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The metaSEM package provides functions to conduct univariate, multivariate, and
three-level meta-analyses using a structural equation modeling (SEM) approach via the
OpenMx package in the R statistical platform. It also implements the two-stage SEM
approach to conducting fixed- and random-effects meta-analytic SEM on correlation or
covariance matrices. This paper briefly outlines the theories and their implementations.
It provides a summary on how meta-analyses can be formulated as structural equation
models. The paper closes with a conclusion on several relevant topics to this
SEM-based meta-analysis. Several examples are used to illustrate the procedures in the
supplementary material.
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1. INTRODUCTION
Meta-analysis is a popular technique for synthesizing research
findings in the social, behavioral, educational, and medical sci-
ences (e.g., Hedges and Olkin, 1985; Whitehead, 2002; Borenstein
et al., 2009; Schmidt and Hunter, 2015). There are sev-
eral standalone programs for conducting meta-analyses, e.g.,
Comprehensive Meta-Analysis (Borenstein et al., 2005). There
are also macros or packages to fit some meta-analytic models in
standard statistical packages such as SPSS (Lipsey and Wilson,
2000), and SAS (Arthur et al., 2001). R (R Development Core
Team, 2014) is a popular open source statistical platform for com-
putations and data analysis. There are also several R packages
available for meta-analysis (e.g., Viechtbauer, 2010; Lumley, 2012;
Schwarzer, 2014).

The metaSEM package (Cheung, 2014b) is another R package
for conducting meta-analyses. It formulates univariate, multivari-
ate, and three-level meta-analytic models as structural equation
models (Cheung, 2008, 2013b, 2014c, in press) via the OpenMx
package (Boker et al., 2011). It also implements the two-stage
structural equation modeling (TSSEM) approach (Cheung and
Chan, 2005, 2009; Cheung, 2014a) to fit fixed- and random-
effects meta-analytic structural equation modeling (MASEM) on
correlation or covariance matrices. This paper outlines the meta-
analytic models implemented in the metaSEM package (Cheung,
in press). There are two main objectives of this paper. First, it pro-
vides an succinct summary on how various meta-analytic models
can be formulated as structural equation models. Readers may
refer to the references for more details and advantages of for-
mulating meta-analytic models as structural equation models.
Second, it illustrates how to conduct these analyses using the
metaSEM package. Complete R code, output, and remarks are
included in the supplementary material. Users may refer to http://
courses.nus.edu.sg/course/psycwlm/Internet/metaSEM/ on how
to install the metaSEM package.

2. STRUCTURAL EQUATION MODELING BASED
META-ANALYSIS

SEM is a multivariate technique to fit and test hypothesized mod-
els. Let y be a p × 1 vector of a sample of continuous data from
a multivariate normal distribution where p is the number of
observed variables. It is hypothesized that the model for the first
and the second moments are functions of θ , where θ is a vector
of parameters that can be regression coefficients, error variances,
factor loadings, and factor variances. The model is:

μ = μ(θ) and

� = �(θ),
(1)

where μ and � are the population mean vector and covari-
ance matrix, respectively. Maximum likelihood (ML) estima-
tion method is the most common estimation method in SEM.
The −2∗log-likelihood (−2LL) for the ith case is,

− 2LLi(θ; yi)ML = pi log (2π) + log |�i(θ)|
+ (yi − μi(θ))��i(θ)−1(yi − μi(θ)), (2)

where pi is the number of filtered variables with complete data
in the ith case, μi(θ) and �i(θ) are the model implied mean
vector and the model implied covariance matrix for the ith case,
respectively. Since there is a subscript i in Equation 2, the model
implied mean vector and covariance matrix may vary across
cases. Thus, it automatically handles incomplete data by selecting
the complete data in the log-likelihood function with the full
information maximum likelihood (ML or FIML) estimation
method (Enders, 2010).

To obtain the parameter estimates, we may take the sum of
the −2LLi over all cases and minimize it. Iterative methods are
used to obtain the parameter estimates. When it is convergent,
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the asymptotic sampling covariance matrix of the parameter esti-
mates may be obtained from the inverse of the Hessian matrix.
The standard errors (SEs) of the parameter estimates are calcu-
lated by taking the square root of the diagonal elements of the
asymptotic sampling covariance matrix. The parameter estimates
divided by their SEs follow a z distribution under the null hypoth-
esis. A likelihood ratio (LR) statistic may also be used to compare
nested models. The model fit and the significance of individual
parameters can be tested (e.g., Kline, 2011).

2.1. UNIVARIATE FIXED-EFFECTS MODEL
The following subsections briefly introduce how various meta-
analytic models can be formulated as structural equation models.
Let us begin with the meta-analytic model with only one effect
size yi in the ith study (Cheung, 2008). yi can be any effect size,
such as the odds ratio, raw mean difference, standardized mean
difference, correlation coefficient, or its Fisher’s z transformed
score. When the sample sizes in the primary studies are reason-
ably large, yi can be assumed to be normally distributed with a
variance of vi (e.g., see Borenstein et al., 2009, for the formulas of
common effect sizes). The univariate fixed-effects model for the
ith study is:

yi = βF + ei, (3)

where βF is the common effect under the fixed-effects model,
and Var(ei) = vi is the known sampling variance. To conduct
a univariate fixed-effects meta-analysis in SEM, we may fit the
following model implied moments:

μi(θ) = βF and

�i(θ) = vi.
(4)

Since vi is known, the only parameter in the model is βF. Figure 1
shows the graphical model of the fixed-effects meta-analysis.

2.2. UNIVARIATE RANDOM-EFFECTS MODEL
Since the primary studies are conducted by different researchers
in different settings, these studies are unlikely not direct replicates
of each other. It is reasonable to expect that the population effect
sizes may not be the same. A random-effects model allows stud-
ies to have their own study-specific effect. The model for the ith
study is:

yi = βR + ui + ei, (5)

where βR is the average population effect under the random-
effects model, and Var(ui) = τ 2 is the heterogeneity variance that

FIGURE 1 | Univariate fixed-effects meta-analysis.

has to be estimated. To fit the model in SEM, we may consider the
following model implied moments:

μi(θ) = βR and

�i(θ) = τ 2 + vi.
(6)

In the literature of meta-analysis, vi and τ 2 + vi are known as the
conditional and the unconditional variances, respectively. Under
this model we have to estimate both βR and τ 2. Figure 2 shows
the graphical model of the random-effects meta-analysis. Various
estimation methods, such as methods of moments, ML estima-
tion and restricted maximum likelihood (REML) estimation may
be used to estimate τ 2 (e.g., Borenstein et al., 2009). The default
estimation method in the SEM-based meta-analysis is ML esti-
mation, while the REML estimation method may also be used
to minimize the slight negative bias on the estimated variance
component using the ML estimation method (Cheung, 2013a).

2.2.1. Quantifying heterogeneity
To test the homogeneity of the population effect sizes, we may
compute the Q statistic (Cochran, 1954),

Q =
k∑

i = 1

wi(yi − β̂F)2, (7)

where wi = 1/vi. Under the null hypothesis of the homogeneity
of effect sizes, the Q statistic has an approximate chi-square dis-
tribution with (k − 1) degrees of freedom (df s). The Q statistic
may be significant simply because of the large number of stud-
ies. Conversely, a large Q statistic may be non-significant because
of the small number of studies. Therefore, the significance of the
Q statistic should not be used to determine whether a fixed- or a
random-effects model is used in the analysis.

One popular index quantifying the degree of heterogeneity of
effect sizes is the I2 (Higgins and Thompson, 2002). The general
formula is

I2 = τ̂ 2

τ̂ 2 + ṽ
, (8)

where ṽ is a typical within-study sampling variance. I2 can be
interpreted as the proportion of the total variation of the effect
size that is due to the between study heterogeneity. Higgins
and Thompson (2002) defined the typical within-study sampling
variance using the Q statistic:

FIGURE 2 | Univariate random-effects meta-analysis.
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ṽQ = (k − 1)
∑k

i = 1 1/vi

(
∑k

i = 1 1/vi)2 − ∑k
i = 1 1/v2

i

. (9)

One advantage of using ṽQ as the typical within-study sampling
variance is that I2 can be simplified to I2

Q = Q − (k − 1)/Q.
Two more definitions of ṽ have also been proposed in the liter-

ature. Takkouche et al. (1999) suggested that the harmonic mean
of vi can be used as the typical within-study sampling variance,

ṽHM = k
∑k

i = 1 1/vi

. (10)

Xiong et al. (2010) also discussed an estimator of I2 that is based
on the arithmetic mean:

ṽAM =
k∑

i = 1

vi/k. (11)

All of the above definitions are available in themetaSEM package.
Users may choose among them by specifying the argument I2 =
“I2q” based on the Q statistic (the default), I2 = “I2hm”
based on the harmonic mean, and I2 = “I2am” based on the
arithmetic mean.

2.3. UNIVARIATE MIXED-EFFECTS MODEL
The mixed-effects meta-analysis extends the random-effects
meta-analysis by using study characteristics as predictors.
Assuming that xi is an (m + 1) × 1 vector of predictors includ-
ing a constant of 1 where m is the number predictors in the ith
study, the mixed-effects model is:

yi = x�
i β + ui + ei, (12)

where β is a a (m + 1) × 1 vector of regression coefficients includ-
ing the intercept. To fit the model in SEM, we may use the
following model implied conditional mean and variance:

μi(θ |xi) = x�
i β and

�i(θ |xi) = τ 2 + vi.
(13)

Figure 3 shows the graphical model of the mixed-effects meta-
analysis with one predictor. A phantom variable P is introduced
to specify the predictor xi. Since xi is specified via definition vari-
ables (see Cheung, 2010), xi is treated as a design matrix rather
than as variables.

FIGURE 3 | Univariate mixed-effects meta-analysis with one predictor.

Mathematically, it is clear that the random-effects meta-
analysis is a special case of the mixed-effects meta-analysis by
fixing x = 1 as a constant of ones, while the fixed-effects meta-
analysis is a special case of the random-effects meta-analysis by
fixing τ 2 = 0. It should be noted that the assumptions and inter-
pretations on the fixed- and random-effects models are different.

2.3.1. Explained variance
Besides testing whether the predictors are significant, researchers
may want to quantify the degree of prediction. The percentage of
variance explained by the inclusion of predictors,

R2 = τ̂ 2
0 − τ̂ 2

1

τ̂ 2
0

, (14)

can be calculated by comparing the τ̂ 2
0 without a predictor and

the τ̂ 2
1 with predictors (Raudenbush, 2009). When the calculated

R2 is negative, it is usually truncated to zero.

2.4. MULTIVARIATE META-ANALYSIS
When the research questions become more complicated, a single
effect size may not be sufficient to summarize the effect in the
primary studies. Multiple effect sizes are required to quantify the
effect of the studies. Let us assume that there are a total of p effect
sizes with m predictors in k studies. Since it is likely that different
numbers of effect sizes are reported in the primary studies, we
assume that there are pi effect sizes in the ith study. The model for
the multivariate mixed-effects meta-analysis in the ith study is:

yi = Bixi + Ziui + ei, (15)

where yi is a pi × 1 vector of effect sizes, Bi is a pi × (m+1)
matrix of regression coefficients including the intercepts, xi is
a (m + 1) × 1 matrix of predictors including 1 in the first col-
umn, Zi is a pi × p filter matrix selecting the effect sizes that are
present, ui is a p × 1 study-specific random effects, and ei is a
pi × 1 sampling error.

We assume that Var(ei) = Vi is known in the ith study and that
Var(ui) = T2 is the variance component of the between-study
heterogeneity that has to be estimated. The model handles miss-
ing effect sizes by selecting the complete effect sizes only in the
above equation. Since xi is a design matrix, missing value is not
allowed in xi. When there are missing values in xi, the whole study
will be deleted before the analysis is conducted.

The −2LL of the above model is:

−2LLi(B, T2; yi)ML = pi ∗ log (2π) + log |ZiT
2Z�

i + Vi|
+ (yi − Bixi)

�(ZiT
2Z�

i + Vi)
−1

(yi − Bixi).

(16)

To fit the multivariate mixed-effects meta-analysis in SEM, we
use the following model implied conditional mean vector and
covariance matrix (Cheung, 2013b):

μi(θ |xi) = Bixi and

�i(θ |xi) = ZiT
2Z�

i + Vi.
(17)
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FIGURE 4 | Multivariate mixed-effects meta-analysis with two effect sizes per study and one predictor.

Figure 4 shows the graphical model of the multivariate mixed-
effects meta-analysis with two effect sizes per study and one
predictor. A phantom variable P is introduced to specify the
predictor xi.

The multivariate random-effects meta-analysis is a special case
of the multivariate mixed-effects meta-analysis by using Xi = 1
as the design matrix; the random-effects meta-analysis is a special
case of the fixed-effects meta-analysis by fixing T2 = 0. Moreover,
the univariate meta-analysis is also a special case of the multivari-
ate meta-analysis with only one effect size. The I2 and R2 in a
univariate meta-analysis may also be calculated for each effect size
in a multivariate meta-analysis.

2.5. THREE-LEVEL META-ANALYSIS
Effect sizes are assumed to be independent in most meta-analytic
models. However, the effect sizes can be non-independent for var-
ious reasons. For example, the effect sizes reported in the same
study may be more similar than the effect sizes reported in other
studies. When the degree of dependence is known, the multivari-
ate meta-analysis introduced in the Section 2.4 can be used to
model the dependence. When the degree of dependence is not
known, a three-level meta-analytic model may be used to address
the dependence among the effect sizes (e.g., Konstantopoulos,
2011; Cheung, 2014c; Van den Noortgate et al., 2013). The
model is:

yij = x�
ij β + u(2)ij + u(3)j + eij, (18)

where yij is the effect size for the ith effect size in the jth cluster,
β is an (m + 1) × 1 vector of regression coefficients including the
intercept, xij is the (m + 1) × 1 predictors including 1 in the first
element for the ith study at the jth cluster, u(2)ij and u(3)j are the
random effects at level 2 and level 3, respectively, and Var(eij) =
vij is the known sampling variance of the effect size.

To fit the three-level meta-analytic model in SEM, we may use
the following model implied moments for the conditional mean
and variance:

μij(θ |xij) = x�
ij β and

�ij(θ |xij) = τ 2
(2) + τ 2

(3) + vij,
(19)

where Var(u(2)ij) = τ 2
(2) and Var(u(3)j) = τ 2

(3) are the heterogene-
ity at level 2 and level 3, respectively (Cheung, 2014c).

2.5.1. Quantifying heterogeneity and explained variance
Similar to the I2 defined in a random-effects meta-analysis, we
may define the degree of heterogeneity for a three-level meta-
analysis in level 2 and level 3 as,

I2
(2) = τ̂ 2

(2)

τ̂ 2
(2) + τ̂ 2

(3) + ṽ
and

I2
(3) = τ̂ 2

(3)

τ̂ 2
(2) + τ̂ 2

(3) + ṽ
,

(20)

where ṽ is the typical within-study sampling variance defined in
a random-effects meta-analysis. I2

(2) and I2
(3) can be interpreted as

the proportion of the total variation of the effect size that is due
to the level 2 and level 3, respectively. Since ṽ is sample specific,
one limitation of I2

(2) and I2
(3) is that they are not estimating any

population quantities. Cheung (2014c) introduced two intra-class
correlations (ICCs),

ICC(2) = τ̂ 2
(2)

τ̂ 2
(2) + τ̂ 2

(3)

and

ICC(3) = τ̂ 2
(3)

τ̂ 2
(2) + τ̂ 2

(3)

.

(21)

Both ICC(2) and ICC(3) are estimating their population counter-
parts τ 2

(2)/(τ 2
(2) + τ 2

(3)) and τ 2
(3)/(τ 2

(2) + τ 2
(3)), respectively. ICC(2)

and ICC(3) can be interpreted as the percentage of the population
heterogeneity due to level 2 and level 3, respectively.

Frontiers in Psychology | Quantitative_Psychology_and_Measurement January 2015 | Volume 5 | Article 1521 | 4

http://www.frontiersin.org/Quantitative Psychology and Measurement
http://www.frontiersin.org/Quantitative Psychology and Measurement
http://www.frontiersin.org/Quantitative Psychology and Measurement/archive


Cheung metaSEM

When there are predictors, we may calculate the R2 for level 2
and level 3 in a similar manner to that defined before,

R2
(2) = τ̂ 2

(2)0 − τ̂ 2
(2)1

τ̂ 2
(2)0

and

R2
(3) = τ̂ 2

(3)0 − τ̂ 2
(3)1

τ̂ 2
(3)0

.

(22)

When the estimates are negative, they are usually truncated to
zero.

3. META-ANALYTIC STRUCTURAL EQUATION MODELING
SEM is a popular modeling techniques in the social and behav-
ioral sciences. When there are more and more studies addressing
similar research questions using similar variables, there is a need
to compare and synthesize these findings. MASEM combines
ideas of meta-analysis and SEM by pooling correlation (or covari-
ance) matrices and testing structural equation models on the
pooled correlation (or covariance) matrix (e.g., Viswesvaran and
Ones, 1995; Cheung and Chan, 2005; Becker, 2009). There are two
stages in conducting the analysis. In the first stage of the analy-
sis, the correlation (or covariance) matrices are pooled together.
In the second stage of the analysis, the pooled correlation (or
covariance) matrix is used to fit structural equation models.

Cheung and Chan (2005, 2009) proposed a fixed-effects
TSSEM. The fixed-effects TSSEM approach has been extended
to the random-effects TSSEM by Cheung (2014a). Regardless of
whether a fixed- or a random-effects model is used, the metaSEM
package handles this automatically. In other words, parameter
estimates, SEs, and goodness-of-fit indices in the stage 2 analysis
have already taken the stage 1 model into account.

3.1. STAGE 1 ANALYSIS
The main objective of the stage 1 analysis is to pool the corre-
lation (or covariance) matrices together. There are two classes
of models in meta-analysis—fixed-effects models and random-
effects models (see Hedges and Vevea, 1998; Schmidt et al., 2009).
Fixed-effects models are used for conditional inferences based on
the selected studies. They are intended to draw conclusions on
the studies included in the meta-analysis. Researchers are mainly
interested in the studies used in the analysis. The assumption
in fixed-effects models is usually, but not always, that all stud-
ies share common effect sizes. The stage one analysis in both
the fixed- and the random-effects TSSEM is based on the ML
estimation method. Thus, the parameter estimates are unbiased
and efficient when the missing correlation coefficients are miss-
ing completely at random (MCAR) or missing at random (MAR)
(e.g., Enders, 2010).

3.1.1. Fixed-effects model
Under the fixed-effects (or more correctly the common effects)
model, it is assumed that the population correlation (or covari-
ance) matrices are the same while there are study-specific corre-
lation (or covariance matrices) under the random-effects model.
To simplify the presentation, I will mainly focus on the analysis of

correlation matrices. Generalizing to analysis of covariance matri-
ces is a straight-forward process (see Cheung and Chan, 2009).
A covariance matrix in the ith study can be decomposed into a
product of the matrices of correlations and standard deviations:

�i(θ) = DiPiDi, (23)

where �i(θ) is the model implied covariance matrix, Di is the
diagonal matrix of standard deviations, and Pi is the correlation
matrix. Under the assumption of the homogeneity of correla-
tion matrices, we may obtain a common correlation matrix by
imposing the constraint P = P1 = P2 = . . . = Pk, where Di may
vary across studies. When there are missing correlations, the
missing data are filtered out. If we want to obtain a common
covariance matrix under the assumption of the homogeneity of
covariance matrices, we may also add the constraint D = D1 =
D2 = . . . = Dk.

An LR statistic can be used to test the null hypothesis of homo-
geneity of correlation matrices P1 = P2 = . . . = Pk. Moreover,
various goodness-of-fit indices may also be used to evaluate the
appropriateness of the “close” fit of the homogeneity of correla-
tion matrices.

3.1.2. Random-effects model
Since the primary studies are independently conducted by dif-
ferent researchers, the samples, measures, and research focuses
are likely different. The assumption of homogeneity of correla-
tion matrices may not be reasonable. A random-effects TSSEM is
usually more appropriate to analyze the data (Cheung, 2014a).
When a random-effects model is used, the correlation matri-
ces are treated as vectors of multivariate effect sizes. Let ri =
vechs(Ri) be the p(p − 1)/2 × 1 vector of a sample correlation for
p variables by taking the column-wise non-redundant elements
from Ri. If an analysis of the covariance matrices is conducted,
the p(p + 1)/2 × 1 vectorized multivariate effect sizes become
si = vech(Si).

The model for the sample correlation vector ri is:

ri = ρR + ui + ei, (24)

where ρR is the p(p − 1)/2 × 1 vector of average population cor-
relation vector under a random-effects model, Var(ui) = T2 is the
variance components of the random effects, and Var(ei) = Vi is
the known conditional sampling covariance matrix. The multi-
variate random-effects meta-analysis introduced in Section 2.4
may be used to conduct the stage 1 analysis with a random-effects
model.

When there are many variables or not enough data (studies)
in the analysis, T̂2 can be non-positive definite. The results can-
not be trusted. One workaround is to fix T2 to a diagonal matrix
rather than as a symmetric matrix. This can be done easily by
specifying the argument RE.type = “Diag”when calling the
tssem1() function.

3.2. STAGE 2 ANALYSIS
After the stage 1 analysis with either a fixed- or a random-
effects model, a vector of pooled correlations r and its asymptotic
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covariance matrix V are available after the analysis. It should be
noted that T̂2 is not directly involved in fitting the correlation
structure in the stage 2 analysis. However, the presence of T2 is
required so that the heterogeneity of the random effects has been
properly taken in the stage 1 analysis.

Most applications of MASEM use the pooled correlation
matrix as if it was an observed correlation matrix to fit struc-
tural equation models. Cheung and Chan (2005) discussed some
of these problems. For example, the elements of the pooled cor-
relation matrix are usually based on different studies. Researchers
usually use an ad-hoc sample size, such as the harmonic or arith-
metic means of the individual sample sizes, as the sample size in
fitting structural equation models. Unless all the correlation coef-
ficients are based on the same number of studies, the precision
of some correlation coefficients are over-estimated while others
are under-estimated. Another issue is that the pooled correlation
matrix is analyzed as it was a covariance matrix. It is generally
incorrect to analyze the correlation matrix in SEM, although most
published articles using MASEM have treated the pooled corre-
lation matrix as a covariance matrix. Many SEM experts (e.g.,
Cudeck, 1989) have warned about the problems of analyzing the
correlation matrix instead of the covariance matrix in primary-
research applications of SEM. Specifically, the chi-square statistics
and (or) the SEs of parameter estimates may be incorrect.

The TSSEM approach addresses these issues. The weighted
least square (WLS) estimation is used to fit the proposed models
in the stage 2 analysis. A correlation structural model ρ(γ̂ ) is fit-
ted with the WLS estimation method by minimizing the following
fit function,

F(γ̂ ) = (r − ρ(γ̂ ))�V−1(r − ρ(γ̂ )). (25)

An LR statistic and various goodness-of-fit indices may be used
to judge whether the proposed structural model is appropri-
ate, while SEs may be used to test the significance of individual
parameter estimates.

4. CONCLUSION
This paper introduced various meta-analytic models using a SEM
approach. More importantly, these models have all been imple-
mented in the metaSEM package which is freely available as an
R package. Due to space constraint, I did not include topics, such
as using REML as the estimation method (see Cheung, 2013a),
constructing likelihood-based confidence interval (LBCI) (see
Cheung, 2009), and using alternative random-effects MASEM
(see Cheung and Cheung, under review). Readers may refer to
the relevant papers and the metaSEM package for details. Some
of these models can be implemented in standard SEM software
such as Mplus (Muthén and Muthén, 2012). Since SEM soft-
ware was not designed for meta-analysis, transformations on the
effect sizes are required to meet the distribution assumptions (see
e.g., Cheung, 2008, 2013b). To conclude, SEM provides a flex-
ible framework to develop meta-analytic techniques. Many of
the techniques available in SEM can be easily extended to meta-
analysis. The supplementary material include some examples on
how to analyze these models using the metaSEM package.
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