerned that such minimalistic scenarios as the perceptual

crossing experiment may bias co-evolution of agent toward sim-
ple behaviors that exploit only one scale of behavior to maximize
the outcome (e.g., simple oscillatory behavior). Maybe other evo-
lution strategies could be used, for example trying to evolve turn
taking behavior (Iizuka and Ikegami, 2004). Another interesting
extension to tackle this problem could be to explore the possibil-
ities of mixed environments shared by human and robotic agents
in order to allow a richer repertoire of dynamics that could be
exploited for learning and tuning of the modeled agents.

ACKNOWLEDGMENTS
This research has been partially supported by the project
TIN2011-24660, funded by the Spanish Ministry of science and
Innovation, and the project FCT-13-7848, funded by the Spanish
Foundation for Science and Technology. Miguel Aguilera holds
a FPU predoctoral fellowship with reference AP-2010-6036. The
authors would like to thank Xabier Barandiaran for comments
that helped improved the manuscript, all the study participants
for giving up their time and, finally, Altea Lorenzo and Dominic
Duckett for his valuable assistance in language editing.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fpsyg.
2014.01281/abstract

REFERENCES
Auvray, M., Lenay, C., and Stewart, J. (2009). Perceptual interactions in a min-

imalist virtual environment. New Ideas Psychol. 27, 32–47. doi: 10.1016/j.
newideapsych.2007.12.002

Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-organized criticality: an expla-
nation of the 1/f noise. Phys. Rev. Lett. 59, 381–384. doi: 10.1103/PhysRevLett.
59.381

De Jaegher, H. (2009). Social understanding through direct perception? yes, by
interacting. Conscious. Cogn. 18, 535–542. doi: 10.1016/j.concog.2008.10.007

De Jaegher, H., Di Paolo, E., and Gallagher, S. (2010). Can social interaction con-
stitute social cognition? Trends Cogn. Sci. 14, 441–447. doi: 10.1016/j.tics.2010.
06.009

Di Paolo, E. A., Rohde, M., and Iizuka, H. (2008). Sensitivity to social contingency
or stability of interaction? modelling the dynamics of perceptual crossing. New
Ideas Psychol. 26, 278–294. doi: 10.1016/j.newideapsych.2007.07.006

Dixon, J. A., Holden, J. G., Mirman, D., and Stephen, D. G. (2012). Multifractal
dynamics in the emergence of cognitive structure. Top. Cogn. Sci. 4, 51–62. doi:
10.1111/j.1756-8765.2011.01162.x

Dumas, G., Kelso, J. A. S., and Nadel, J. (2014). Tackling the social cognition para-
dox through multi-scale approaches. Cogn. Sci. 5:882. doi: 10.3389/fpsyg.2014.
00882

Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., and Garnero, L. (2010).
Inter-brain synchronization during social interaction. PLoS ONE 5:e12166. doi:
10.1371/journal.pone.0012166

Froese, T., Iizuka, H., and Ikegami, T. (2014a). Embodied social interaction
constitutes social cognition in pairs of humans: a minimalist virtual reality
experiment. Sci. Rep. 4:3672. doi: 10.1038/srep03672

Froese, T., Iizuka, H., and Ikegami, T. (2014b). Using minimal human-computer
interfaces for studying the interactive development of social awareness. Front.
Cogn. Sci. 5:1061. doi: 10.3389/fpsyg.2014.01061

Gilden, D. L. (2001). Cognitive emissions of 1/f noise. Psychol. Rev. 108, 33–56. doi:
10.1037/0033-295X.108.1.33

Gomila, T. (2013). “From the second-person to the third,” in II Workshop Second-
Person Perspective, Folk Psychology, and Narrativity (Cordoba).

Hausdorff, J., and Peng, C. K. (1996). Multiscaled randomness: a possible source of
1/f noise in biology. Phys. Rev. E 54, 2154–2157. doi: 10.1103/PhysRevE.54.2154

www.frontiersin.org November 2014 | Volume 5 | Article 1281 | 11

http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01281/abstract
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01281/abstract
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01281/abstract
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01281/abstract
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01281/abstract
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01281/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Bedia et al. Long-range correlations in a minimal experiment of social interaction

Ihlen, E. A. F., and Vereijken, B. (2010). Interaction-dominant dynamics in
human cognition: beyond 1/fluctuation. J. Exp. Psychol. Gen. 139, 436–463. doi:
10.1037/a0019098

Iizuka, H., Ando, H., and Maeda, T. (2009). “The anticipation of human behav-
ior using parasitic humanoid,” in Human-Computer Interaction. Ambient,
Ubiquitous and Intelligent Interaction. Proceedings of the 13th International
Conference, HCI International 2009, San Diego, CA, USA. Number 5612
in Lecture Notes in Computer Science, ed J. A. Jacko (Berlin; Heidelberg:
Springer), 284–293. doi: 10.1007/978-3-642-02580-8_31

Iizuka, H., Ando, H., and Maeda, T. (2012). Emergence of communication and
turn-taking behavior in nonverbal interaction. IEICE Trans. Fund. Electron.
Commun. Comput. Sci. J95-A, 165–174.

Iizuka, H., and Ikegami, T. (2004). Adaptability and diversity in simu-
lated turn-taking behavior. Artif. Life 10, 361–378. doi: 10.1162/106454604
1766442

Iizuka, H., Marocco, D., Ando, H., and Maeda, T. (2013). Experimental study on
co-evolution of categorical perception and communication systems in humans.
Psychol. Res. 77, 53–63. doi: 10.1007/s00426-012-0420-5

Iizuka, H., and Paolo, E. D. (2007). “Minimal agency detection of embodied
agents,” in Advances in Artificial Life. Proceedings of the 9th European Conference,
ECAL 2007, Lisbon, Portugal. Number 4648 in Lecture Notes in Computer
Science, eds F. Costa, L. M. Rocha, E. Costa, I. Harvey, and A. Coutinho (Berlin;
Heidelberg: Springer), 485–494. doi: 10.1007/978-3-540-74913-4_49

Jensen, H. J. (1998). Self-Organized Criticality: Emergent Complex Behavior in
Physical and Biological Systems. Cambridge: Cambridge University Press. doi:
10.1017/CBO9780511622717

Kantelhardt, J. W. (2011). “Fractal and multifractal time series,” in Mathematics of
Complexity and Dynamical Systems, ed R. A. Meyers (New York, NY: Springer),
463–487. doi: 10.1007/978-1-4614-1806-1_30

Lenay, C., Stewart, J., Rohde, M., and Amar, A. A. (2011). you never fail
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