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Assessing the factorial invariance of two-way rating designs such as ratings of concepts
on several scales by different groups can be carried out with three-way models such
as the Parafac and Tucker models. By their definitions these models are double-metric
factorially invariant. The differences between these models lie in their handling of the links
between the concept and scale spaces. These links may consist of unrestricted linking
(Tucker2 model), invariant component covariances but variable variances per group and
per component (Parafac model), zero covariances and variances different per group but
not per component (Replicated Tucker3 model) and strict invariance (Component analysis
on the average matrix). This hierarchy of invariant models, and the procedures by which to
evaluate the models against each other, is illustrated in some detail with an international
data set from attachment theory.
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1. INTRODUCTION
Two-way rating designs may consist of, for instance, ratings of
concepts on several rating scales. In this paper we tackle the
problem of the invariance of the factorial structure of data aris-
ing from such designs when the data have been collected from
several groups. In particular we will show that three-mode com-
ponent models are ideally suited to assess factorial invariance for
such designs. We will specify a hierarchy of models with increas-
ing restrictions on the parameters resulting in more and more
invariant factorial structures across groups.

Because in this paper we are dealing with component mod-
els we will use the term “components” rather than “factors,”
unlessfactors are explicitly indicated. However, to stay within
the standard terminology we will use the term factorial invari-
ance, rather than subspace invariance or component invariance. A
detailed treatment of the differences between factor analysis and
component analysis for two-way data can for instance be found
in Widaman (2007).

1.1. FACTORIAL INVARIANCE IN TESTS
Most of the research on factorial invariance assumes that an
investigator wants to evaluate whether a test with a particular
dimensional structure operates in the same way for different
groups, so that the test, or the factors underlying it, can be used
for all kinds of groups; a detailed technical exposition of measure-
ment invariance, factorial invariance and their relationship can
be found in Meredith (1993). Factorial invariance is typically of
interest, for instance, when intelligence tests have been translated
into other languages and researchers want to establish whether
the translated tests function in the same manner as the original.
Alternatively, a researcher may want to know whether a test has

the same structure for different groups, say both for regular and
for clinical samples.

In a literature survey Vandenberg and Lance (2000, pp. 12–13)
synthesized common practices in a list of sequential tests to assess
the extent of factorial invariance. The steps in their hierarchy of
hypotheses are listed below, but we have listed their first step as
the final one, because it is the most restrictive of all invariance
schemes, i.e., there is no intergroup variability. Here we present
a compact version of their descriptions. Finally, we have added a
new first step: Lack of factorial invariance. We need this step later
on as a reference point or baseline for our analyses. Note that each
next step introduces additional restrictions on the parameters of
the models.

1. Lack of invariance: All groups have different factor
patterns.

2. Configural invariance: Invariant patterns of factor loadings
across groups.

3. Metric invariance : Invariant values of factor loadings for like
items across groups.

∗a Scalar invariance: Invariant intercepts of like items regressions
on the factor.

∗b Unique variances invariance: Invariant unique variances of
like items across groups.

c Invariant factor variances: Invariant factor variances across
groups.

4. Invariant factor covariance matrices: Invariant factor
covariance matrices across groups.

∗d Invariant factor means: Invariant factor means across groups.
5. Strict invariance: Invariant factor means and covariance

matrices across groups.
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The hierarchy is primarily based on investigations using factor
analysis within the context of structural equation modeling with
and without estimation of the factor means. This means that it
contains concepts and parameters characteristic of such models,
such as unique variances, factor means and intercepts of regres-
sions of items on factors. In this paper such concepts do not play
a role, because our proposals are based on component analysis. In
the sequel, the starred steps are therefore excluded for the follow-
ing reasons: (∗a, ∗d) all scales will be centered across concepts for
each group (see below), so that means and factor means do not
enter into the models; (∗b) the concept of unique variances does
not play a role in component analysis. Note that when referring
to Step 5, “Strict invariance,” we will assume only that the covari-
ance matrices are equal across groups, again because the means
have already been removed by centering.

The major analytical techniques for establishing the increas-
ingly stricter types of invariance have primarily been structural
equation modeling and item response theory as is evident in this
special issue. In the hierarchy of hypotheses about factorial invari-
ance it is implied that the models are nested, so that they can
be evaluated, or in the context of structural equation models,
tested against each other. This means that an a priori choice has
to be made about the factor model itself: How many factors and
which items are to be regressed on which factors. Therefore, a
two-factor model may be invariant in a different way than a three-
factor model for the same data. In this paper we will concentrate
on series of both two-factor and three-factor models, but we
will not attempt to make detailed comparisons between the two
series.

Regarding the component models in this paper, comparisons
between models are primarily based on the error sums of squares
in relation to their degrees of freedom. These degrees of freedom
are calculated as the number of data points minus the number of
parameters to be estimated (Nparm) where the means subtracted
during the centering of the data are also counted as parame-
ters. Details and formulas for calculating the degrees of freedom
for three-way models can for instance be found in Kroonenberg
(2008, Section 8.4, p. 177ff).

1.2. TWO-WAY RATING DESIGNS
In psychology a specific kind of measurement design is commonly
used, i.e., a two-way rating design in which concepts are judged on
scales by a number of judges such as in Osgood’s classical seman-
tic differential design (Osgood et al., 1957). Alternative two-way
rating designs generate stimulus-response data or situation-scale
data. Characteristic for the designs is that a subject has to judge to
what extent a particular scale or variable pertains to a particular
concept or situation. For instance, in a study by Murakami and
Kroonenberg (2003), a student had to judge the characteristics of
the 24 preludes of Chopin on a number of scales. As example,
the student had to indicate whether a prelude of Chopin (con-
cept) is tempestuous or tranquil (scale). Another example, which
will be our guiding explanatory case, is the two-way design in
which a person with a multiple personality in each personality
was asked to judge on a number of scales to what extent a number
of concepts pertained to her personal situation. For instance, to
what extent she considered her doctor to be good or bad (Osgood

and Luria, 1954). The aim in their study was to see whether each
personality (Eve White, Eve Black and Jane; each measured twice)
used the scales in the same way to rate the concepts.

Yet another kind of two-way rating data results from a design
in which for several situations the mean characteristics of groups
rather than of individual subjects are described by means of a
number of variables. For our detailed example we analyzed a col-
lection of two-way data sets consisting of episodes by variables
obtained from several different countries. The data were collected
using the Strange Situation, a procedure within the attachment
theory paradigm (Ainsworth et al., 1978) (see Section 3).

A two-way rating design seems comparable to multitrait-
multimethod (MTMM) designs where the traits and the methods
mostly form a fully-crossed design for the response variables. An
important difference with the MTMM design is that the two-way
rating design is more like a two-way (concept×scale) analysis-of-
variance design with the intensity or strength of the judgment by
a personality as the response variable.

1.3. TWO-WAY RATING DESIGNS AND THREE-WAY DATA
Two-way rating designs produce three-way data because they con-
sist of three ways, i.e., concepts, scales and groups or individuals.
For a more detailed discussion of such three-way rating data aris-
ing from two-way rating designs see Kroonenberg (2008, Chapter
14). As far as we have been able to trace, there is no or hardly
no explicit literature on the topic of factorial invariance for two-
way rating designs, and with this paper we aim to fill this gap. In
particular, our aim is to look for both a consensus structure about
the relations between the concepts and scales (i.e., invariance over
groups) and for group differences, i.e., deviations from invari-
ance. Even though we will primarily focus on the situation with a
limited number of groups or individuals, also larger numbers can
be analyzed. The emphasis in the present paper is an exploratory
one, even though the comparative evaluation of different aspects
of factorial invariance using fit measures is a central concern.
However, the sizes and relevance of these differences have to be
evaluated subjectively both by comparing fit/degrees of freedom
ratios and by looking at substantive relevance and interpretability.
Formal statistical testing is not part of the procedure.

1.4. INVARIANCE IN TWO-WAY RATING DESIGNS
A problem for the invariance analysis of two-way rating designs
is that there are often only a limited amount of judges or groups
rather than large samples from a population so that there is no
clear stochastic element in the data. The judges or groups need to
be treated as another fixed factor in the analysis-of-variance sense,
so that we really have a three-way design of concepts × scales ×
groups or concepts × scales × individuals. Even apart from the
extremely small samples, this lack of stochastics in two-way rat-
ing designs makes using confirmatory factor analysis for testing
invariance within the standard structural equation modeling con-
text virtually impossible. Therefore, we propose to seek recourse
to variants of component analysis, but it should be noted that
the procedures discussed in this paper can handle large random
samples as well.

Factorial invariance for two-way rating designs is cast here
in a non-stochastic component framework in which we have
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separate component spaces for the scales and the concepts. This
has a disadvantage because components are generally not in
themselves meaningful quantities but only maximum variance
directions in the component space. What are invariant are the
subspaces spanned by the components, rather than the compo-
nents themselves. Therefore, we cannot automatically assume that
the components themselves have intrinsic meaning like factors in
confirmatory common factor analysis.

Only in some very specific models, such as the Parafac mod-
els which have unique solutions (see below), the components can
validly be said to have intrinsic meaning. This will limit the kinds
of invariances we can consider. Thus, generally we will have to
discuss the invariance of subspaces across groups rather than the
invariance of the components themselves. As already indicated
in the introduction rather than refer to subspace invariance or
componential invariance, we will use the standard term factorial
invariance.

The two central questions in two-way rating designs are (1)
how to define factorial invariance and (2) how to evaluate it.
In contrast with the standard situation of assessing whether fac-
torial invariance exists for a particular test across groups, in a
two-way design one has to deal with the fact that groups or indi-
viduals use the rating scales to judge concepts. A definition of
factorial invariance in this case must include three aspects of
the data: (1) the component space or structure of the scales; (2)
the component space or structure of the concepts and (3) the
way the concepts (or the concept components) and the scales
(or scale components) are linked for each group. The consid-
eration of three different aspects of factorial invariance makes
the situation for two-way rating designs fundamentally differ-
ent from the standard situation. Both because of the design and
the fact that we are dealing with component spaces rather than
factors, makes that the Vandenberg and Lance steps have to be
reformulated.

1.4.1. Preprocessing
Variances of components in standard component analysis are rep-
resented by the eigenvalues. Whether they are actual variances
or merely corrected or uncorrected sums of squares depends
on the preprocessing, i.e., centering and normalization of the
data. Standardization is more or less automatically carried out
in regular component analysis but in two-way rating designs
there are several options for preprocessing. Each option has
different consequences for the data to be assessed for invari-
ance, because it influences which part of the data is analyzed
(see e.g., Kroonenberg, 2008, Chapter 6). To avoid such com-
plications we will ignore the influence of preprocessing in this
paper, and we will use the terms sums-of-squares and variances
indiscriminately.

1.5. INVARIANCE HIERARCHY
When adapting the steps in the invariance hierarchy for two-way
rating designs, we will assume from the start that we are attempt-
ing to approximate the centered data with lower-rank component
spaces for the concepts and for the scales. This is in contrast
with confirmatory factor analysis where covariance matrices are
approximated.

Given the definition of a component, i.e., a linear combina-
tion of the original variables, any component is always present in
a data set with the same variables given its coefficients; a property
called perfect congruence; for a detailed discussion of this property
see Ten Berge (1986a,b). What is generally different in differ-
ent data sets with the same variables is the amount of variance
explained by the components in each group. When it is not the full
component space that is under consideration but only a limited
number of (maximum variance) components, these group com-
ponent spaces can be spanned by different linear combinations of
the variables, so that component spaces of different groups may
even be orthogonal to each other. The maximum variance com-
ponents of one group, may account for very little variability in
another group.

1.5.1. Step 1. Lack of invariance
The most extreme form of lack of invariance is that each group
has its own low-dimensional subspace. For two-way designs we
take as our starting point the separate analyses of the group data
without imposing any restrictions on the component subspaces
other than considering a limited number of components, the
same number for each group. The fitted sum of squares of the
groups together, the combined fit, is calculated by summing their
individual fitted sums of squares.

1.5.2. Step 2. Configural invariance
Because every component returns in each data set with the same
variables, i.e., components are always perfectly congruent across
groups, configural invariance is not a limiting restriction in com-
ponent analysis and is automatically true. Thus, it cannot be used
as a limiting concept in a hierarchy of models, even though in
different groups the same components may account for different
amounts of variance and have different correlations.

1.5.3. Step 3. Metric invariance
Of the models used to inspect factorial invariance, metric invari-
ance is part of their definition. Thus, the component spaces (for
the concepts and scales) specified in the models are such that
the component coefficients are identical across groups. Three
models can be used to investigate metric invariance. They have
either (3a) an invariant concept component space, (3b) an invari-
ant scale space or (3c) both. Metric invariance can be compared
with a total lack of invariance by comparing the metric-invariant
model fit with the combined fit. In addition, the metric invariant
space can be compared with the separate spaces of the groups, for
instance via Procrustes techniques (see, for instance, Gower and
Dijksterhuis, 2004); see also Section 4.

For the component models under consideration we will use the
terms links and interactions to indicate the parameters which link
the concepts and scales components. The links are contained in
a so-called core array H (see Figure 1). For each group this array
contains a slice, Hk, with the group’s links between the compo-
nents of the scales and the concepts. If both the concept and the
scale space are orthogonal, the sizes of these links are the square
roots of variation accounted for by the components. The invari-
ance of the factor covariance matrices across groups translates
into the equality of the core slices Hk for k = 1, · · · , K.
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FIGURE 1 | A general three-mode model for two-way rating designs.

A = metric invariant concept space; B = metric invariant scale space; Hk =
(hk

pq ) = core slice for the kth group; hk
pq is the link between the pth

component of A and the qth component of B.

1.5.4. Step 4. Invariant component covariance matrices or core
slices

As no common three-way models have restrictions on the
variances without restrictions on the covariances, such models
will not be discussed here; see Harshman and Lundy (1984)
for detailed considerations about this issue. We will, how-
ever, consider (4a) models with invariant covariances (off-
diagonal elements of the core slices) for all groups but with
different variances (diagonal elements of the core slices).
Even more restricted are models in which (4b) the invari-
ant scale and/or concept components are uncorrelated in all
groups.

1.5.5. Step 5. (Weighted) strict invariance
The equality of the covariance matrices in Vandenberg and
Lance’s Step 5 translates into the equality of the centered data
matrices of the groups. Such an equality implies equality of ran-
dom errors which is of course nonsensical. However, a further
tightening of the invariance in Step 4 is achieved in Step (5a) by
restricting the slices of the core array to be identical, apart from a
size coefficient (in the following referred to as a weight). Finally,
the strictest factorial invariance situation is created in Step (5b)
by specifying that also the weights are invariant across groups. In
that case the structure of the scales and the concepts, as well as
their linkages, are identical in all groups.

1.6. RELATED RESEARCH
Thus, for the two-way rating design the investigation of invari-
ance is concentrated on the linkages between the invariant com-
ponents for all groups. The discussion of the hierarchy of increas-
ingly invariant three-mode models in this paper is strongly related
to the hierarchy of three-mode models for fully-crossed raw
data (Kiers, 1991). In addition, a similar hierarchy can be found
in connection with simultaneous component analysis of covari-
ance and correlation matrices (Timmerman and Kiers, 2003).
However, in those papers the concept of factorial invariance is

not the focus of the investigation nor is the emphasis on two-way
rating data.

2. MODELING FACTORIAL INVARIANCE
This section deals with three-way models for analysing data two-
way rating designs. These models have as a common characteristic
that the scale space and the concept space are invariant for all
groups. However, they differ in the nature of the linkages between
concept and space components. The models in Step 3a and 3b
have metric invariance in one mode and all other models are
characterized by double-metric invariance.

2.1. MODELS FOR TWO-WAY RATING DESIGNS
Table 1 provides an overview of appropriate models, together
with listing the nature of their invariances. To discuss these mod-
els in some detail we need some notation. A and B indicate the
I × P invariant concept space and the J × Q invariant scale space,
with P and Q the number of components, respectively. A sub-
script k indicates that a particular matrix belongs to the kth of K
groups or levels of the third way; for instance, Xk is the concept ×
scale data matrix of the kth group. Hk = (hk

ss) is the linkage matrix
for the concept and the scale components for the kth group, Dk

is a diagonal matrix of links used in the SVD as well as in the
Parafac model. In the next section we will discuss these mod-
els in detail and indicate how they embody factorial invariance.
As indicated in Table 1 the Tucker2 model in principle allows for
different numbers of components for the scales and the concepts,
but as it is the only three-way model in Table 1 for which this
is the case, we will assume in the following that S = P = Q, i.e.,
that the numbers of components for the two spaces are the same
throughout, so that A has size I × S and B has size J × S .

2.2. STEP 1: SINGULAR VALUE DECOMPOSITION PER GROUP
The singular value decomposition (SVD) is the motor of many
multivariate techniques. For any Xk it may be written as:

Xk = AkDkB′
k + Ek = X̂k + Ek k = 1, · · · , K (1)

where for the SVD to have the form in Equation (1), the con-
cept spaces Ak and scale spaces Bk have to have orthogonal
components and the linkage matrices Dk have to be diagonal.
The Ek contain the errors of approximation. X̂k = AkDkB′

k, and
Ek = 0 if all components are used. We will refer to the collection
of independent analyses for each group as the separate-analyses
model with abbreviations SVD_2 and SVD_3 for the two- and
three-component models, respectively.

Thus, each data matrix Xk has its own decomposition as in
Equation (1), and this decomposition is unrelated to that of
any of the other data matrices. The total variance of a group
k is equal to the sum of the squares of the singular values dk

ss
that make up the diagonal of Dk in the full decomposition, i.e.,
SS(Total)k = ∑

k dk
ss. Adding the SS(Total)k of the groups gives

the total amount of variance of the groups indicated by SS(Total).
In general, we will use only a limited number of components, here
either 2 or 3. The components (columns) of Ak and Bk succes-
sively account for the largest amount of variance so that, given
the dimensionality, the components for the concepts and those
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Table 1 | Models for two-way rating designs and their invariance.

Model Concepts Scale P = Q? Interaction Abbreviation

STEP 1: LACK OF INVARIANCE

SVD per group - - yes no explicit invariance restrictions SVD_s

STEP 3: METRIC INVARIANCE

Tucker1 - concepts invariant x - no concept space invariant; single metric invariance T1A_s

Tucker1 - scales invariant - x no scale space invariant single metric invariance T1B_s

Tucker2 x x no concept and scale spaces invariant;

double-metric invariance T2_ss

STEP 4: INVARIANT COMPONENT COVARIANCES

Parafac x x yes + component covariances invariant; variances free PFs

Parafac - Orthogonal x x yes + component covariances invariant; variances free;

components orthogonal for one or both ways PFs_Orth

STEP 5: (WEIGHTED) STRICT INVARIANCE

Tucker3 - Free x x yes metric invariance of orthogonal components

variances invariant; group weights unrestricted T3_ss1

Tucker3 - Fixed x x yes + group weights fixed and constant T3_ss1Fixed

x = invariant; S-S = not invariant; SVD, Singular Value Decomposition; P = number of concept components; Q = number of scale components; s = 2 or 3 number

of components; ss1 = the first two ways have s components, the third way 1 component.

for the scales span the subspaces with the highest variance. Thus,
we can use this variance accounted for, SS(Fit)separate, as an upper
bound for the variance accounted for from any other model given
the number of components. If the SS(Fit) is the fit for a common
model for all K groups, then if SS(Fit)model � SS(Fit)separate the
component space(s) are invariant. However, if there is a sizeable
difference, the invariance restrictions on the common model are
in doubt. We may also investigate group invariance by comparing
the fitted variance of a particular group SS(Fit)k with the similar
quantity calculated via the parameter estimates from one of the
fitted models. Given the number of components, this will provide
information on which groups fit well and which groups do not
and are thus not invariant with respect to the other groups.

2.3. STEP 3A AND STEP 3B: SINGLE METRIC INVARIANCE - TUCKER1
MODELS

The first step into imposing restrictions on the solutions to inves-
tigate possible invariance is to demand that either the concept
spaces can be properly represented by a single space (i.e., for all
k the concept spaces are equal: Ak = A), or that for all k the scale
spaces are equal: Bk = B if there are s components. This can be
investigated with the Tucker1 model, here referred to as Tucker1A
(or T1A_s) for concept space equality and Tucker1B (T1B_s) for
scale space equality. Metric invariance exists for the concepts if

Xk = ADB′
k + Ek k = 1, · · · , K. (2)

Thus, there is a single orthogonal concept space for all k and sep-
arate scale spaces for each group. Metric invariance exists for the
scales if

Xk = AkD̆B′ + Ek k = 1, · · · , K. (3)

Thus, there is a single orthogonal scale space for all k and separate
concept spaces for each group.

To compute the parameters, the three-way array is first con-
verted to a two-way matrix of (Groups × Scales) by Concepts or
(Groups × Concepts) by Scales, and these matrices are then sub-
jected to a SVD. Note that the resulting Ak and Bk are no longer
orthogonal because they are parts of a single orthogonal matrix
of left and right singular vectors, respectively. We may compare
the fitted variance of these models SS(Fit)model with the combined
results of the separate SVDs, SS(Fit)separate, to investigate the met-
ric invariance of either the concept or the scale spaces. However,
it seems a bit odd to have an invariant concept space without hav-
ing an invariant scale space, so we will not include the Tucker1A
model further in our deliberations.

2.4. STEP 3C: DOUBLE-METRIC INVARIANCE - TUCKER2 MODEL
The next step in imposing invariance is to require double-metric
invariance, i.e., for all k and given a number of components
s both Ak = A and Bk = B, where both matrices orthogonal.
Furthermore, the group linkage matrices Hk are unrestricted and
thus in general not diagonal. The model equation for the Tucker2
model (Tucker, 1972), as the model is commonly known (see
Kroonenberg, 2008, Section 4.5.2) becomes

Xk = AHkB′ + Ek k = 1, · · · , K. (4)

In other words, the metric invariance is present on both the con-
cept space and the scale space, and the only differences between
the groups can occur in the K interaction or linkage matrices, Hk.
The linkages matrices Hk have sizes S × S, where S is the num-
ber of components for both the scale and the concept spaces. An
element hk

pq of Hk represents the link between the pth component
of the concepts and the qthe component of the scales for the kth
group. So apart from their error terms, the variability between the
groups lies in the strengths of their links between the concept and
scale components or the sizes of the hk

pq.

www.frontiersin.org January 2015 | Volume 5 | Article 1495 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Kroonenberg Factorial invariance and two-way rating designs

We can again compare the fitted variance of these mod-
els SS(Fit)model with the combined results of the separate
SVDs, SS(Fit)separate, to investigate the double-metric invariance.
Similarly we can make comparisons at group level.

2.5. STEP 4: DOUBLE-METRIC INVARIANCE WITH INVARIANT
CORRELATIONS - PARAFAC MODEL

By requiring Hk = Ck, where the latter are diagonal matrices, and
dropping the orthogonality restriction on the component spaces,
we get the standard Parafac model with s components (PFs) which
is a double-metric invariant model with as its model equation

Xk = ACkB′ + Ek k = 1, · · · , K. (5)

The model can also be written by filling the rows of a K × S
matrix C̃ with the diagonals of the Ck, i.e., c̃ks = ck

ss k = 1, · · · , K.

In that case C̃ is considered a component matrix and is normal-
ized like A and B, i.e., the lengths of the components in all three
matrices are equal to one. The sizes of the S components are then
contained in a diagonal matrix D = (dss). However, for this paper
we will stick with the Ck.

Harshman (1970) that has shown this model implies that
the groups have the same correlations between the components,
which is a further imposition of factorial invariance. When at
least one of the component matrices is orthogonal the d2

ss are the
variances of the S components.

One can even impose further restrictions on the compo-
nents and so make the invariance even stricter by reintroducing
orthonormality, non-negativity, or unimodality on one or both
component matrices (see, e.g., Bro and Sidiropoulos, 1998).

Compared to other three-way models, Parafac models have
a special characteristic in that their parameters are uniquely
determined under rather mild conditions. This implies that the
parameters in Equation (5) cannot by altered, for instance by
rotation, without lowering the fit. The consequence is that the
model has the parallel proportional profile property; (see Cattell
and Cattell, 1955; Harshman, 1970; Harshman and Lundy, 1984).
The only lack of invariance in these models consists of different
strengths of the links between the concepts and scales, i.e., the ck

ss
vary between the groups. From the parallel proportional profile
property and the uniqueness of the models it is the components
themselves, not only the subspaces they span which are invariant;
see Harshman (1970) or Harshman and Lundy (1984).

2.6. STEP 5: STRICTLY INVARIANT MODELS - TUCKER3 MODELS
To study factorial invariance with even more restrictions, we can
demand that for each k ck

ss = ckdss. In other words the weights for
the components are invariant across groups apart from a group
weight ck.

Xk = A(ckD)B′ + Ek = ck(ADB′) + Ek k = 1, · · · , K. (6)

This model equals a simplified version of the full Tucker3 model
(Tucker, 1966), and has been referred to as the Replicated PCA
model by Van IJzendoorn and Kroonenberg (1990) and Weighted
PCA by Krijnen and Kiers (1995). The only variable parts are the
weights ck for the group applicable to both components, and the

error terms Ek. In other words, all groups have the same concept
and scale spaces and the orthogonal components of each way are
linked such that each concept component is linked exclusively to
a particular scale component. The part between brackets has the
form of a SVD valid for all groups. The only differences between
the groups are their weights, ck. This is in contrast with the Parafac
model where each group has different link weights for the concept
and scales component combinations, i.e., the ck

ss are different for
each group k and each pair of components s.

The ultimate invariant model is that in which we assume that
all ck are all equal with weight c̄ = √

1/K, which is computation-
ally equivalent to first averaging over groups and then carrying
out a SVD on the average data matrix X̄, i.e.,

Xk = c̄(ADB′) + Ek k = 1, · · · , K. (7)

Thus, in this case the only variable parts are the error terms and
we may speak of strict invariance. We could reduce even further
the number of parameters by specifying further restrictions on
the concept and scale component spaces (see Takane et al., 1995),
but this will not be considered here.

2.7. SUMMARY EVALUATING INVARIANCE
The conclusion from the above subsections is that one can define
a hierarchy of models with an ever increasing number of parame-
ters which are invariant over groups. By comparing the models
with each other and with the combined separate analyses, it
becomes possible to evaluate which models still provide an ade-
quate fit to the data compared to separate analyses, and hence
which type of invariance can be safely adopted. The two lead-
ing types of information for this purpose are the overall fitted
variance and the fitted variance of each group.

In order to carry out model comparisons the number of
parameters estimated for each of the models is determined. The
models are compared by constructing a variant of the three-mode
scree plot, in which the fitted sum of squares are plotted against
the number of parameters estimated (see Section 3.3). Details
on how to calculate the number of parameters can be found in
Kroonenberg (2008, Section 8.4).

3. EXAMPLE: THE STRANGE SITUATION ACROSS THE
WORLD

3.1. RESEARCH DESIGN
Attachment between adults, especially mothers, and infants is
a lively research area—(see Cassidy and Shaver, 1999, 2008.
Three types of bonds between adults and infants are gen-
erally considered: Avoidant attached, Securely-attached, and
Resistant/Ambivalent attached, indicated by the letters A, B, and
C, respectively. Here we will only look at attachment bonds with
mothers, but those with other adults, especially other caregivers,
have also been investigated (see, e.g., Sagi et al., 1985). The
measurement procedure consists of a series of episodes of approx-
imately 3 min, during each of which the infant is in a standardized
room together with the mother (M), the stranger (S), both (MS),
or alone (A); the episodes are the following: M1, MS2, S3, M4, A5,
S6, M7. The idea is to increase the stress on the infant, especially
by introducing the stranger and leaving the child alone, so that
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the attachment relationship between mother and infant is put to
the test. During the episodes, except when the infant is alone (A5),
five core variables of an infant’s reaction to an adult are measured:
Proximity seeking, Contact maintaining, Avoidance, Resistance,
and Distance interaction.

3.1.1. Strange situation data set
The data set under consideration consists of 11 samples:
US-Belsky (USBel), US-Thompson (USTho), Germany-Berlin
(GerBe), Germany-Bielefeld (GerBi), Israel-Kibbutz (IsrKi),
Israel-City (IsrCi), Japan-Miyake (JapMi), Japan-Takahashi
(JapTa), Netherlands-Younger infants (NLYng), Netherlands-
Older infants (NLOld) and Sweden (Swed). The data set was put
together by Sagi and Lewkowicz, and in their publication (Sagi
and Lewkowicz, 1987) they supply full details of the origins of the
different samples. For each of the samples the original investiga-
tors independently determined the infants’ type of attachment.
Earlier analyses can be found in Sagi and Lewkowicz (1987) and
Kroonenberg and Van IJzendoorn (1987).

3.1.2. Invariance
The research question for this paper is whether the structure
of the scales and that of the episodes, as well as the way these
components are linked, are invariant across samples. The more
parameters in the models are invariant, the more evidence this
presents that the Strange Situation is a valid procedure across
countries and researchers. For this example we only examine the
average scores of the samples securely attached infants (B). These
samples were chosen because each contained a sufficient number
of B infants to make the average scores reliable. Thus, the two-way
rating design consists of 7 episodes by 5 scales for 11 samples. This
three-way data set was subjected to the models described above
and their fit measures were compared.

3.2. RESULTS: THREE-WAY ANALYSIS OF VARIANCE
To acquire an initial perspective on the differences between sam-
ples, we carried out a three-way analysis of variance of the Strange
Situation data. For this analysis the response variable was con-
sidered to be intensity of a reaction, and the Three-Ways were
conceived as fixed factors in the ANOVA sense. This view is fea-
sible because the samples are not exchangeable or drawn from
a population. Moreover, it is the individual differences between
the samples which are the focus of the analysis. Furthermore, the
scales all had the same range from 1 to 7, so that averaging across
scales is feasible and interpretable.

Table 2 shows that the largest variability is between scales,
indicating that the scale scores of the infant-mother dyads are
effective in differentiating between behaviors across samples and
episodes. On the other hand, the sample variability is com-
paratively very small (2.2% of the total), indicating that the
investigating factorial invariance is a worthwhile exercise. This
is confirmed by the size of the episode × scale interaction com-
pared to the interactions involving samples. Finally, the residuals
(or the three-way interaction) only take up 7.5% of the total
variability.

Parallel with standard component analysis, before the three-
way analyses the data were centered but not normalized.

Table 2 | Three-Way analysis of variance (with a single observation

per cell).

Source SS % SS(Total) df MS F

MAIN EFFECTS

Episodes 79.3 16.4% 6 13.2 88.1

Scales 211.4 43.6% 4 52.8 324.0

Samples 10.7 2.2% 10 1.1 6.5

TWO-WAY INTERACTIONS

Episodes × Scales 105.2 21.7% 24 4.4 26.9

Episodes × Samples 9.9 2.0% 60 0.2 1.0

Scales × Samples 29.5 6.1% 40 0.7 4.5

THREE-WAY INTERACTION

Residuals 39.1 8.1% 240 0.2

TOTAL 485.1

df = degrees of freedom; MS = Mean Sum of squares.

Normalization was not deemed necessary because all the scales
had the same range. Moreover, scales with more variability should
be allowed to have more influence on the analysis than scales with
little variability.

With respect to centering, the common type of centering for
three-way rating scale data (averaging across the concepts) was
used, i.e., x̃ijk = (xijk − x̄.jk). In other words, the scale means for
each sample k were removed. In general, centering across samples
is undesirable because it will eliminate the consensus configura-
tion of the scales and concepts from the three-way analysis. Thus,
due to this type of centering the means of the scales for each of the
samples were not included in the invariance analysis, but depend-
ing on the purpose of a study, these means can be analyzed for
invariance separately.

3.3. RESULTS: INVESTIGATING TYPE OF INVARIANCE VIA MODEL FIT
Because the procedure outlined for assessing factorial invariance
for two-way rating designs is an exploratory one, deciding on
the degree of invariance is a substantive and subjective mat-
ter, of course based on numerical information. Table 3 provides
the information on the series of more and more restricted, and
hence more invariant, models. Any additional restriction on the
parameters is going to incur a certain amount of additional
loss compared to the separate analyses. However, the question
is whether the decrease in fit can be acceptable, given that by
restricting the number of parameters interpretability is enhanced.
It is less useful to compare the two-component models with the
three-component models, because they have different starting
points, i.e., different separate solutions. Therefore, it seems best
to first decide on the number of components one wants to use
to model the data, and only after that to investigate the invari-
ance. This is incidentally also the standard practice in structural
equation modeling. Of course, one may come to the conclusion
that a two-component model is more, or less, invariant than a
three-component model and vice versa.

In Table 3 we see that the most restrictive models are the
Tucker3 models with a constant component for the samples (T3-
221Fixed and T3-331Fixed), i.e., the strictly invariant models.
At the other extreme the individual three-component SVDs are
not much use in terms of data reduction, because the model for
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each sample has only three degrees of freedom, and the rank of
the centered data matrices is at most four. From a data-analytic
point of view, it is doubtful whether a model with unrestricted
three-component solutions for the separate samples is really use-
ful because the three components fit about 97% of the total
variability.

To decide upon the most appropriate model for these data, and
thus on the extent of the invariance, it is useful to construct a vari-
ant of the three-mode deviance plot of the fitted sums of squares
vs. the number of parameters (Figure 2); see Kroonenberg, 2008,

Section 8.5. The models with two components and those with
three have been connected by part of a convex hull. Models on
a convex hull are generally preferred to the models inside such a
hull because of their more favorable SS(Fit)/NParms ratios. It is
preferable to consider only models on or very close to the con-
vex hull; the PF3-Orth model is less attractive because there are
models with more favorable ratios (PF3 and T3-331) in the neigh-
borhood. The more horizontal a hull, the more a model on the
right is a good alternative for the models to the left on the hull,
because the decrease in the number of parameters (i.e., increase

Table 3 | Overall sums-of-squares for the Strange Situation data.

Model Abbreviation SS(Fit) SSS(Fit) df NParms

TWO-COMPONENT SOLUTIONS

Step 1 SVD per group (SVD_2) 205.78 0.89 110 275

Step 3 Tucker1 - Scales invariant (T1B_2) 187.94 0.81 227 158

Tucker2 (T2_22) 177.78 0.76 270 115

Step 4 Parafac (PF2) 173.54 0.74 288 97

Parafac - Orthogonal scale components (PF2_Orth) 173.36 0.74 290 95

Step 5 Tucker3 + Variable weights (T3_221) 169.18 0.72 302 83

Tucker3 + Fixed weights (T3_221Fixed) 164.77 0.71 312 73

THREE-COMPONENT SOLUTIONS

Step 1 SVD per group (SVD_3) 227.05 0.97 33 352

Step 3 Tucker1 - Scales invariant (T1B_3) 219.53 0.94 154 231

Tucker2 (T2_33) 206.57 0.88 213 172

Step 4 Parafac (PF3) 200.40 0.86 267 118

Parafac - Orthogonal scale components (PF3_Orth) 195.26 0.84 273 112

Step 5 Tucker3 + Variable weights (T3_331) 185.43 0.79 299 86

Tucker3 + Fixed weights (T3_331Fixed) 181.23 0.78 309 76

NParms = Number of parameters (includes 55 removed means due to centering); The Total Sum of Squares of the centered data: SS(Tot) = 233; SSS(Fit) =
SS(Fit)/SS(Tot); df = degrees of freedom = number of data points (I × J × K = 385) − NParms.

FIGURE 2 | Model comparisons. The two-component and
three-component models are connected by separate convex hulls. The
horizontal axis is reversed because the investigation starts with the
individual models. Legend : SVD_s = separate SVDs with s components;
T1B_s = Tucker1 model with s components; T2_ss = Tucker2 model

with s components for way 1 and 2; PFs = Parafac model with s
components; PFs_Orth = Parafac model with s orthogonal scale
components; T3_ss1 = Tucker3 model with s components for way 1
and 2 and 1 component for way 3; T3_ss1Fixed = T3_ss1 with a fixed
value for way 3.
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in the df ) does not seriously decrease the fitted sum of squares. In
contrast, the steeper the hull turns downward for the next model
to the right, the less attractive the model, because there is a large
loss in fitted sum-of squares for only a limited decrease in param-
eters. Note that a smaller number of parameters increases power
and potentially simplifies interpretability.

For the Strange Situation data we see in Figure 2 that for the
three-component models the convex hull declines slowly at first,
and a steeper downturn is observed only for the Tucker3 models,
so that the Parafac model with three components seems a good
choice. The choice for a two-component model is less clear. The
relationship between the SS(Fit) and the number of parameters is
nearly linear. Again the Parafac models (PF2 and PF2-Orth) seem
to be the best choice, and even though the orthogonal variant
is marginally better, we decided to opt for the regular Parafac
model. With respect to factorial invariance, the Parafac models
incorporate invariant concept and scale spaces, and the correla-
tions between scale components are constant over samples. The
appropriateness of the Parafac models suggests that there is a con-
siderable double-metric factorial invariance across the samples,
only the size of the variances is different.

3.4. RESULTS: NON-INVARIANT SAMPLES
For three-way models with double-metric invariance which are
not necessarily invariant with respect to their links, we can
compute the model fit for each sample. These fit measures can
then be compared with the separate-analyses model to determine
whether overall lack of interaction invariance is due to specific
samples or whether differences are present between all samples.

3.4.1. Differences in proportional fit of samples.
For selected two-component models we calculated the propor-
tional residual sums-of-squares PrSS(Resk) for each sample and
connected these values per model in Figure 3. In the figure we
have arranged the samples such that the lack of fit is increasing
for the two-component Parafac model.

The solid line for the PrSS(Res) represent SVDs of the sep-
arate samples. We see that their PrSS(Res) fluctuate around the
average value drawn as a horizontal line. In other words, a two-
component SVD have about the same fitted sums of squares in
all samples, but their concept spaces and their scale spaces are not
necessarily equal.

In the case of strict model invariance all lines would be more or
less horizontal because the lack of fit would be equal for all sam-
ples. This is not the case here. The relative difference in fit varies
between the solutions for the separate samples and those of the
models displayed in the figure. Thus, for the US samples on the
left-hand side of the figure the metric invariant subspaces for the
concepts and the scales are more alike to their own separate spaces
than to the subspaces for the younger Dutch sample and Israel-
City sample on the right-hand side. In particular, the PrSS(Res)
for the two US samples is around 0.10 while it is around 0.30 for
the younger Dutch and the Israel City sample.

All three metric invariant models displayed in Figure 3 show
more or less the same pattern with an increasing loss of fit from
left to right. Given that the models are more or less equivalent, we
may choose to interpret the most restricted and thus most invari-
ant model, i.e., the T3-221 or PF2 models. Figure 3 shows that the
most right-hand samples fit marginally better, which is consistent
with our earlier choice for this model. The Parafac model allows
the components per sample to have a common oblique orien-
tation with separate weights (ck

ss) for the links between these
common components. In this data set the younger Dutch sample
and the Israel City sample need further investigation, because it
is their configurations that are deviating most from the common
pattern.

3.4.2. Differences in strengths of links between concept and scale
spaces across samples

In Figure 4 we have plotted the link strengths ck
ss between the

concept and scale components from the Parafac model with
two components. The solid line represents the strengths of the

FIGURE 3 | Proportional Residual sums of squares per sample for four

two-component models: Separate-analysis model (SVD-2), Parafac model

(PF2), Tucker2 model (T2-22), and Tucker3 model (T3-221). The samples
are ordered on their fit based on the Parafac model with two components.

Legend: US-Belsky (USBel), US-Thompson (USTho), Germany-Berlin (GerBe),
Germany-Bielefeld (GerBi), Israel-Kibbutz (IsrKi), Israel-City (IsrCi),
Japan-Miyake (JapMi), Japan-Takahashi (JapTa), Netherlands-Younger infants
(NLYng), Netherlands-Older infants (NLOld) and Sweden (Swed).
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FIGURE 4 | The strength of the Parafac component links (ck
ss) for each of the samples in principal coordinates. The dotted line represents the weight or

strength of the links from the T3_221 model (ck ) in principal coordinates. For the abbreviations of the samples names see Figure 3.

links between the first components, ck
11 and the dotted line the

strength of the links for the second components, ck
22. To pro-

vide a proper comparison these parameters have been depicted
in principal coordinates. The third, dashed, line represents the
weight parameter for each group according to the T3-221 model,
ck; also in principal coordinates. The samples have been ordered
so that the values for the first components, ck

11, are increasing
monotonically. The figure shows that ck

11 and the ck are almost
equal, but that there is a small compensation of the ck for the
absence of the links for the second components ck

22. Thus, the
choice between the models should take into account whether the
fluctuations of the ck

22 are interpretable. At the same time the
differences in the ck

22 point to where we should look for lack of
invariance.

If we want to find out what exactly are the differences between
the samples, we have to explicitly compare the invariant concept
and scale spaces with the separate sample spaces. Thus, this anal-
ysis could be extended to find the causes of the differences by
examining the Tucker1 model for scales (T1B), and possibly the
Tucker1 model for concepts (T1A), to assess whether it is the scale
space or the concept space which is not invariant. We will not
pursue this here. The procedure described above should primarily
be seen as a proof of concept, rather than a detailed analysis of a
particular case (see, however, the Appendix for a more substantive
interpretation).

4. RESULTS: AN ADDITIONAL APPROACH TOWARD
ASSESSING INVARIANCE

In a paper comparing Japanese and Australian children in the way
they show respect to adults, Kroonenberg and Kashima (1997)
tackled assessing invariance in a different way, even if they did not
explicitly refer to factorial invariance. The children were given a
questionnaire in which they had to indicate both to what extent
they did show a number of respectful behaviors (greet, help, stick
up for, etc.) toward a number of adults (father, mother, teacher,
etc.), and to what extent they felt they should do so. This resulted

in a 5 (adults) × 7 (behaviors) × 4 (groups; Australian do,
Australian should, Japanese do, Japanese should) three-way data
set. Apart from a complete three-way analysis, the invariance was
also assessed by first carrying out separate analyses for each of the
four groups, and then using the adult space and/or the behav-
ior space of one group as a restriction for the solution of another
group. Essentially, of course, this is a cross-validating procedure,
checking to what extent the parameter estimates in one group can
also explain the variability in another group, or to what extent the
two groups had invariant subspaces. However, one may equally
see this as a procedure for establishing invariance. This proce-
dure was referred to as external analysis by Van der Kloot and
Kroonenberg (1985), because externally determined values for the
parameters were used in fitting a particular data set.

For the Strange Situation data, this procedure could be used
to investigate to what extent the separate solution of a sample is
similar to that of another sample. In particular, the nature of the
difference of the Dutch sample with respect to the other samples
could be a focus of further analysis.

5. CONCLUSION
In this paper we have presented an approach toward assessing
factorial invariance in two-way rating designs such as stimulus-
response and semantic differential designs. Such designs generate
fully-crossed three-way data which can be analyzed by three-
way component models. True three-way models like the Parafac
and Tucker models and their variants already incorporate vari-
ous aspects of factorial invariance, in particular the double-metric
invariance of the concept and scale spaces. The models vary in
how they treat the relationships or links between the components.
A hierarchy of models with increasing factorial invariance is out-
lined, running from no invariance for separate SVDs for each
group, via single metric invariance for Tucker1 models, double-
metric invariance for Tucker2 models, double-metric invariance
and correlational invariance of Parafac models, to strict invari-
ance for a very restricted Tucker3 model.
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These models, and hence the nature of the invariance, can be
assessed and compared via deviance plots showing the sum of
squares of fit against the degrees of freedom. By connecting the
relevant models by convex hulls in the plot, a comparative eval-
uation can be made and an appropriate model can be selected.
Moreover, information supplied by the three-way analysis can be
used to assess which group is more deviant from the invariant
solution, and what the nature of such differences are.

The descriptive approach toward model selection, rather than
using a formal testing paradigm, has been shown to work well
for the example presented here. Data from a multinational col-
lection of Strange Situation sessions (Sagi and Lewkowicz, 1987)
were analyzed to demonstrate the effectiveness and usefulness of
the model hierarchy for two-way rating data.

By investigating data from two-way rating designs we have
extended the concept of factorial invariances beyond its stan-
dard definition. The future will have to show to what extent this
extension is going to make an impact on the research on factorial
invariance. For the present it seems that using the conceptual-
ization presented here and the proposed hierarchy of three-way
models, can shed light on differences and similarities between the
invariance in two-way rating designs.
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APPENDIX
This appendix is presented here to offer some idea of the substan-
tive outcomes of the invariance analysis of the Strange Situation.

For the Parafac model with two components, Figure A1 shows
the normalized components of the three modes in two panels,
both for the first and the second component as well as the strength
of the links between them.

If there was complete strict invariance, the samples would
have been superimposed in both panels at the value(c̄dss (the
T3-221Fixed model). If there would have been weighted strict
invariance, the rank order and spacing of the samples for each
of the components would have been equal i.e., at the values ckdss

(the T3-221 model). As the figure shows, neither of these options
was realized in the present data set, so that we must conclude that
a double-metric invariant model (PF2) is the most restricted or
invariant model that can be obtained.

The variances (or link strengths) of the components are d11 =
11.5 and d22 = 6.4, respectively (see Equation 5), so that the ratio
of their importance in reconstructing the model is 1.8. Thus, the
differences between the samples with respect to link strengths of
the first components are about twice as large as those for the
second components.

A.1. FIRST COMPONENT
The left-hand panel of Figure A1 shows that securely attached (B)
children show increasing Proximity seeking and Contact main-
taining during the Mother episodes of the Strange Situation,
as is evident from the increasingly higher coefficients on the
first component. Seeking closeness to the mother is indicative of
increasing stress during the procedure, which the B children try
to alleviate by showing more and more proximity to the mother,

i.e., showing a stronger secure attachment behavior. Treating the
stranger with suspicion by staying at a distance is evident in the
Stranger episodes; the coefficients remain negative but less so in
S6 than in S3. Children’s suspicion is decreasing slightly during
the procedure but it is never absent. The other three scales all
hover around zero, indicating that these behaviors of the chil-
dren are not related to the two behaviors mentioned first. The
US securely-attached children show the described patterns to
the largest extent and the Dutch children the least. It is inter-
esting to see that samples from the same country are generally
close together with the largest difference between the two Israeli
samples.

A.2. SECOND COMPONENT
The second components in the right-hand panel of Figure A1
describe mainly the avoidance, resistance and distance interaction
behaviors toward the stranger, or stranger wariness. Such behav-
ior is not typically present in the first two episodes but is present
to a limited extent in the other episodes except for Episode 6,
when it is the Stranger who returns rather than the Mother after
the child has been alone in the fifth episode. With respect to the
mother the situation is more complicated. There is a clear contrast
between the earlier and later episodes, in that negative behavior
toward the mother is not present in the beginning, but the chil-
dren show a certain reserve when mother and child are reunited
after the child has been alone with the stranger (Episodes M4
and M7).

These patterns are strongest in the Dutch and Japanese sam-
ples, as well as Belsky’s US sample. Again, samples from the
same country are generally close together except for the US
samples.

FIGURE A1 | Two-component Parafac analysis: Invariant components plus link strength of samples. Mi = Mother episode i; Si = Stranger episode i. For
sample abbreviations, see Figure 3.
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A.3. INVARIANCE CONCLUSION WITH RESPECT TO THE B-CHILDREN
The original research question was whether the structure behind
the data from the two-way rating design for the secure B-children
was the same across samples. The double-metric invariance
embodied in the well-fitting two-component Parafac model indi-
cates that this is indeed the case. However, the samples show a lack
of invariance with respect to importance of the linkage between
the components of the episodes and the scales. This difference
is primarily a matter of relative importance of the two com-
ponents. The first component embodies the increasingly secure

attachment behaviors (Proximity seeking and Contact maintain-
ing) over episodes, which is stronger in the US samples, especially
in contrast with the Dutch samples. The second component rep-
resents ‘stranger wariness’ (Avoidance, Resistance and Distance
interaction) which is especially strong in Episode 6, when the
stranger rather than the mother returns, after the child as been
alone in the fifth episode. To a lesser degree it also represents
reservation toward the mother in the reunion episodes. These pat-
terns are especially strong in the Dutch and Japanese samples and
Belsky’s US one.
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