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The current study examines similarity or disparity of a frontally mediated physiological
response of mental effort among multiple executive functioning tasks between children and
adults. Task performance and phasic heart rate variability (HRV) were recorded in children
(6 to 10 years old) and adults in an examination of age differences in executive functioning
skills during periods of increased demand. Executive load levels were varied by increasing
the difficulty levels of three executive functioning tasks: inhibition (IN), working memory
(WM), and planning/problem solving (PL). Behavioral performance decreased in all tasks
with increased executive demand in both children and adults. Adults’ phasic high frequency
HRV was suppressed during the management of increased IN and WM load. Children’s
phasic HRV was suppressed during the management of moderate WM load. HRV was
not suppressed during either children’s or adults’ increasing load during the PL task. High
frequency phasic HRV may be most sensitive to executive function tasks that have a time-
response pressure, and simply requiring performance on a self-paced task requiring frontal
lobe activation may not be enough to generate HRV responsitivity to increasing demand.
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INTRODUCTION
Executive function is an umbrella term used to group a variety
of complex cognitive functions that utilize the attentional control
unit of Baddeley’s working memory (WM) model which governs
allocation of attention and inhibition of automatic or incorrect
action. This Central Executive of Baddeley’s model utilizes neural
connections within the frontal lobes as part of their neural circuitry
(Baddeley, 1996; Banich et al., 2000; Jansma et al., 2000; Newman
et al., 2003; Owen et al., 2005). This category of executive functions
includes a number of abilities and their related tasks. A latent factor
analysis of performance on a large number of executive tasks found
both a unity to executive functions, as well as separate categories
of executive functions (Miyake et al., 2000). For both adults and
children, the separate categories included updating of WM and
inhibition of automatic/over-learned responses, as well as shifting
of attention and action (Miyake et al., 2000; Huizinga et al., 2006).
Another executive function, multistep planning toward a goal, has
been found to rely on attentional control (Baddeley, 1996) and
frontal lobe functioning (Luria, 1966; Shallice, 1982; Unterrainer
et al., 2004a; Kaller et al., 2011).

There is a prolonged child development of neural circuitry
that differs for various executive functions shows increases in
area growth, efficiency of activity, and myelination including
in frontal areas from preschool to late adolescence, as well as
increased coordination with age of frontal connections’ coordi-
nated neural functioning as measured by electroencephalographic

coherence (e.g., Casey, 1992; Casey et al., 1997; Hanlon et al.,
1999; Thomas et al., 1999; Nelson et al., 2000; Durston et al.,
2001; Fuster, 2002; Thatcher et al., 2008). As might be expected,
this is accompanied by a prolonged development of executive
function task performance, with particularly large improvements
during preschool/kindergarten and adolescent years (Klahr and
Robinson, 1981; Welsh et al., 1991; Diamond and Taylor, 1996;
Denot-Ledunois et al., 1998; Zelazo, 2000; Davidson et al., 2006;
Lamm et al., 2006; Zelazo and Müller, 2007; Kaller et al., 2008;
Unterrainer et al., 2014).

PHASIC HIGH FREQUENCY HEART RATE VARIABILITY
A psychophysiological measure, phasic high frequency heart rate
variability (HRV), may provide valuable information about the
modulation of executive control in children and adults. Accord-
ing to Thayer et al. (2009), prior to 1867 Claude Bernard was the
first to suggest that cortical activity has a reactive response on
heart rate. Since then, it has been found that the heart rate can
fluctuate at a wide range of frequencies slow, medium, and fast
(Jennings and Yovetich, 1991), with the faster frequency associ-
ated with typical inhalation and exhalation rates. Thus, respiratory
related HRV has been measured as the spectral power of the heart
rate changes within the frequency range of respiration. This mea-
sure is somewhat similar to another psychophysiological measure,
respiratory sinus arrhythmia (RSA), also measures the synchrony
of respiration and heart rate.
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Although different terms have been used to define the cog-
nitive process indexed by high frequency HRV, referred to from
this point on as HRV, or RSA, there is general agreement
that reduced/suppressed RSA or HRV power (less power in the
frequency band of respiration) is associated with increased effort-
ful mental processing or effortful attentional control in adults
(Porges and Byrne, 1992; Suess et al., 1994; Berntson et al., 1997;
Beauchaine, 2001; Hansen et al., 2003; Mulder et al., 2004; Porges,
2007). While it has been concluded that HRV is related to executive
task performance and reflects the prefrontal utilization required
by active control of attention, there is also a call for further
research into which executive functions change HRV (Thayer et al.,
2009). This report was limited to examining primarily inhibitory
processes.

Empirical evidence supports this link between frontal lobe
activation and mental effort during executive function. The
role of the frontal cortex in the regulation of HRV has been
demonstrated with clinical populations (Althaus et al., 1999, 2004;
Lane et al., 2001) as well as functional imaging studies with
normative populations (Gianaros et al., 2004; Matthews et al.,
2004).

A number of functional imaging – HRV studies have found a
relationship between increased activation of the anterior cingulate
cortex (ACC) and decreased RSA in frequencies similar to that
of respiration (Critchley et al., 2003; Matthews et al., 2004). It has
been theorized that the ACC serves to detect instances where it is
necessary to recruit frontal areas, including the dorsolateral pre-
frontal cortex, to manage increasing executive demands (Botvinick
et al., 2001; Hajcak et al., 2003).

In a model of the heart–brain connection by Thayer et al.
(2009), sympathetic and parasympathetic regulation of HRV is
modeled as modulating with increased dorsolateral prefrontal and
ACC activation such that increased activation results in decreased
HRV. Additionally, part of a model by Thayer et al. (2009) suggest
that activation of the prefrontal cortex can result in discontrol
of the heart rate response through both a tonic acceleratory
drive and a tonic deceleratory drive from both the sympathetic
and parasympathetic branches of the autonomic nervous sys-
tem. We suggest that this results in disregulation of the heart rate
response, which we propose would result in decreased phasic high
frequency HRV.

Due to their undeveloped frontal neural circuitry, children
may be less able or less consistent in their ability to activate the
ACC and recruit their underdeveloped frontal areas to manage
the difficult executive task conditions, thus deregulating their
HRV. That is, children may have less ability to fully recruit the
attentional/behavioral control system, including the dorsolateral
prefrontal cortex, in order to manage the task conditions. How-
ever, this stands in opposition to a model by Thayer et al. (2009)
which suggests less activation of the prefrontal cortex would
lead to activation of the central nucleus of the amygdala, which
would lead to an increase in sympathetic activity and inhibi-
tion of the parasympathethoexcitatory neurons, which in turn
would lead to a decrease in vagal tone and HRV. It is worth
note that this model is based on animal models and adult neu-
rology, and may not apply to the hypofrontality due to a lack of
development.

THE CURRENT STUDY
As compared to HRV during a rest period, decreases in HRV
have been found during executive function tasks with both adults
(Hansen et al., 2003; Johnsen et al., 2003) and children (Hickey
et al., 1995,Mezzacappa et al., 1998). We expect from prior research
that children will show less HRV responsitivity during the Stroop
task (as seen in a younger and older adult developmental study of
a variant of the Stroop task, Mathewson et al., 2010), and perhaps
also the Tower of London task that requires inhibition of ineffi-
cient moves to make the correct counterintuitive correct moves.
Studies of HRV during executive function tasks have not, however,
been simultaneously assessed with multiple subtypes of executive
functions, especially in children. One study compared HRV dur-
ing Stroop task and mental arithmetic in older adults. This study
found that mentally stimulating activities predicted HF-HRV (Lin
et al., 2013). However, this was one formal executive function task,
the Stroop, and another cognitively challenging task, which likely
requires executive functions such as WM, mental arithmetic. The
current study, a study including tasks tapping into the subtypes of
executive functions would allow for the comparison of develop-
mental differences, which developmental studies show less HRV
response in children and animal models and adult neurology sug-
gest increased HRV. We expect to see both performance on each
dimension of executive function and in the HRV changes that
are associated with increased executive functioning load in both
age groups, but our hypotheses about developmental HRV are
exploratory.

In the current study we have the goal to examine our child group
for developmental differences compared to adults. We approach
these goals using three executive functioning tasks which typ-
ify subtypes of executive function (Baddeley, 1996; Miyake et al.,
2000): inhibition of an automatic/over-learned response, goal-
focused multi-step planning, and WM updating. With these tasks
we utilized a parametric study design rather than a baseline rest
design. A parametric design allows for the calculation of differ-
ence scores to a low level of the task to assess increases or decreases
in adults’ and children’s physiological and behavioral responsi-
tivity to increased executive functioning load without confounds
possible due to individual or developmental differences in inter-
pretation/processing of a rest baseline. In fact we suggest that
a rest baseline may be inappropriate for HRV as it is for other
psychophysiological measures such as electroencephalogram and
functional magnetic resonance imaging as the baseline of rest
requires a form of mental effort, especially in children, as they
exhibit attentional and motor control and “tune out” all modali-
ties and inhibit all behavioral responses, which may be a challenge
when they are in the novel laboratory environment with electrodes
and a respiration band on their bodies.

Functional magnetic resonance imaging suggests that a rest
baseline is not a “zero” (Stark and Squire, 2001). A parametric
design, rather than a rest baseline, is now becoming standard
in functional magnetic resonance imaging, especially in develop-
mental studies (Katsoni et al., 2006). Scores, both correctness and
speed, were calculated as difference scores relative to the easiest
condition. These difference scores allow for the assessment of the
participants’ behavioral and physiological reaction to increased
cognitive load while controlling for stimulus and developmental
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motor events. Though the easiest condition of each task may have
some executive load, our parametric design still examines changes
in performance and physiological response from a lower level of
executive load to higher levels of executive load. HRV responsitiv-
ity scores and behavioral responsitivity scores are both calculated
similarly to task-rest baseline difference scores but are instead
calculated relative to the within-task lowest cognitive demand con-
dition. Our primary hypotheses concerned changes due to task
difficulty, and thus these scores reflect the response to the increased
task demand.

We examined the executive functions of WM and inhibition
as they have been found to be a separate factor (Huizinga et al.,
2006) and also planning as it requires the combination of WM
and inhibition, as well as longer term goal tactic, and is also cru-
cial task for daily functioning (Luria, 1966). We contrasted adult
responses with early elementary school age children’s responses
for a number of reasons: (a) early elementary school age is
above an age span when resting HRV is increasing (Finley and
Nugent, 1995), (b) developmental comparisons with early ele-
mentary school age are also similar to past behavioral studies
evaluating executive functioning age differences (Luciana and Nel-
son, 2002; Huizinga et al., 2006), and (c) the age of our sample is
before the final adolescent growth spurt in executive functioning
abilities that occurs during adolescence (De Luca and Leventer,
2008).

CLINICAL SIGNIFICANCE OF THE STUDY
The current study makes use of multiple tasks that are used for clin-
ical assessment of executive functioning abilities. It may be helpful
clinically to know which of these tap into the form of cognitive
effort indexed by HF-HRV, and the neural circuitry that underlies
the HF-HRV response. Specifically interesting would be if a cog-
nitive process were to in past literature activate frontal regions, but
not elicit a parametric change in HRV with difficulty. The spatial
resolution of function MRI (fMRI) is such that it may be that the
neural regions underlying HF-HRV are not utilized as may appear
on fMRI studies, or it might show that that region is being used
but not in the way that modulates HRV. These executive functions
are important for a large number of clinical concerns, ranging
from judging developmental delay, or deficit with a disorder such
as ADHD, to assessing atypical aging, where executive functions
may be early to decline. Certainly the current study will suggest if
the measures used should be considered equivalent when admin-
istered clinically to children and adults. They may not if children’s
and adults’ HF-HRV responds differently to increased executive
demands.

HYPOTHESES
We hypothesize that, in all tasks, incremental increases in exec-
utive functioning load will result in both adults and children
presenting incremental decreases in HRV power and behavioral
performance. Children may be less able to manage increased exec-
utive loads because of their undeveloped frontal control and may,
therefore, have smaller changes in quality of performance with
increasing executive load. This underdeveloped frontal control
may also lead to children’s HRV being less controlled and effi-
cient, with their responsitivity being less incrementally locked to

increases in executive load. Whether children’s HRV will be higher
or lower than adults is exploratory.

MATERIALS AND METHODS
PARTICIPANTS
Data were analyzed from 25 children (16 male, 6–10 years, M
age = 8.6 years) from local schools and 34 adults (19 male,
18–25 years, M age = 22.0 years) from introductory psychology
courses. Child participants were recruited through flyers posted at
graduate student on-campus housing, since this housing is often
utilized by graduate students with children. Adult participants
were recruited through an undergraduate psychology subject pool.
Adult and child samples included participants who, according to
a self/guardian report questionnaire, were in good present and
past health and currently taking no medications. All participants
were recruited and tested using procedures in accordance with the
Ethical Guidelines of Psychologists and Code of Conduct of the
American Psychological Association (1992) and approved by the
university Institutional Review Board.

DESIGN AND PROCEDURE
Upon arrival at the university laboratory, adult participants
or child–parent pairs heard a brief description of the study
and underwent consent/assent procedures. Adult participants
or child–parent pairs then answered a questionnaire about the
participants’ basic demographic data, current and past health,
medical/psychiatric diagnoses, and medications the participants
were currently taking. The experimental session (∼45 min) then
began.

The experimental session consisted of the researcher briefing
the participants about the tasks, referred to as “puzzle games,” and
the opportunity to earn a performance bonus of up to $5. This
bonus was in addition to the standard compensation of $5 for chil-
dren and class credit for adults. All participants were encouraged
equally but were not informed about their progress toward perfor-
mance bonuses until the end of the experiment. Encouragement
and financial incentive were used to address potential decreased
vigilance, engagement, and/or effort across the session, which is
a major concern when testing child participants. Use of finan-
cial incentive was particularly crucial in the current study due to
the past research finding that young school age boys’ performance
and HRV revealed more attention to task when the children were
offered monetary reward (Suess et al., 1997).

The experimenter escorted the participants to a sound-
attenuated booth and fitted the participants with electrocardio-
gram (ECG) electrodes and a respiration gage belt. Participants
were instructed to refrain from speaking and making non-task-
related movements during data-collection/task periods. Partici-
pants then began the three computerized executive function tasks,
the Day/Night Stroop, the Tower of London, and the N-Back, with
the order of the tasks determined by a Latin square, counterbal-
anced design. There was no significant evidence that child or adult
participant groups performed more poorly on tasks later in the
session1. Difficulty conditions within each task were completed in

1An Age × Task × Order ANOVA revealed no significant Order × Task or
Age × Order × Task interactions on any of the performance measures (ps > 0.05).
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order of increasing executive load levels to reduce discouragement,
a concern especially in children.

Before each difficulty condition, there was an experimenter-
participant interactive break during which the experimenter
provided encouragement and instructions. Instructions using a
standard script and pictures, either in a flip-book or on a com-
puter screen, consisted of the experimenter explaining the stimuli,
responses, and objectives for the next level of difficulty. Next,
the experimenter demonstrated the difficulty condition and the
participants were given two opportunities to practice this dif-
ficulty condition. The experimenter corrected and guided the
participants if they performed incorrectly during the practice
opportunities. If participants’ responses on the practice periods
revealed a lack of understanding of the condition, the experi-
menter repeated the instructions, example, and practice session.
Only two children required re-instruction, both on the N-Back
task.

EXECUTIVE FUNCTIONING TASKS
Our tasks were designed to: (a) be appropriate for both children
and adults, (b) tap into the cognitive function of interest across
a range of difficulty, and (c) be free of either periodic stimuli or
large motor movements that could modify the participants’ heart
rate patterns. Tasks were identical for children and adults. In all
tasks conditions were presented in periods of 3-min each so as to
equate temporal conditions in evaluating the HRV.

Inhibition task (Day-Night Stroop)
The task employed was a variant of the standard color-word Stroop
(1935) task, which is widely used to measure response inhibition
in adults. Although letters are easily recognized by children as
young as 6 years of age, reading automaticity is achieved later
in development (Saint-Aubin et al., 2005). This lack of reading
automaticity makes the color-word version of the Stroop task less
valid for children. Although picture-based Stroop variants, includ-
ing the Day/Night Stroop task we employed, are more common
in developmental research, they are effective at eliciting difficulty
in automatic response inhibition from adults as well as children.
This is evident as slower response times in the stimulus–response
conflict condition (Diamond and Taylor, 1996; Diamond and
Kirkham, 2005; Davidson et al., 2006).

In the most common administration of the Day/Night Stroop
(Gerstadt et al., 1994) participants speak either matching (“day” to
a picture of day) or opposite (“day” to a picture of night) responses
to simple, colorful drawings. Our computerized version of this
task required only a mouse click to make their picture selection
and this allowed for the recording of respiration and HRV with-
out contamination from speech-related artifact and allowing us
millisecond response accuracy; otherwise it was very similar to
the spoken Day/Night Stroop. Participants were presented with a
sequence of images, cartoons of either day or night, appearing one
at a time in the upper portion of the computer screen. In the lower
portion of the screen were two smaller images, one of day and
one of night, which served as response buttons when left clicked.
Participants used a computer mouse to click on the matching pic-
ture in the control difficulty condition and the opposite picture
in the inhibition difficulty condition. Following the response, the

next picture in the series of images appeared in 500–2000 ms, with
the inter-stimulus-intervals independently randomized for each
participant.

During the inter-stimulus interval, participants moved their
mouse cursor to a bulls-eye image located between the two
response images. This prevented anticipatory movements and
held constant the movement distance for each response button.
The matching (control) difficulty condition aways preceded the
mismatching (response inhibition) difficulty condition, with each
condition period being 3 min. The instructions for both difficulty
conditions emphasized responding both quickly and correctly.

Planning task (Tower of London)
The Tower of London is a task used clinically and experimentally
with both children and adults to measure multi-step planning
(Shallice, 1982; Krikorian et al., 1994; Anderson et al., 1996; Berg
and Byrd, 2002; Berg et al., 2006, 2010). The original task appa-
ratus consisted of three balls, red, blue, and green, placed on
three pegs which can hold one, two, or three balls, respectively.
The task objective is to transform an initial ball arrangement to
match a goal ball arrangement in as few single-ball movements as
possible.

In our computerized version of the task, the initial arrange-
ment appeared as a large image at the bottom of the screen, and
the goal arrangement appeared as a small image at the top of the
screen. The minimum number of moves necessary to reach the
goal position appeared in a box on the far right of the screen. Par-
ticipants could begin solving problems as soon as they appeared,
though they were encouraged to solve the problem within the min-
imum number of moves but to continue working on a problem
until it was solved, even when they made more than the minimum
number of moves required. We chose this administration in order
to allow for detailed examination of performance for planfulness
(Berg et al., 2006).

To move each ball from peg to peg, the participants made a
small hand movement, a drag and drop motion with the computer
mouse. When the goal arrangement was reached, the partici-
pants clicked a button labeled “Done,” which appeared in the
top right corner of the screen. The computer program prevented
participants from breaking the rules, placing balls off of pegs or
placing too many balls on a peg. Participants were presented three
increasing planning load difficulty conditions of the Tower of
London – problems requiring a minimum of 4, 5, and 6 moves for
an optimal solution. In each difficulty condition, participants con-
tinued to solve problems with no maximum of that difficulty level
until the difficulty condition period of 3 min was complete. These
problems were selected based on minimum number of moves
required to solve most efficiently, which is a strong predictor of
difficulty (Berg et al., 2010). Unfortunately these data were col-
lected before problem selection became based on other problem
parameters such as goal and end start position or subgoals (Kaller
et al., 2004). These problem aspects not being controlled may have
contributed noise to our difficulty levels.

Working memory task (N-Back)
In order to examine participants’ responsitivity to increasing WM
load, participants performed four increasingly difficult conditions
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of the N-Back task. Various versions of this task are commonly
used as a measure of WM updating both with adults (e.g., Gevins
et al., 1997; McEvoy et al., 1998; Müller et al., 2002) and children
(Nelson et al., 2000; Vuontela et al., 2003, 2009; Astley et al., 2009).
It is feasible for children 6 years and older to perform this letter-
based memory task due to their ability to recognize individual
letters (Christian et al., 2000). In the current study, practice trials
demonstrated that all child participants were able to recognize the
stimulus letters.

In all difficulty conditions, participants viewed a light blue
computer screen with a sequence of black upper and lower case
letters appearing one at a time in the middle of the screen. There
were 51 stimuli in each difficulty condition, one third of which
were targets. The stimulus duration was 500 ms and the inter-
stimulus-intervals varied from 300 to 1600 ms. Both inter-stimulus
interval and target position were randomized independently for
each participant. In all difficulty conditions, the participants were
instructed that, following each stimulus, they were to press one
of two computer keyboard keys: either a green key with their left
index finger for a target or a red key with their right index fin-
ger for a non-target. Participants were instructed that they should
respond to every single stimulus with their best answer, even if they
were uncertain. Correctness, not speed of responses, was empha-
sized, though participants were told that non-responses would be
considered incorrect.

Participants performed four difficulty conditions requiring
incrementally more WM load: 0-, 1-, 2-, and 3-back difficulty
conditions, in that order. The definition of a target stimulus dif-
fered by difficulty condition. In the 0-back difficulty condition a
target was a single letter presented before the response stimuli for
that difficulty condition. For all other difficulty conditions, the
participants referred back to their memory of the prior stimuli in
order to determine whether or not the current stimulus letter was
a target. For these difficulty conditions, a target was always the
matching letter, and the letter’s case was to be ignored. The posi-
tion to check for this match was the letter 1, 2, or 3 positions back
in the sequence depending on difficulty condition being tested,
1-, 2-, or 3-back, respectively. Each difficulty condition period
lasted 3 min.

HRV RECORDING AND MEASUREMENT CALCULATION
During each 3-min difficulty condition period, heart rate and res-
piration were recorded as six consecutive, 30-s epochs. This epoch
duration was chosen because it was appropriate for examining fre-
quencies of interest, brief enough to lessen concerns about heart
rate non-stationarities (Berntson et al., 1997), and identical to that
used by earlier studies of children’s HRV (Suess et al., 1997; Porges
et al., 2007).

Electrocardiography was recorded using three 1 cm Ag/AgCl
electrodes filled with Microlyte electrolyte gel and secured to the
cleaned and lightly abraded skin (Nu-Prep gel) via an adhesive
electrode collar. Electrodes were placed in a modified type II
arrangement, with two active leads, one on the left ankle and
the other on the right collarbone, and a ground lead on the mas-
toid bone behind the left ear. Pilot testing determined that this
placement allowed for unobtrusive electrode application as well as
a clear EKG signal with sharply peaked R waves.

The EKG signal was amplified 1000x with a Coulbourn S75-01
bioamplifier, then band pass filtered from 8 to 40 Hz in order to
minimize drift, movement artifact, and 60 Hz noise. A custom-
designed peak detector was used to find the peak of the R-waves
and transform the peak trigger to a short TTL pulse. R-R intervals
(time between R-wave-triggered TTL pulses) were recorded with
1 ms accuracy by a custom program.

R-R interval timings were processed offline. All R-R inter-
val editing and checking was conducted by trained and reliable
research assistants who edited data unaware of the participants’
task orders. A custom program was used to display the sequence
of R-R intervals and edit artifactual intervals (dividing combined
R-R intervals or combining R-R intervals interrupted by false trig-
gering of the peak detector). Corrected data were re-checked for
errors. Specific care was taken in the editing of R-R interval arti-
facts due to the large impact even a single artifactual R-R interval
can have on the outcome of HRV calculations (Berntson and
Stowell, 1998).

Six 30-s epochs were recorded for each difficulty condition of
each task. Uneditable and/or unusable heart rate epochs were
extremely rare. Three children and one adult had R-R record-
ing artifacts that could not be clearly, reliably edited, resulting in
one or more unusable 30-s epochs of data. Overall, 99.6% of the
children’s data and 99.8% of the adults’ data were included in the
analyses.

Using a custom BASIC program, the corrected series of R-R
intervals during each 30-s epoch was re-sampled into 250-ms bins.
This transformed the R-R intervals into a time-based sequence
of R-R interval data, a series of densely sampled weighted R-R
intervals for each 250 ms during the 30 s epoch. Further offline
processing of R-R interval samples was conducted using Microsoft
Excel. Linear trends were removed from each epoch’s time-based
sequence of R-R intervals using a linear regression model. Each
epoch’s de-trended time series was subjected to a fast Fourier trans-
form (FFT) to obtain the power present in the different spectral
bands. HRV values for each difficulty condition were calculated
by taking the natural log of each 30-s epoch’s absolute power in
the frequency band associated with respiration, then averaging
together these natural logs across the six 30-s epochs recorded
during each difficulty condition.

Slightly different respiration frequencies were examined for
child and adult groups, 0.15–1.03 Hz for adults (a frequency
band common to adult studies of HRV and RSA; see Berntson
et al., 1997) and 0.28–1.03 Hz for children (a frequency band
similar to the frequency band 0.24–1.04 Hz common to child
studies of HRV and RSA; see Hickey et al., 1995; Suess et al.,
1997; Porges et al., 2007). These frequencies were empirically
confirmed from respiration recordings taken during the current
study2.

2Respiration was recorded contemporaneously with the heart rate using a 10 cm
mercury strain gage attached to an elastic belt wrapped snuggly around the
participants’ chests. The gage was attached to a Parks Electronics Model 270 plethys-
mograph transducer box to convert the signal to recordable voltages. Respiration
data was sampled by a Tecmar 12 bit A/D converter at a rate of 10 Hz for the 30-s
epoch and, using DOS-based custom software, recorded onto a computer hard disk.
An FFT was used to determine the power of the frequencies present within this
respiration signal.
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BEHAVIORAL PERFORMANCE RECORDING AND MEASUREMENT
CALCULATION
A total of six behavioral measures were analyzed, two behavioral
measures for each of the three tasks, a measure of correctness and
a measure of speed (as suggested by Berg and Byrd, 2002). The
behavioral measures calculated to capture Day-Night Stroop task
performance were the proportion of correct responses given and
the response time for all responses. The performance measures for
the Tower of London were the number of perfect solutions (solved
in the minimum moves possible) and the time taken to solve Tower
of London problems (from first move to last). The N-Back per-
formance measures were the proportion of correct responses and
response time for all responses.

RESULTS
PRELIMINARY DATA PROCESSING
Raw behavioral performance variables were analyzed for strong
skew. Variables where the absolute value of the mean of the Fisher
kurtosis score divided by the standard error was two or larger
(zskew = | Skew|/SEskew) were transformed using the natural log
(Royston, 1992). All behavioral scores, excluding the Stroop pro-
portion correct responses and Tower of London number perfect
solutions, were transformed.

The few missing scores, 2% of the data, resulted from random,
non subject-specific causes (e.g., computer error during testing,
uneditable data, corrupted computer file). In order to maintain the
sample size across tasks, missing scores were estimated using the
expectation–maximization (EM) method (Dempster et al., 1977;
Little and Rubin, 1987).

All measures, including correctness, response speed, and HRV,
were then converted into “responsitivity scores” to test directly our
hypotheses about the developmental responsitivity to increased
executive load in performance and HRV. For the Day/Night Stroop
task, responsitivity was calculated as the inhibition (opposite)
difficulty condition relative to the control (matching) difficulty
condition. For the Tower of London task, responsitivity in the 5-
move and 6-move difficulty conditions was examined relative to
the 4-move difficulty condition. For the N-Back task, responsitiv-
ity in the 1-, 2-, and 3-back difficulty conditions were examined
relative to the 0-back difficulty condition. All raw scores and
transformed responsitivity scores are presented in Table 1.

All scores were evaluated for possible ceiling and floor effects
as reported below and noted in Table 1 when significant. Gender
differences were examined separately for children and adults using
between-subject two-tailed t-tests. Only two significant gender
differences were found: adult females were more reactive in their
n-back, 1-back condition proportion correct (solving a smaller
proportion correct relative to 0-back than males) and child females
were more reactive in their n-back, 2-back condition HRV (more
suppression of HRV). Genders were combined for all analyses
except these two measures, which were also analyzed for potential
gender interactions.

In order to determine if there were significant age differences
within our dependent variables, we conducted a median split of
our child group based on age [N = 12 younger: M(SE) = 7.69
(0.23), N = 13 older M(SE) = 9.61(0.12)]. Two of these one-
tailed t-tests were significantly different. Younger children differed

in responsitivity for 2-back and 3-back conditions of the N-back
[ts(23) > 2.05, p < 0.029]. Younger children also showed fewer
perfect solutions on the Tower of London than older children
[t(23) = 2.04, p = 0.024]. For these measures a solutions Age
Group × Condition analyses will be conducted.

All analyses with repeated measures were Greenhouse–Geisser
corrected. When age differences were a priori hypothesized,
analyses were conducted using single tail t-tests.

AGE AND LOAD DIFFERENCES ON PERFORMANCE AND HRV
RESPONSITIVITY
Inhibition of automatic response (Day-Night Stroop task)
This task had one responsitivity level due to the task design of a
single condition of increased inhibition load (mismatching condi-
tion) compared to the condition of no inhibition load (matching
condition). For the dependent variable of Stroop proportion of
correct responses, both children and adults performed at ceiling,
above 0.97 correct responses. Further analysis of this ceiling-level
measure was not performed.

A 1-way (Age) analysis of variance (ANOVA) was conducted
for the Stroop dependent variable of reaction time. For reaction,
time children were more reactive than adults in their slow-
ing of responses to the inhibition condition [F(1,59) = 11.50,
p = 0.001, partial η2 = 0.168]. For HRV, means suggested the
adults’ responses were somewhat more suppressed during the inhi-
bition condition than those of the children, but this age difference
was not significant [F(1,59) = 1.51, p = 0.225, partial η2 = 0.026].
As indicated in Table 1, children’s, but not adults’, HRV respon-
sitivity in the inhibition condition was significantly suppressed
relative to the control condition [t(24) = 1.35, p = 0.042].

Multistep planning (Tower of London task)
This task had two levels of responsitivity (two levels of increased
difficulty) due to the task design of 5- and 6-move conditions
each being compared relative to the easiest, 4-move condition.
Children and adults were compared in their responsitivity of the
number of perfect solutions with increased planning load using
an Age × Difficulty Condition (2 × 2) ANOVA. Though the
means suggested that adults had a higher number of perfect solu-
tions, the main effect for age was not significant [F(1,57) = 1.94,
p = 0.169, partial η2 = 0.033]. Across age groups, the number
of perfect solutions decreased from 5-move to 6-move problems
[main effect planning load: F(1,57) = 17.90, p < 0.001, partial
η2 = 0.239], but this decrease did not differ between children and
adults [Age × Planning Load interaction: F < 1].

Since analyses presented above indicated a significant age dif-
ference within the child group for this measure of 6-move number
of perfect solutions, each child subgroup is separately compared to
the adult group. The younger child group was significantly differ-
ent in suppression in number perfect solutions compared to adults
[t(16) = 2.08, p = 0.026]. The older children were not significantly
different in suppression of number of perfect solutions compared
to adults [t < 1].

Children and adults were compared in their responsitivity of
slowing of solution time with increased planning load using an
Age × Difficulty Condition (2 × 2) ANOVA. A significant main
effect of age revealed that adults’ speed of solution was more
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Table 1 | Descriptive statistics for raw and reactivity/responsitivity performance and HRV measures for each task.

Raw scores Skew-corrected reactivity scores

Children Adults Children Adults

Task Dependent variable Difficulty M SE M SE M SE M SE

Stroop Proportion correct Control 1 0.001 0.99 0.003 – – – –

Inhibition 0.99c 0.002 0.97c 0.006 −9.458a 1.080 −5.500a 0.662

Response time (ms) Control 929.188 32.702 590.305 10.779 – – – –

Inhibition 1216.541 59.675 703.421 16.89 0.114 0.011 0.075 0.005

HRV Control 7.844 0.109 7.781 0.068 – – – –

Inhibition 7.798 0.115 7.674 0.07 −0.046b 0.034 −0.107 0.034

Tower of London Num perfect solutions 4-Move 4.826 0.513 8.411 0.544 – – – –

5-Move 2.522 0.301 4.382 0.437 −0.177a 0.060 −0.344a 0.053

6-Move 0.957 0.204 2.5 0.373 −0.452a 0.058 −0.573a 0.050

Time to solve (sec) 4-Move 23.42 3.137 17.557 0.981 – – – –

5-Move 43.631 8.033 38.396 3.153 0.223 0.07 0.314 0.03

6-Move 41.969 5.848 66.503 7.574 0.239 0.061 0.508 0.046

HRV 4-Move 7.901 0.117 7.712 0.064 – – – –

5-Move 7.889 0.126 7.751 0.062 −0.012b 0.036 0.039b 0.026

6-Move 7.872 0.134 7.722 0.063 −0.029b 0.043 0.010b 0.035

N-Back Proportion correct 0-Back 0.861 0.022 0.976 0.005 – – – –

1-Back 0.78 0.024 0.944 0.007 −0.016 −0.005 −0.007 0.001

2-Back 0.666 0.026 0.915 0.011 −0.038 0.005 −0.013 0.002

3-Back 0.63 0.017 0.819 0.014 −0.038 0.004 −0.024 0.003

Response time (ms) 0-Back 627.146 26.899 546.938 23.519 – – – –

1-Back 729.108 46.76 633.063 26.405 0.055 0.014 0.064 0.009

2-Back 757.084 53.034 798.115 40.769 0.066 0.023 0.157 0.017

3-Back 684.001 45.601 866.159 40.767 0.025 0.021 0.194 0.016

HRV 0-Back 8.099 0.116 7.768 0.074 – – – –

1-Back 8.034 0.123 7.791 0.071 −0.064 0.052 0.023 0.035

2-Back 7.984 0.113 7.688 0.062 −0.114 0.05 −0.08 0.044

3-Back 8.053 0.117 7.609 0.062 −0.046 0.054 −0.159 0.041

aReaction score not skew-corrected since not necessary.
bValue not significantly different than baseline value of 0 (single sample t-tests conducted for each age group, ps < 0.05 relative to baseline).
cValue not significantly different than ceiling value of 1.0 (single sample t-tests conducted for each age group, ps < 0.05 relative to maximum score).

reactively slowed than children’s [F(1,57) = 7.95, p = 0.007, par-
tial η2 = 0.122]. A significant main effect of difficulty revealed
that participants’ responsitivity in speed of solution was slower
with increased planning load [F(1,57) = 9.39, p = 0.003, partial
η2 = 0.141]. Children and adults differed in their solution time
responsitivity with increased planning load [Age × Difficulty Con-
dition interaction: F(1,57) = 6.71, p = 0.012, partial η2 = 0.105].
When age groups were tested separately, adults exhibited signif-
icantly slowed solution time from 5-move to 6-move problems
[t(33) = 5.19, p < 0.001], but children did not [t < 1]. See Figure 1.

The Age × Difficulty Condition (2 × 2) ANOVA examin-
ing HRV found that HRV was not significantly reactive in its
suppression with increased planning load [main effect of diffi-
culty condition: F(1,57) = 1.37, p = 0.247, partial η2 = 0.023]. As

planning load increased, neither children nor adults changed their
HRV suppression [main effect of age: F < 1], nor did age group
and difficulty condition significantly interact on this measure
[Age × Difficulty Condition interaction: F < 1]. When age groups
were tested independently, neither adults’ nor children’s HRV val-
ues were significantly different than baseline [adults: ts(33) < 1.37,
ps > 0.179; children: ts(24) < 1].

Working memory (N-Back task)
Floor effects for the proportion correct raw scores were assessed
by comparing results to the chance performance level of 0.50,
the result if target or non-target buttons were randomly pressed.
For both age groups, performance in all conditions was signifi-
cantly better than chance (ps < 0.001). Though adults’ proportion
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FIGURE 1 | Age and planning-load-level differences inTower of London

skew-corrected behavioral performance responsitivity as measured by

time taken to solve problems (sec). Responsitivity for each difficulty level
is calculated by subtracting that difficulty condition’s performance from the
4-move difficulty condition performance.

correct was high for the 0- and 1-back conditions, their propor-
tions correct were significantly below the ceiling value of 1.00
[ts(33) > 4.56, ps < 0.001].

Children’s and adults’ proportion correct responsitivity was
examined across 1-, 2-, and 3-back conditions using an Age × Dif-
ficulty Condition (2 × 3) ANOVA. Children’s decrease in perfor-
mance was larger than adults [main effect of age: F(1,57) = 21.41,
p < 0.001, partial η2 = 0.273]. For both age groups, there
was a decrease in proportion correct with increasing WM load
[main effect of difficulty condition: F(2,114) = 30.41, p < 0.001,
partial η2 = 0.348]. The pattern of proportion correct responsi-
tivity differed for children and adults [Age × Difficulty condition
interaction: F(2,114) = 5.40, p = 0.008, partial η2 = 0.081].
Adults’ proportion correct decreased with each level of difficulty
[ts(33) > 2.38, ps < 0.03]. Children’s proportion correct decreased
from 1- to 2-back and 1- to 3-back [ts(24) > 4.38, ps < 0.001],
but did not differ from 2- to 3-back [t < 1]. The children’s
within-group variability was larger than that of the adults.

Children’s and adults’ response time responsitivity was exam-
ined across 1-, 2-, and 3-back conditions using an Age × Difficulty
Condition (2 × 3) ANOVA. Adults’ responsitivity was more slowed
than children’s [main effect of age: F(1,57) = 18.65, p < 0.001,
partial η2 = 0.247] and response time responsitivity differed
among difficulty conditions [main effect of difficulty condition:
F(2,114) = 14.96, p < 0.001, partial η2 = 0.208]. For the par-
ticipants as a whole’ response speed responsitivity differed in
response to increased WM difficulty conditions [Age × Diffi-
culty Condition interaction: F(2,114) = 28.24, p < 0.001, partial
η2 = 0.311]. Adults’ response time responsitivity slowed with
each increase in WM difficulty, all pair-wise comparisons were
significant [ts(33) > 2.68, p < 0.011], and each of these adult
responsitivity scores was significantly slowed relative to control
[ts(33) > 7.19, ps < 0.001].

Children’s responsitivity in reaction time did not slow from 1-
to 2-back [t(24) < 1], and their reaction time responsitivity was
actually significantly faster in 3-back than 2-back [t(24) = 3.19,
p = 0.004]. This pattern resulted in the 3-back reaction time

responsitivity nearing significance in its difference from 1-back
condition responsitivity [t(24) = 2.01, p = 0.055]. Children’s
response time responsitivity was slower than baseline in the 1-
and 2- back conditions [ts(24) > 2.81, ps < 0.011], but not so
in the 3-back condition [t(24) = 1.16, p = 0.128]. There was
generally larger within-group variability in the child data.

An Age × Difficulty Condition (2 × 3) ANOVA of HRV respon-
sitivity revealed no significant main effects of age [F(1,57) < 1],
but did reveal a main effect of difficulty [F(2,114) = 4.57,
p = 0.014, partial η2 = 0.074]. Additionally, adults and chil-
dren differed in their HRV responsitivity to increasing WM
difficulty resulting in a significant age by difficulty interaction
[F(2,114) = 5.86, p = 0.005, partial η2 = 0.093]. Adults’ HRV
responsitivity was suppressed with each increasing level of WM
difficulty [1- vs. 2-back: t(33) = 2.96, p = 0.006; 2- vs. 3-back:
t(33) = 2.54, p = 0.016; 1- vs. 3-back: t(33) = 4.69, p < 0.001].
Although the children’s means in the 1- and 2-back conditions
appeared reactive to WM load, the children’s HRV responsitiv-
ity did not significantly differ among WM difficulty levels (all
ts < 1.46, ps > 0.158). The adults’ and children’s 1-back HRV
responsitivity was not significantly different from baseline, and,
interestingly, the children’s 3-back HRV responsitivities were not
significantly suppressed below baseline [ts < 1.24, ps > 0.113].
See Figure 2.

Because the younger and older children in earlier analyses
showed different performance on the 2- and 3-back conditions,
each age subgroup was compared to adults. The younger sub-
group of children differed in significance compared to the response
time of adults for both 2- and 3-back conditions [ts(45) > 4.12,
ps < 0.001]. The older children were not significantly different
than adults in suppression of response time for the 2-move con-
dition [t(44) = 1.25, p = 0.219], but these older children differed
in their performance time on the 3-back problems [t(44) = 3.84,
p < 0.001].

DISCUSSION
The current study builds on past literature by examining devel-
opmental differences in HRV responsitivity to increased executive
load. Both child and adult groups were assessed across multiple
executive function tasks focused on three critical facets of executive
functioning. Each task was designed to incrementally increase the
executive control necessary for correct and rapid responses, and
also assess those executive functions found to be related to exec-
utive effort and HRV in the past literature (Thayer et al., 2009).
Our task designs were validated by behavioral results. For both
age groups and all executive function tasks, behavioral perfor-
mance was suppressed with increased executive load. Generally,
adults were more behaviorally reactive, showing larger decreases
in speed of performance with increasing load, as compared to
children.

Results for the HRV responding were more complex. The two
tasks that required a series of discrete, timed response in relatively
rapid succession – the inhibition and WM tasks – produced HRV
suppression that was reactive to increased executive cognitive load.
It may be that the time pressure of fast responding caused a cogni-
tive state requiring an overwhelming amount of executive control.
When HRV suppression was produced it was again more reactive
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FIGURE 2 | Age and working memory-load-level differences in: (A)

N-Back behavioral performance responsitivity and as measured by

response time (ms). (B) N-Back physiological response reactivity as
measured by high frequency heart rate variability (HRV). Skew-corrected
reactivity for each difficulty level is calculated by subtracting that difficulty
condition’s HRV from the 0-back difficulty condition HRV.

overall and also more reactive to increased load in adults [simi-
lar to reduced HRV responsitivity in children during a version of
the Stroop task by Mathewson et al. (2010)]. The more complex
multistep planning task, which required slow, self-paced responses
over a longer time than the other tasks, showed behavioral respon-
sitivity while not producing any significant HRV responsitivity for
either age group.

The N-back, with its multiple levels of difficulty across a wide
range of WM loads, may offer the most insight into develop-
mental differences in HRV responsitivity to executive load. With
this task, it is possible to examine multiple levels of effective diffi-
culty, which can also be conceptualized as age-group-specific levels
of moderate and high difficulty [an analysis approach suggested
by Katsoni et al. (2006)]. The 1- and 2-back conditions can be
reasonably viewed as moderate and high effective difficulty lev-
els in children, and 2- and 3-back conditions can be reasonably
viewed as moderate and high difficulty levels in adults. With this
assignment, a different comparison across age can be assessed.
When this age-specific difficulty adjustment is made, similarity
rather than difference appears (see Figure 3). Specifically, patterns
of HRV suppression are similar between age groups. This sug-
gests that when subjective difficulty requires similar amounts of

effort, children and adults may show similar effort-related HRV
suppression.

Of course, the obvious question with this interpretation is:
“What about the 3-back with children – isn’t it also very difficult?”
The reason we exclude this condition here is that we interpret the
whole of the results, behavioral as well as HRV, as an indication that
the children appeared to be overwhelmed by the most demanding,
3-back condition of the N-back task. The strongest evidence of
this was that behavioral performance was near chance. The chil-
dren may have given up mental effort during this most difficult
condition. The result to be expected, if this is the case, is little HRV
suppression, just what we found.

HRV AS AN INDEX OF EXECUTIVE EFFORT
Adults’ HRV responsitivity increased with increased executive
loads in the inhibition and WM tasks, but not the planning task.
These patterns suggest that HRV does index some forms of exec-
utive effort, perhaps those that require assessing a rapid series
of discrete stimuli while processing and responding in a speeded
manner with a relatively high density of responses, similar to those
tasks used in past studies of HRV-Executive Function relation-
ships (see Thayer et al., 2009 for a review). Speeded and high
density responses were characteristics of our inhibition and WM
tasks. Slower, self paced, and multi step responses required by our
planning task may require a form of executive functioning not
indexed by HRV. This implies that HRV suppression is sensitive
to a specific form of attentional control requiring vigilance to a
rapidly change course of stimuli not under the participant’s con-
trol rather than a largely stationary stimulus where responding is
under the participant’s control. An alternative administration of
a planning task with more rapid presentation of problems and a
single button response would be more similar to our inhibition
and WM tasks and would allow us to determine further if plan-
ning is an executive function reflected in HRV responsitivity. We

FIGURE 3 | N-Back high frequency HRV reactivity for effective

(age-equated) difficulty levels. For adults, medium, and hard difficulty
conditions were 2-back and 3-back. For children, medium and hard difficulty
conditions were 1-back and 2-back conditions. Adjusted patterns are shown
for HRV reactivity.
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also could have offered a simpler planning baseline, such as 1- and
2-move problems, and then perhaps we would have seen plan-
ning difficulty differences. Finally, this data was collected before
Berg et al. (2010) as well as Kaller et al. (2004) published other
problem parameters other than minimum number of moves that
determine difficulty. Not controlling for these other parameters
may have created noise and overlap between out TOL conditions
preventing a clear parametric design for this task.

The large amount of children’s HRV variance during the plan-
ning task may have resulted from the multiple slow responses for
a single solution and from variance in the strategy/approach to
the task. For example, the current study’s instructions and reward
schedule encouraged planfulness, but the Tower of London task,
like other tower-transfer planning tasks, can be approached with
strategies requiring more or less multistep planning. Participants
may use lower planning effort strategies that still reach the goal
using strategies based on surface appearance and making random
moves hoping to “chance upon” the solution (Berg et al., 2006).
During the most difficult planning task conditions, child partici-
pants may have been switching among approaches requiring more
and less executive effort, with some moves or sequences of moves
during the solution period being more planful than others. There
is some evidence in the data to support that children were varying
more greatly in switching among different, more and less effortful
approaches or strategies when faced with the most difficult plan-
ning load. This variability was larger in the most difficult Tower
of London condition (0.134) than in the most difficult conditions
of the Stroop (0.115) and N-back (0.117) tasks. This pattern of
variances was not present in the adults (0.070, 0.063, and 0.062
relatively).

This interpretation of HRV’s sensitivity to strategy also matches
well with the pattern of behavioral and HRV responsitivity that
children displayed during the most difficult condition in the WM
task. When overwhelmed with the most difficult, 3-back condition
of the WM task, the children appear to have switched to a less
executive/effortful strategy for this task, perhaps responding based
on familiarity rather than encoding each item (Speer et al., 2003).

ADDRESSING HYPOTHESES
We hypothesized that incremental increases in executive load
would result in incremental decreases in behavioral performances
and HRV. This pattern was present in the adults during the WM
task, showing incrementally more suppressed HRV along with
incrementally poorer performance. This incremental HRV change
may be most evident in the task that had many (4) levels of dif-
ficulty and which required vigilance and speeded responding to
rapidly presented stimuli. Except for the most difficult condition,
where children were overwhelmed, children’s responses were also
incremental in appearance.

CLINICAL SIGNIFICANCE OF FINDINGS
There are some clinical ramifications of the current study, specifi-
cally when clinicians are determining test design to monitor what
executive functions may be at deficit. Those that use a more time
pressure, speeded response may tax a different form of executive
functioning than a task that is self-paced. Developmentally, this
study underscores the importance of choosing age-appropriate

difficulty levels of executive functioning tasks, as the giving-up
behavior in the most difficult N-back condition, poor performance
can occur not because the participant is trying and struggling, but
simply because they are giving up.

LIMITATIONS OF CURRENT RESEARCH AND FUTURE DIRECTIONS
The most serious limitations for this study come from the planning
task, where there were no high frequency phasic HRV differ-
ences found with increasing executive load. We hesitate to think
that planning as an executive function is not indexed by HRV,
but think that the way that we administered the planning task
may have limited the HRV responsitivity. One potential design
aspect that could have hidden HRV responsitivity is that diffi-
culty levels were not spread far enough among easy, medium,
and difficult conditions. Future studies may wish to vary plan-
ning difficulty as widely as WM difficulty, with baselines of 1
or 2 move problems, and difficulties ranged widely as it was
between 0-back and 3-back. With this change in design we could
compare very low planning load, moderate planning load, and
high planning load. This may show one of the limitations of
the parametric design, that a full range of difficulty must be
presented.

Additionally, the pattern in the results where we saw HRV
responsitivity in WM and inhibition executive functioning tasks,
but not the planning task may have also revealed that high fre-
quency phasic HRV is most sensitive to increases in executive
function load when there is some time pressure in response, as
there was in our Day-Night Stroop and N-back tasks. Perhaps we
would have seen a planning difference if we had told the partic-
ipants to solve as quickly as possible, or perhaps if we had given
them a different variation on the Tower of London, one more simi-
lar to how it is used in fMRI studies where participants see the start
and goal positions, solve problems covertly, in their mind’s eye, and
then respond either with a button press of how many moves it take
or solving the problem with mouse movements (Unterrainer et al.,
2004b).

This idea of speeded responding being more strongly indexed
by HRV may relate to one of the other applications of HRV,
to emotional regulation (Thayer and Lane, 2000) and specif-
ically to anxiety (Appelhans and Luecken, 2008). It may be
that the Stroop and N-back with their speeded responding were
more anxiety provoking, than the planful moves approach that
was the best approach for the TOL. The more difficult Stroop
and N-back conditions may have caused more anxiety or emo-
tional dysregulation than easier conditions, while with the TOL
solving fewer moves did not cause less emotional dysregulation
than more difficult conditions. This again points to future stud-
ies putting executive functions on an even field as to speeded
response, with TOL having to be solved in the head as quickly as
possible.

Our use of performance based reward, which participants
did not see until the end of the task, may have also played a
role in which executive tasks showed HRV responsitivity. In past
literature, reward have been seen to make a difference in the per-
formance of certain, gambling-related executive functioning tasks,
that is for reward for a different odds-based game of chance con-
text with preschoolers (Kerr and Zelazo, 2004). Concerns of the
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reviewers suggest that future studies should be conducted to deter-
mine if reward, such as offered in our study change the anxiety level
in the certain, time pressured tasks.

CONCLUSION
In sum, high frequency phasic HRV appears sensitive to increasing
executive demand in adults and children for WM and inhibition
tasks. The exception to this was in the WM condition that was
too difficult for the children, where there performance reverted to
chance levels, suggesting the children were just guessing responses,
and their HRV returned closer to baseline. We were most surprised
by the findings with the planning task, where there was no HRV
responsitivity with increased planning load. We discussed above
why that may be so, and how future studies can investigate if plan-
ning is truly an executive function that does not have an impact on
HRV or if HRV is sensitive to some of the task parameters that a
multi-step planning task may have, as compared to a simple, single
button/single click time-pressured task, such as our N-back and
Day-Night Stroop tasks.

The children’s HRV was less reactive than adults suggesting that
decreased frontal lobe involvement in these children may impact
the sympathetic and parasympathetic systems such that there is
decreased HRV responsitivity. This is somewhat surprising, as
children’s time locked evoked heart rate responses are larger than
adults, children’s HRV could have been more reactive (Byrd and
Berg, 2002).
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