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Researchers in the social and behavioral sciences often have clear expectations about
the order/direction of the parameters in their statistical model. For example, a researcher
might expect that regression coefficient β1 is larger than β2 and β3. The corresponding
hypothesis is H: β1 > {β2, β3} and this is known as an (order) constrained hypothesis. A
major advantage of testing such a hypothesis is that power can be gained and inherently
a smaller sample size is needed. This article discusses this gain in sample size reduction,
when an increasing number of constraints is included into the hypothesis. The main goal
is to present sample-size tables for constrained hypotheses. A sample-size table contains
the necessary sample-size at a pre-specified power (say, 0.80) for an increasing number of
constraints. To obtain sample-size tables, two Monte Carlo simulations were performed,
one for ANOVA and one for multiple regression. Three results are salient. First, in an
ANOVA the needed sample-size decreases with 30–50% when complete ordering of the
parameters is taken into account. Second, small deviations from the imposed order have
only a minor impact on the power. Third, at the maximum number of constraints, the
linear regression results are comparable with the ANOVA results. However, in the case of
fewer constraints, ordering the parameters (e.g., β1 > β2) results in a higher power than
assigning a positive or a negative sign to the parameters (e.g., β1 > 0).
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1. INTRODUCTION
Suppose that a group of researchers is interested in the effects
of a new drug in combination with cognitive behavioral ther-
apy (CBT) to diminish depression. One of their hypothesis is that
CBT in combination with drugs is more effective than CBT only
and that the new drug is more effective than the old drug. In
symbols this hypothesis can be expressed as HCBT : μ1 < μ2 <

μ3 (μ1 = CBTnew_drug, μ2 = CBTold_drug, μ3 = CBTno_drug),
where μ reflects the population mean for each group. To replace
the old drug with the new one, the researchers want at least
a medium effect size of f = 0.25. Classical sample-size tables
based on the F-test (see for example Cohen, 1988) show that
in case of three groups, f = 0.25 and a significance level of
α = 0.05, 159 subjects are necessary to obtain a power of 0.80.
However, the expected ordering of the means is in this case
completely ignored. When the order is taken into account (here
two order constraints), then the results from our simulation
study (see Table 1, to be explained below) show that with fully
ordered means a sample-size reduction of about 30% can be
gained.

Consider another example of a constrained hypothesis but
now in the context of linear regression. Suppose that a group
of researchers wants to investigate the relation between the tar-
get variable IQ and five exploratory variables. Three exploratory
variables are expected to be positively associated with an increase
of IQ, while two are expected to be negatively associated:

• social skills (β1 > 0)
• interest in artistic activities (β2 > 0)
• use of complicated language patterns (β3 > 0)
• start walking age (β4 < 0)
• start talking age (β5 < 0)

To test this hypothesis an omnibus F-test is often used, where the
user-specified model (including all predictors) is tested against
the null model (including an intercept only). In our example, the
null hypothesis is specified as H0: β1 = β2 = β3 = β4 = β5 = 0.
Classical sample-size tables show that in case of a medium effect-
size (f 2 = 0.10) 135 subjects are necessary to obtain a power of
0.80 (α = 0.05). However, all information about the expected
direction of the effects is completely ignored. When this infor-
mation is taken into account, then our simulation results (see
Table 2, to be explained below) show that with imposing five
inequality constraints, a sample-size reduction of about 34% can
be gained. If we impose 2 inequality constraints, the reduction
drops to about 14%. This clearly shows that imposing more
inequality constraints on the regression coefficients results in
more power. Note that the researchers only imposed inequality
constraints on the variables of interest. But, this does not have to
be the case. Additional power can be gained by also assigning pos-
itive or negative associations to control variables. For example, the
researchers could have controlled for socioeconomic status (SES).
Although, SES is not part of the researchers main interest, they
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Table 1 | Sample-size table for ANOVA—sample size per group (k = 3, . . . , 8) at a power of 0.80 for Type J (α = 0.05), for an increasing number

of correctly specified order constraints.

Type I f= 0.10 0.15 0.20 0.25 0.30 0.35 0.40

nk30 0.050 323 144 82 53 37 28 22

nk31 0.050 283 (−12.4%) 126 73 47 (−11.3%) 33 24 19 (−13.6%)

nk32 0.055 224 (−30.7%) 101 57 37 (−30.2%) 26 19 15 (−31.8%)

nk40 0.050 274 123 70 45 32 24 19

nk41 0.047 250 (−08.8%) 112 64 42 (−06.7%) 29 22 17 (−10.5%)

nk42 0.052 217 (−20.8%) 97 55 36 (−20.0%) 25 19 15 (−21.1%)

nk43 0.051 174 (−36.5%) 79 44 29 (−35.6%) 20 15 12 (−36.8%)

nk50 0.050 240 108 61 40 28 21 16

nk51 0.049 229 (−04.6%) 102 59 37 (−07.5%) 27 20 15 (−06.3%)

nk52 0.047 204 (−15.0%) 92 52 33 (−17.5%) 24 18 14 (−12.5%)

nk53 0.049 176 (−26.7%) 78 45 28 (−30.0%) 20 15 12 (−25.0%)

nk54 0.049 143 (−40.4%) 64 36 23 (−42.5%) 16 12 10 (−37.5%)

nk60 0.050 215 96 55 36 25 19 15

nk61 0.046 209 (−02.8%) 93 53 35 (−02.8%) 24 18 14 (−06.7%)

nk62 0.045 189 (−12.1%) 85 48 31 (−13.9%) 22 17 13 (−13.3%)

nk63 0.047 169 (−21.4%) 76 43 28 (−22.2%) 20 15 12 (−20.0%)

nk64 0.051 145 (−32.6%) 65 37 24 (−33.3%) 17 13 10 (−33.3%)

nk65 0.049 120 (−44.2%) 53 30 20 (−44.4%) 14 11 08 (−46.7%)

nk70 0.050 196 88 50 33 23 17 14

nk71 0.046 192 (−02.0%) 87 49 32 (−03.0%) 23 17 13 (−07.1%)

nk72 0.049 177 (−09.7%) 80 46 30 (−09.1%) 21 16 12 (−14.3%)

nk73 0.047 161 (−17.6%) 71 41 27 (−18.2%) 19 14 11 (−21.4%)

nk74 0.046 143 (−27.0%) 65 36 24 (−27.3%) 17 13 10 (−28.6%)

nk75 0.045 124 (−36.7%) 56 32 20 (−39.4%) 15 11 09 (−35.7%)

nk76 0.048 103 (−47.4%) 46 26 17 (−48.5%) 12 09 07 (−50.0%)

nk80 0.050 181 81 46 30 21 16 13

nk81 0.047 179 (−01.1%) 80 46 30 (−00.0%) 21 16 12 (−07.7%)

nk82 0.044 167 (−07.7%) 75 43 28 (−06.7%) 20 15 12 (−07.7%)

nk83 0.048 156 (−13.8%) 69 40 26 (−13.3%) 18 14 11 (−15.4%)

nk84 0.046 140 (−22.7%) 63 36 23 (−23.3%) 16 12 10 (−23.1%)

nk85 0.046 126 (−30.4%) 56 32 21 (−30.0%) 15 11 09 (−30.8%)

nk86 0.047 108 (−40.3%) 49 27 18 (−40.0%) 13 10 08 (−38.5%)

nk87 0.049 092 (−49.2%) 41 23 15 (−50.0%) 11 08 06 (−53.8%)

The value between parentheses is the relative decrease in sample size.

could have constrained SES to be positively associated with IQ if
they have clear expectations about the sign of the effect. In this
vein, a priori knowledge about the sign of a regression parameter
can be an easy solution to increase the number of constraints and,
therefore, decreasing the necessary sample-size (Hoijtink, 2012).

Constrained statistical inference (CSI) has a long history in the
statistical literature. A famous work is the classical monograph
by Barlow et al. (1972), which summarized the development
of order CSI in the 1950s and 1960s. Robertson et al. (1988)
captured the developments of CSI in the 1970s to early 1980s
and Silvapulle and Sen (2005) present the state-of-the-art with
respect to CSI. Although, a significant amount of new develop-
ments have taken place for the past 60 years, the relationship

between power and CSI has hardly been investigated. An appeal-
ing feature of constrained hypothesis testing is that, without
any additional assumptions, power can be gained (Bartholomew,
1961a,b; Perlman, 1969; Barlow et al., 1972; Robertson et al.,
1988; Wolak, 1989; Silvapulle and Sen, 2005; Kuiper and Hoijtink,
2010; Kuiper et al., 2011; Van De Schoot and Strohmeier, 2011).
Many applied users are familiar with this fact in the context of
the classical t-test. Here, it is well-known that the one-sided t-
test (e.g., μ1 = μ2 against μ1 > μ2) has more power than the
two-sided t-test (e.g., μ1 = μ2 against μ1 �= μ2), because the p-
value for the latter case has to be multiplied by two. We show
that this gain in power readily extends to the setting where more
than one constraint can be imposed. For example, in an ANOVA
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Table 2 | Sample-size table for linear regression model—total sample size at a power of 0.80 for Type J (α = 0.05) for p = 3, 5, 7, ρ = 0, and an

increasing number of correctly specified inequality-constraints.

Type I f 2 = 0.02 0.05 0.08 0.10 0.15 0.20 0.25 0.35

np30 0.049 550 223 141 114 78 60 49 36

np31 0.049 497 (−09.6%) 202 127 103 (−09.6%) 70 54 44 32 (−11.1%)

np32 0.048 445 (−19.0%) 180 114 091 (−20.1%) 62 48 39 29 (−19.4%)

np33 0.047 391 (−28.9%) 157 100 079 (−30.7%) 55 41 33 25 (−30.5%)

np50 0.050 646 263 167 135 93 71 58 44

np51 0.050 601 (−06.9%) 243 156 126 (−06.6%) 84 66 54 40 (−09.0%)

np52 0.049 557 (−13.7%) 227 142 115 (−14.8%) 79 61 49 37 (−15.9%)

np53 0.050 512 (−20.7%) 208 132 107 (−20.7%) 72 55 45 33 (−25.0%)

np54 0.049 467 (−27.7%) 190 118 096 (−28.8%) 66 50 41 30 (−31.8%)

np55 0.049 424 (−34.3%) 171 108 088 (−34.8%) 59 45 37 27 (−38.6%)

np70 0.047 723 297 186 154 104 80 66 50

np71 0.048 686 (−05.1%) 279 175 141 (−08.4%) 097 75 61 46 (−08.0%)

np72 0.048 644 (−10.9%) 259 164 134 (−12.9%) 091 70 58 43 (−14.0%)

np73 0.044 602 (−16.7%) 246 155 125 (−18.8%) 085 65 54 40 (−20.0%)

np74 0.050 560 (−22.5%) 226 143 118 (−23.3%) 079 61 50 37 (−26.0%)

np75 0.044 520 (−28.0%) 211 134 109 (−29.2%) 074 56 46 34 (−32.0%)

np76 0.050 482 (−33.3%) 196 125 100 (−35.0%) 067 52 42 31 (−38.0%)

np77 0.050 441 (−39.0%) 180 112 091 (−40.9%) 062 47 38 28 (−44.0%)

The value between parentheses is the relative decrease in sample size.

with three groups the number of order constraints may be one or
two, depending on the available information about the order of
the means. Hence, we present sample-size tables for constrained
hypothesis tests in linear models with an increasing number of
constraints. These tables will be comparable with the familiar
sample-size tables in Cohen (1988) which are often seen as the
“gold” standard. The major advantage of our sample-size tables is
that researchers are able to look up the necessary sample size for
various numbers of imposed constraints.

The remainder of this article is organized as follows. First,
we introduce hypothesis test Type A and hypothesis test Type
B, which are used for testing constrained hypotheses. Second,
we present sample-size tables for order-constrained ANOVA,
followed by sample-size tables for inequality-constrained linear
regression models. For both models we present sample-size tables
which depict the necessary sample size at a power of 0.80 for an
increasing number of constraints. Next, we provide some guide-
lines for using the sample-size tables. Finally, we demonstrate the
use of the sample-size tables based on the CBT and IQ examples
and we provide R (R Development Core Team, 2012) code for
testing the constrained hypotheses. Note that the article has been
organized in such a way that the technical details are presented
in the Appendices and can be skipped by less technical inclined
readers who are interested primarily in the sample-size tables.

2. HYPOTHESIS TEST TYPE A AND TYPE B
In the statistical literature, two types of hypothesis tests are
described for evaluating constrained hypotheses, namely hypoth-
esis test Type A and Type B (Silvapulle and Sen, 2005). A formal
definition of hypothesis test Type A and hypothesis test Type B

is given in Supplementary Material, Appendix 1. Consider for
example the following (order) constrained hypothesis: H: μ1 <

μ2 < μ3. Here, the order of the means is restricted by imposing
two inequality constraints. In hypothesis test Type A, the classi-
cal null hypothesis HA0 is tested against the (order) constrained
alternative HA1 and can be summarized as:
Type A:

HA0 : μ1 = μ2 = μ3

HA1 : μ1 < μ2 < μ3 .
(1)

In hypothesis test Type B, the null hypothesis is the (order) con-
strained hypothesis HB0 and it is tested against the two-sided
unconstrained hypothesis HB1 and can be summarized as:
Type B:

HB0 : μ1 < μ2 < μ3

HB1 : μ1 �= μ2 �= μ3 .
(2)

Note the difference with classical null hypothesis testing, where
the hypothesis HA0 is tested against the two-sided unconstrained
hypothesis HB1. To evaluate constrained hypotheses, like H: μ1 <

μ2 < μ3, hypothesis test Type B and hypothesis test Type A are
evaluated consecutively. The reason is that, if hypothesis test Type
B is not rejected, then the constrained hypothesis does not fit
significantly worse than the best fitting unconstrained hypothe-
sis. In this way, hypothesis test Type B is a check for constraint
misspecification. Severe violations will namely result in rejecting
the constraint hypothesis (e.g., 20 < 40 < 30) and further analy-
ses are redundant. If hypothesis test Type B is not rejected, then
hypothesis test Type A is evaluated because hypothesis test Type
B cannot distinguish between inequality or equality constraints.
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In addition, because we are mainly interested in the power of the
combination of both hypothesis tests, we introduce a new hypoth-
esis test called Type J. The power of Type J is the probability of not
rejecting hypothesis test Type B times the probability that hypoth-
esis test Type A is rejected given that hypothesis test Type B is
not rejected. However, in case of constraint misspecification, we
will call it pseudo power. This is because for hypothesis test Type
B, power is defined as the probability that the hypothesis is cor-
rectly not rejected. Since this is not in accordance with the classical
definition of power, we call it pseudo power.

In this article, we make use of the F̄ (F-bar) statistic for test-
ing hypothesis test Type A and hypothesis test Type B. The F̄ is
an adapted version of the well-known F statistic often used in
ANOVA and linear regression and can deal with order/inequality
constraints. The technical details of the F̄ statistic are discussed in
Supplementary Material, Appendix 2, including a brief historical
overview. To calculate the p-value of the F̄ statistic, we cannot rely
on the null distribution of F as in the classical F-test. However,
we can compute the tail probabilities of the F̄ distribution by
simulation or via the multivariate normal distribution function.
The technical details for computing the p-value based on the two
approaches are discussed in Supplementary Material, Appendix 3.

Several software routines are available for testing constrained
hypotheses using the F̄ statistic (hypothesis test Type A and Type
B). Ordered means may be evaluated by the software routine
“Confirmatory ANOVA” discussed in Kuiper et al. (2010). An
extension for linear regression models is available in theR package
ic.infer or in our own written R function csi.lm(). The func-
tion is available online at http://github.com/LeonardV/CSI_lm.
Hypothesis test Type A may also be evaluated by the statistical
software SAS/STAT® (SAS Institute Inc., 2012) using the PLM
procedure.

3. SAMPLE-SIZE TABLES FOR ORDER CONSTRAINED ANOVA
In this section we calculate the sample size according to a power
of 0.80 for hypothesis test Type J. We will in particular investigate
(a) the gain in power when we impose an increasingly number
of correctly specified order constraints on the One-Way ANOVA
model; (b) the pseudo power when some of the means are not in
line with the ordered hypothesis.

3.1. CORRECTLY SPECIFIED ORDER CONSTRAINTS
We consider the model yi = μ1xi1 + . . . + μkxik + εi, i =
1, . . . , n, where we assume that the residuals are normally
distributed. Data are generated according to this model with
uncorrelated independent variables, for k = 3, . . . , 8 groups, and
for a variety of real differences among the population means,
f = 0.10 (small), 0.15, 0.20, 0.25 (medium), 0.30, 0.40 (large),
where f is defined according to Cohen (1988, pp. 274–275). We
generated 20,000 datasets for N = 6, . . . , n, where n is eventually
the sample-size per group at a power of 0.80. The simulated
power is simply the proportion of p-values smaller than the
pre-defined significance level. In this study we choose the arbi-
trary value α = 0.05. An extensive description of the simulation
procedure is given in Supplementary Material, Appendix 4.

Table 1 shows the result of the simulation study in which
we investigated the sample size at a power of 0.80 for different

effect sizes and an increasing number of order constraints. For
example, the first row (nk30 ) presents the sample-sizes per group
for an ANOVA with k = 3 groups and no constraints. These
sample-sizes are equal to those in Cohen (1988)1. The second
row (nk31 ) shows the sample-sizes per group for k = 3 and 1
imposed order constraint, and so on. The values between the
parentheses show the relative sample-size reduction. The second
column represents the Type I error rates. The values are com-
puted based on the smallest sample size given in the last column
(S = 10,000, S is the number of datasets). All results are close to
the pre-defined value of α = 0.05, despite the fact that hypoth-
esis test Type J is a composite of hypothesis test Type A and
Type B.

The results show that, for any value of f , the sample size
decreases with the restrictiveness of the hypothesis. In other
words, more information about the means, provided by the order
constraints imposed on them, leads to a higher power. For exam-
ple, in case of a small effect size (f = 0.10) and k = 4, the total
sample size reduction with 1 constraint is 96 (274-250 = 24,
4 × 24 = 96), with 2 constraints 228 (4 × 57), and with 3 con-
straints 400 (4 × 100). Noteworthy, within a certain group k and
a given number of constraints, the sample size decreases relatively
equal across effect sizes. For example, if k = 4 and 3 constraints
are imposed, the sample size decreases approximately 36%, inde-
pendent of effect size. In addition, we compared the results of
hypothesis test Type J with the results of hypothesis test Type
A (not shown here). The results are almost identical and show
only some minor fluctuations, which confirms that hypothesis
test Type B only plays a significant role when the means are not in
line with the imposed order.

3.2. INCORRECT ORDER OF THE MEANS
The preceding calculations have all been for sets of means which
satisfy the order constraints. Its power (read pseudo power) when
the order of the means is not satisfied is also of our concern.
In particular we would like to know about the power when the
means are not perfectly in line with the ordered hypothesis. In
this vein, we focus on the scenario that k = 4, f = 0.10, 0.25, 0.40
and three order constraints. The two outer means are fixed and
only the two middle means are varied. For each value of f five
variations are investigated according to the rule μiγ (i = 2, 3),
where γ = 0, −0.25, −0.50, −0.75, −1, and reflects minor to
larger violations.

The results reveal that the power for Hypothesis test Type A
(HA0 vs. HA1) is largely dominated by the extremes (here the first
and last mean). This means that, irrespective of the deviations
of the two middle means, the power is almost not affected. The
results for hypothesis test Type B (HB0 vs. HB1) clearly show that
the power to detect mean deviations increases with sample size.
We can conclude that the pseudo power for Type J is less affected
by minor mean deviations, where large violations may affect the
pseudo power severely. This effect becomes more pronounced
with larger effect sizes.

1The unconstrained One-Way ANOVA sample-sizes may differ slightly (±1)
from the sample-sizes described in Cohen (1988). These differences can
completely be attributed to the number of simulation runs
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4. SAMPLE-SIZE TABLES FOR INEQUALITY CONSTRAINED
LINEAR REGRESSION

In this section we calculate again the sample size according to
a power of 0.80 for hypothesis test Type J. But now we impose
only an increasing number of correctly specified inequality con-
straints on the regression coefficients. We consider the model yi =
β1xi1 + . . . + βpxip + εi, i = 1, . . . , n, where we assume that the
residuals are normally distributed. Data are generated accord-
ing to this model with correlated independent variables and with
fixed and all equal regression coefficients (βi = 0.10). This is
because in a non-experimental setting, correlated independent
variables are the rule rather than the exception. Therefore, we
investigate this for the situations where the predictor variables are
weakly (ρ = 0.20) and strongly (ρ = 0.60) correlated. To make
a fair comparison with the ANOVA results, we also take ρ = 0
into account. Let f 2 be the effect size with f 2 = 0.02 (small), 0.05,
0.08, 0.10 (medium), 0.15, 0.20, 0.25, 0.35 (large), where f is
defined according to Cohen (1988, pp. 280–281). All remaining
steps are identical to the ANOVA setting. A detailed description
of the simulation procedure is given in Supplementary Material,
Appendix 5.

The first observations that can be made on the Tables 2, 3, and
4 are that all Type I error values (see second column) are close
to the pre-defined value of α = 0.05. The values are computed
based on the smallest sample given in the last column. Second,
in accordance with the ANOVA results, for any value of f 2, the
sample size decreases with the restrictiveness of the hypothesis.
Third, the relative decrease is independent of effect size.

Table 2 presents the results for ρ = 0. When we compare
these results with the ANOVA results in Table 1 it is clear that
imposing inequality constraints (e.g., βi > 0) on the regression

coefficients leads to a lower power compared to order constraints
(e.g., μ1 > μ2). For example, for the case that k = p = 5 and 4
constraints, the sample size reduction is approximately 40 and
29%, respectively. Moreover, at the maximum number of inequal-
ity constraints (here 5 constraints) the sample-size reduction of
about 36% is still less than when the parameters are fully ordered.
The results for a more realistic scenario (ρ = 0.20) are shown in
Table 3. The findings at a maximum number of inequality con-
straints are comparable with the ANOVA results. For example, the
total sample size decrease for p = 3, 5, 7 is approximately 34, 42
and 47%, respectively.

5. GUIDELINES
If researchers want to use our sample-size tables, then we recom-
mend the following 5 steps:

Step 1 : Formulate the hypothesis of interest.
Step 2a: Formulate any expectations about the order of the

model parameters in terms of order constraints (i.e.,
means in an ANOVA setting and regression coefficients
in a linear regression setting). For example, the expec-
tation that the first mean (μ1) is larger than the second
(μ2) and third mean (μ3) can be formulated in terms of
two order constraints, namely μ1 > μ2 and μ1 > μ3.

Step 2b: Formulate any expectations about the sign of the model
parameters in terms of inequality constraints. For exam-
ple, the expectation that three (continuous or dummy)
predictor variables are positively associated with the
response variable. This can be formulated in terms of
three inequality constraints, namely β1 > 0, β2 > 0 and
β3 > 0.

Table 3 | Sample-size table for linear regression model—total sample size at a power of 0.80 for Type J (α = 0.05) for p = 3, 5, 7, ρ = 0.20, and

an increasing number of correctly specified inequality-constraints.

Type I f 2 = 0.02 0.05 0.08 0.10 0.15 0.20 0.25 0.35

np30 0.049 549 222 142 114 78 60 49 37
np31 0.049 498 (−09.3%) 200 127 103 (−09.6%) 71 53 43 32 (−13.5%)
np32 0.048 441 (−19.7%) 177 113 090 (−21.1%) 61 47 38 28 (−24.3%)
np33 0.051 370 (−32.6%) 150 094 076 (−33.3%) 52 39 32 24 (−35.1%)

np50 0.050 648 263 168 136 93 72 58 44
np51 0.049 605 (−06.6%) 247 156 125 (−08.1%) 85 65 53 39 (−11.4%)
np52 0.046 563 (−13.1%) 226 143 117 (−14.0%) 79 61 50 37 (−15.9%)
np53 0.049 509 (−21.5%) 207 130 105 (−22.8%) 72 55 44 33 (−25.0%)
np54 0.053 451 (−30.4%) 180 115 093 (−31.6%) 62 48 39 29 (−34.1%)
np55 0.045 387 (−40.3%) 156 098 080 (−41.2%) 54 41 33 24 (−45.4%)

np70 0.050 723 296 188 153 105 80 66 50
np71 0.049 694 (−04.0%) 282 179 144 (−05.8%) 099 76 62 46 (−08.0%)
np72 0.048 651 (−09.9%) 265 169 136 (−11.1%) 092 71 58 43 (−14.0%)
np73 0.047 612 (−15.4%) 246 158 126 (−17.6%) 086 66 54 40 (−20.0%)
np74 0.049 565 (−21.8%) 229 145 117 (−23.5%) 080 61 50 37 (−26.0%)
np75 0.044 514 (−28.9%) 206 132 106 (−30.7%) 072 55 44 33 (−34.0%)
np76 0.047 453 (−37.3%) 186 116 094 (−38.5%) 064 49 39 29 (−42.0%)
np77 0.049 393 (−45.6%) 159 100 081 (−47.0%) 055 42 34 25 (−50.0%)

The value between parentheses is the relative decrease in sample size.
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Table 4 | Sample-size table for linear regression model—total sample size at a power of 0.80 for Type J (α = 0.05) for p = 3, 5, 7, ρ = 0.60, and

an increasing number of correctly specified inequality-constraints.

Type I f 2 = 0.02 0.05 0.08 0.10 0.15 0.20 0.25 0.35

np30 0.049 549 222 142 114 79 60 49 37

np31 0.050 507 (−07.6%) 206 129 105 (−07.8%) 71 54 44 33 (−10.8%)

np32 0.052 441 (−19.6%) 181 114 090 (−21.0%) 62 48 39 29 (−21.6%)

np33 0.050 334 (−39.1%) 137 086 071 (−37.7%) 48 36 30 21 (−43.2%)

np50 0.050 648 263 168 136 93 71 58 44

np51 0.045 626 (−03.3%) 254 160 131 (−03.6%) 89 67 55 41 (−06.8%)

np52 0.046 575 (−11.2%) 234 149 119 (−12.5%) 81 63 51 38 (−13.6%)

np53 0.045 525 (−18.9%) 214 137 109 (−19.8%) 75 57 46 34 (−22.7%)

np54 0.053 452 (−30.2%) 185 118 095 (−30.1%) 64 50 40 29 (−34.0%)

np55 0.051 344 (−46.9%) 139 088 071 (−47.7%) 48 36 30 22 (−50.0%)

np70 0.050 720 297 188 151 104 80 66 50

np71 0.045 714 (−00.8%) 291 186 148 (−01.9%) 102 78 64 48 (−04.0%)

np72 0.050 675 (−06.2%) 275 175 142 (−05.9%) 096 74 61 45 (−10.0%)

np73 0.052 635 (−11.8%) 260 165 134 (−11.2%) 090 70 57 42 (−16.0%)

np74 0.046 591 (−17.9%) 240 152 124 (−17.8%) 084 64 53 39 (−22.0%)

np75 0.049 531 (−26.5%) 219 137 110 (−27.1%) 076 58 47 35 (−30.0%)

np76 0.050 464 (−35.5%) 189 119 095 (−37.0%) 065 49 40 30 (−40.0%)

np77 0.045 344 (−52.2%) 139 088 071 (−52.9%) 048 36 30 22 (−56.0%)

The value between parentheses is the relative decrease in sample size.

Step 3: Count the number of non-redundant constraints in step
2a and/or 2b and lookup the needed sample-size in one
of the sample-size tables.

Step 4: Collect the data.
Step 5: Evaluate the constrained hypothesis by using for exam-

ple the csi.lm() function.

6. ILLUSTRATIONS
To illustrate our method, we consider the CBT and IQ examples.
We demonstrate how to use the sample-size tables in practice and
we present the R code of the csi.lm() function for testing the
constrained hypotheses. The results of the analyses are also briefly
discussed. The output of thecsi.lm() function for the ANOVA
and regression example is provided in Supplementary Materials,
Appendices 6 and 7, respectively. TheR code and example datasets
are available online at http://github.com/LeonardV/CSI_lm.

6.1. ANOVA
In the introduction, we discussed the following order-constrained
hypothesis (step 1):

HCBT : μnew_drug_CBT < μold_drug_CBT < μno_drug_CBT, (3)

where the researchers had clear expectations about the order
of the three means. These expectations were translated into
two order constraints between the parameters (step 2). The
next step, before data collection, is to determine the neces-
sary sample size to obtain a power of say 0.80 (α = 0.05)
when the two order constraints are taken into account (step 3).
Sample-size tables based on the classical F-test show that in

case of k = 3 and f = 0.25 53 subjects per group (159 sub-
jects in total) are necessary. If the researchers plan to use the
F̄-test instead of the classical F-test, then it can be retrieved
from Table 1 that with two order constraints 37 subjects (111
subjects in total) are needed (see row nk32 ). That is a total sample-
size reduction of about 48 subjects or about 30%. Then, in
order to evaluate the order constrained hypothesis, using the
csi.lm() function, the next four lines of R code are required
(step 5):

R> data <- read.csv("depression.csv")
R> model <- ’depression ~ -1 + factor

(group)’ # -1 no intercept
R> R1 <- rbind(c(-1,1,0), c(0,-1,1))
R> fit.csi <- csi.lm(model, data, ui = R1)

In the first line the observed data are loaded into R. The data
should be a data frame consisting of two columns. The first col-
umn contains the observed depression values, the second column
contains the group variable. The second line is the model syn-
tax and it is identical to the model syntax for the R function
lm(). The intercept was removed from the model so that the
regression coefficients correspond to the means as in an One-Way
ANOVA. The third line shows the imposed order-constraints,
where c(-1,1,0) indicates the first pairwise order constraint
between the first and the second mean and c(0,-1,1) the
second pairwise order constraint between the second and the
third mean. The forth line calls the actual csi.lm() function
for testing the order-constrained hypothesis. The arguments to
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csi.lm() are the model, the data and the matrix with the
imposed constraints.

The results (see Supplementary Material, Appendix 6) show
that for Hypothesis test Type B the order constrained hypoth-
esis is not rejected in favor of the unconstrained one, F̄B =
0.000, p = 1.000 (an F̄B-value of zero implies that the means
are completely in line with the imposed order). The results for
hypothesis test Type A indicate that the classical null hypothe-
sis is rejected in favor of the constrained hypothesis, F̄A = 4.414,
p = 0.038. Thus, the results are in line with the expectations of the
researchers. Noteworthy, when the order is completely ignored,
then the omnibus F-test is not significant, F = 1.718, p = 0.168.
This clearly demonstrates that the F̄-test has substantially more
power than the classical F-test.

6.2. MULTIPLE REGRESSION
The use of the linear regression sample-size tables is compara-
ble with the ANOVA sample-size table. Recall, that in the IQ
example, a group of researchers wanted to investigate the rela-
tion between the response variable IQ and five predictor variables
(step 1), namely social skills (β1), interest in artistic activities
(β2), use of complicated language patterns (β3), start walking age
(β4), and start talking age (β5). Their hypothesis of interest was
that the first three predictor variables are positively associated
with higher levels of IQ (β1 > 0, β2 > 0 and β3 > 0) and that
the last two predictors are negatively associated with IQ (β4 < 0,
β5 < 0) (step 2). Thus, a total of five inequality constraints were
imposed on the regression coefficients (step 3). Furthermore, the
researchers expected a medium effect size (f 2 = 0.10) for the
omnibus F-test and a weak correlation (ρ = 0.20) among the pre-
dictor variables. All things considered, classical sample-size tables
based on the F-test reveal that at least 136 subjects are necessary to
obtain a power of 0.80 (α = 0.05). However, when the expected
positive and negative associations are taken into account, then
from Table 3 it can be retrieved that by means of imposing five
inequality constraints, only 80 subjects are needed to maintain
a power of 0.80 (see row np55 ). That is a substantial sample-size
reduction of about 40% or 56 subjects.

The R code to evaluate this inequality constrained hypothesis
is analog to the ANOVA example (step 5):

R> data <- read.csv("IQ.csv")
R> model <- ’IQ ~ social + artistic +

language + walking + talking’
R> R1 <- rbind(c(0,1,0,0,0,0),

c(0,0,1,0,0,0), c(0,0,0,1,0,0),
c(0,0,0,0,-1,0), c(0,0,0,0,0,-1))

R> fit.csi <- csi.lm(model, data, ui = R1)

The results (see Supplementary Material, Appendix 7) show
that the inequality constrained hypothesis is not rejected in
favor of the unconstrained hypothesis, F̄B = 0.211, p = 0.847,
and that the null hypothesis is rejected in favor of the con-
strained hypothesis, F̄A = 10.707, p = 0.019. Thus, the results
are in line with the expectations of the researchers. The results
for the classical F-test are again not significant, F = 2.184,
p = 0.067.

7. DISCUSSION AND CONCLUSION
In this paper we presented the results of a simulation study in
which we studied the gain in power for order/inequality con-
strained hypotheses. The presented sample-size tables are compa-
rable with the sample-size tables described in Cohen (1988) but
with the added benefit that researchers will be able to look up
the necessary sample size with a pre-defined power of 0.80 and
number of imposed constraints.

We included an increasing number of order constraints in
the One-Way ANOVA hypothesis test and inequality constraints
in the linear regression hypothesis test. The ANOVA results, for
k = 3, . . ., 8 groups, showed that a substantially amount of power
can be gained when constraints are included in the hypothe-
sis. Depending on the number of groups involved, a maximum
sample-size reduction between 30 and 50% could be gained when
the full ordering between the means is taken into account. For
k > 4 it is questionable whether imposing less than two order
constraints is sufficient for the minor gain in power; for k > 7 this
may be questionable for less than three constraints. Furthermore,
we also investigated the effect of constraint misspecification on
the power. The results showed that small deviations have only a
minor impact on the power.

The linear regression results reveal that, for p = 3, 5, 7 param-
eters, the power increases with the restrictiveness of the hypothe-
sis independent of effect size. Again, a substantial power increase
between approximately 30 and 50% can be gained when taking
a correlation (ρ) of 0.20 between the independent variables into
account. These findings are comparable with the ANOVA results,
but only apply to the maximum number of constraints. In all
other cases, the results showed that an ordering of the param-
eters leads to a higher power compared to imposing inequality
constraints on the parameters. Nevertheless, full ordering of the
parameters may be challenging, while imposing inequalities on
the parameters may be an easier task. Hence, combining inequal-
ity constraints and order constraints may be a solution for applied
users.

The current study has some limitations. In the data generating
process (DGP) for the ANOVA model, we made some simplify-
ing assumptions: the differences between the means are equally
spaced, the sample size is equal in each group, there are no miss-
ing data, and the residuals are normally distributed. For the linear
regression model, the DGP assumes that the correlations between
the independent variables are all equal. In future research, the
effects of these assumptions on a possible power drop should be
studied. Moreover, we only investigated a limited set of possibil-
ities and extensions for α = 0.01 and different power levels are
desirable. However, because it is impossible to cover all possi-
bilities, we are currently working on a user-friendly R package
for constrained hypothesis testing which will include functions
for sample-size and power calculations. Despite these limitations,
we believe that the presented sample-size tables are a welcome
addition to the applied user’s toolbox, and may help convinc-
ing applied users to incorporate constraints in their hypotheses.
Indeed, notwithstanding the substantial gain in power, con-
strained hypothesis testing is still largely unknown in the social
and behavioral sciences, although the social and behavioral sci-
ences are a good source for ordered tests. For example, in an
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experimental setting, the parameters of interest (e.g., means)
can often be ordered easily. In a non-experimental setting vari-
ables such as “self-esteem,” “depression” or “anxiety” do not
conveniently lend themselves for such ordering, but attributing
a positive or a negative sign can often be done without much
difficulties.

In conclusion, including prior knowledge into a hypothe-
sis, by means of imposing constraints, results in a substantial
gain in power. Researchers who are dealing with inevitable small
samples in particular may benefit from this gain. Therefore, we
recommend applied users to use these sample-size tables and cor-
responding software tools to answer their substantive research
questions.
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