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Most models of risky decision making assume that all relevant information is taken into
account (e.g., von Neumann and Morgenstern, 1944; Kahneman and Tversky, 1979).
However, there are also some models supposing that only part of the information is
considered (e.g., Brandstätter et al., 2006; Gigerenzer and Gaissmaier, 2011). To further
investigate the amount of information that is usually used for decision making, and how
the use depends on feedback, we conducted a series of three experiments in which
participants choose between two lotteries and where no feedback, outcome feedback,
and error feedback was provided, respectively. The results show that without feedback
participants mostly chose the lottery with the higher winning probability, and largely
ignored the potential gains. The same results occurred when the outcome of each decision
was fed back. Only after presenting error feedback (i.e., signaling whether a choice was
optimal or not), participants considered probabilities as well as gains, resulting in more
optimal choices. We propose that outcome feedback was ineffective, because of its
probabilistic and ambiguous nature. Participants improve information integration only if
provided with a consistent and deterministic signal such as error feedback.
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INTRODUCTION
Risky choice behavior is often investigated by analyzing how per-
sons choose between different options or lotteries of a monetary
gamble. For these structures, which are defined by the possible
outcomes (gains or losses) and associated probabilities, the opti-
mal decision can be obtained by calculating the expected value
(EV) for each lottery. Consequently, a decision can be considered
optimal if the option with the largest EV is chosen.

Soon after the introduction of such choice problems it became
clear that people often do not decide “rationally” in this sense
of optimality. Therefore, researchers proposed alternative mod-
els of human choice behavior. A first idea was that the monetary
gains of a gamble do not necessarily represent their subjective
value for the decision maker. Accordingly, utility functions were
introduced (Bernoulli, 1954) that transform monetary gains into
utilities, i.e. subjective values reflecting the amount of satisfaction
the gains will eventually produce. By substituting the monetary
values of a gamble by their utilities, as assumed in the Expected
Utility (EU) theory (von Neumann and Morgenstern, 1944), the
expected utility can be computed for each option, and a decision
is considered as optimal, if the option with the highest result was
chosen. However, even EU theory could not satisfactorily account
for some aspects of human choice behavior. Therefore, in their
Prospect Theory (PT), Kahneman and Tversky (1979) assumed,
among others, that the probabilities within a gamble have also
to be transformed to represent systematic subjective distortions
(e.g., underestimation of small probabilities).

Obviously, these models assume that all relevant informa-
tion for finding an optimal choice is available. Accordingly, they

were mostly tested in so-called description-based decision studies,
where fully described gambles are presented once (e.g., Hertwig
et al., 2004). For many decisions, however, one rarely knows
all relevant facts (e.g., Simon, 1955). Therefore, experience-based
decision studies have also been conducted, where gambles, like the
Iowa Gambling Task (IGT; Bechara et al., 1994), are described only
partially but administered repeatedly. Obviously, in these studies
part of the participants’ task is to learn and/or infer the defining
probabilities and values of a gamble from the feedback of gains
and losses.

However, even if the information for an optimal decision is
available, as in description-based studies, participants do not
necessarily process all the relevant data. Gigerenzer and col-
leagues, for instance, have shown that decisions are often based
on heuristics that take only a fraction of the available infor-
mation into account (e.g., Brandstätter et al., 2006; Gigerenzer
and Gaissmaier, 2011). Nevertheless, it is conceivable that, if
fully described gambles are processed repeatedly, information
processing and the applied heuristics change with experience.
Unfortunately, little is known in this respect as the focus was
on either description-based gambles (e.g., Brandstätter et al.,
2006; Glöckner and Betsch, 2008; Rieskamp, 2008; Fiedler and
Glöckner, 2012), experience-based gambles (e.g., Lejuez et al.,
2002; Barron and Erev, 2003; Hertwig et al., 2004), or their com-
parison (e.g., Hertwig et al., 2004; Camilleri and Newell, 2011;
Glöckner et al., 2012). Therefore, the aim of the present study
was to investigate gambles that combine both characteristics. One
question was which decision strategies are applied. In most stud-
ies, participants were not informed about the outcome of their
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single choices, which presumably prevented learning. However, if
this information is provided, participants may be encouraged to
test different strategies to figure out their effectiveness and even-
tually maintain the most successful one instead of continuously
applying their initially preferred strategy. Because strategy eval-
uation largely depends on feedback, a further question was, to
what extent strategies and choices in repeated gambles depend on
the type of the provided information. Yechiam and Busemeyer
(2006), for example, found that choices were generally less risky
when participants were informed about the outcome after each
choice. However, different feedback types vary with respect to
their information content so that they presumably also affect
the learning of choice behavior differently. In the present study,
we tested how outcome feedback and normative error feedback
influence choices compared to when feedback is absent.

For investigating choice performance in the present study, we
applied a specific version of the Wheel of Fortune task (WOF; Ernst
et al., 2004; Smith et al., 2009). In this computerized gamble par-
ticipants had to choose one of two lotteries, A and B. In each
lottery they could win a certain amount of money x with prob-
ability p or nothing (x = 0) with probability 1 – p. Moreover,
the winning probabilities of the two competing lotteries added
up to 1 (i.e., pA = 1 – pB). The probabilities of each lottery
were presented as pie charts, and the gains as numbers above
the corresponding pies (see Figure 1). Thus, because all relevant
information was available, according to the PT, EU, and EV theo-
ries, the lottery with the larger attractiveness, expected utility, or
expected value should be chosen, respectively. However, there are
also heuristics that use only partial information. For instance, the
Most-Likely (ML) heuristic demands to select the lottery with the
larger winning probability. With respect to the gambles used in
our experiments, this rule is equivalent to the Priority Heuristic

(PH; Brandstätter et al., 2006). Alternatively, one can chose the
lottery with the larger gain, as stated by the Maximax (MM)
heuristic.

The aim of the present study was to examine how well these
different theories and heuristics account for human choice per-
formance. For this objective, two types of gambles were con-
structed and presented equally often. In pro-win gambles, the
EV-optimal choice (optimal according to EV theory) was asso-
ciated with the higher winning probability, whereas in pro-gain
gambles it corresponded to the higher amount of money (see
Table 1). Consequently, a person who applies the ML heuristic
(i.e., chooses the lottery with the higher winning probability),
performs EV-optimally in pro-win gambles, but not in pro-gain
gambles. In contrast, for persons applying the MM heuristic, the
opposite would be the case. Consequently, only if probabilities
and gains are combined in some beneficial way, choices can be
optimal in more than 50% of the trials.

The two types of gambles also served our goal to examine the
dynamics of choice processes. Obviously, the strategies differ in

Table 1 | Overview of the composition of lotteries regarding the

presented lottery information as indicator for optimal and

non-optimal choices (gamble type).

Type of gamble Optimal choice* Suboptimal choice

Probability Gain Probability Gain

pro-win high small low large

pro-gain low large high small

*Choosing the lottery with the higher expected value is defined as optimal

choice.

FIGURE 1 | Experimental procedure of the Wheel of Fortune task with outcome feedback as used in Experiment 2. Participants had to decide whether
they wanted to play the lottery with the higher winning probability (left) or the one with the higher potential gain (right).
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complexity, which suggests that their application differs in mental
effort. ML and MM are relatively easy to perform and, therefore,
might be executed relatively automatically, whereas EV and PT
are based on calculations that require controlled and effortful
mental processes. Thus, first of all, we expected that choices
based on ML and MM are faster than those relying on EV and
PT. Moreover, we hypothesized that individuals apply different
strategies across trials. For instance, it is conceivable that auto-
matic and controlled processes compete in a race, as assumed by
dual-process models (e.g., Hübner et al., 2010; Mukherjee, 2010).
Thus, even if persons intend to integrate the provided informa-
tion, on some trials, the required slow computational processes
might be superseded by a fast automatic process that chooses, for
instance, the lottery with the higher probability of winning. A
gain-domain specific overweighting of higher probabilities over
higher outcomes for lotteries with the same EV has already been
observed and called risk-aversion (Tversky and Kahneman, 1981),
p-dominance, or probability-dominance (Fiedler and Unkelbach,
2011). Because this dominance is presumably most influential for
fast responses, it needs to be suppressed by controlled processes
to allow for an integration of values. We therefore expected that
choice performance improves with an increasing response time,
at least in pro-gain gambles in which information integration
is beneficial. It has already been proposed that decision makers
adaptively choose strategies from a toolbox (Payne et al., 1993).
A race between strategies could also explain why studies in which
individuals are classified according to their applied strategy often
identify more than one strategy for a single person (e.g., Glöckner,
2009; Davis-Stober and Brown, 2011).

To see whether the observed response times (RTs) indicate
a mixture of automatic and controlled processes, we consid-
ered conditional choice functions (CCFs). These functions are
adapted versions of conditional accuracy functions, which have
been applied to analyze perceptual decisions (e.g., Gratton et al.,
1992; Hübner and Töbel, 2012). CCFs provide choice proportions
as function of RT, and can, as we will demonstrate, give use-
ful insights in the domain of risky choices. For example, if the
same strategy is used throughout an experiment, and the speed of
the corresponding processes merely varies randomly across tri-
als, then the CCFs should be flat. However, if fast choices are
caused by automatic heuristics and slow ones by complex but
favorable computations, then the proportion of optimal choices
should systematically increase with RT.

Our ideas were tested in three experiments, which differed
with respect to the type of feedback that was provided. After
observing performance without any feedback (Experiment 1), we
provided outcome feedback (Experiment 2) and error feedback
(Experiment 3). Additionally, to analyze mean performance and
changes in choice behavior within the experiments, we also fitted
different decision models to the data and compared their overall
performance. Finally, CCFs were computed and analyzed.

EXPERIMENT 1
Our first experiment served for collecting baseline choice data
in a condition without any feedback. The absence of feedback is
common in risky-choice experiments, especially in those with a
one-shot paper-pencil procedure. Here, a choice between lotteries

was required repeatedly. Apart from fitting and comparing the
performance of different choice strategies, the central focus was
on gathering information about the time course of how the
presented lottery information is taken into account.

METHODS
Participants
A total of 17 participants (12 female), aged between 19 and
58 years (M = 24.5, SD = 8.9), from the Universität Konstanz,
participated in the experiment. Participants, recruited via our
laboratory’s participant database, received either course credit or
money at the end of the experiment. They were told that, in addi-
tion to a base payment of C5, they could win a certain proportion
of C5, depending on their decisions (i.e., the total proportion of
money actually won across all trials from the maximum possible
amount)1.

Material and procedure
As task served a specific version of the Wheel of Fortune task
(WOF; Ernst et al., 2004; Smith et al., 2009). Each gamble had
one of two combinations of winning probabilities: 60:40, and
80:20. The first combination, for example, means that one lot-
tery had a 60% chance of winning a certain amount of money
and a 40% chance of winning nothing. The competing lottery
had a 40% chance of winning a certain amount of money and
a 60% chance of winning nothing. The two probabilities were
represented by two pie charts. As shown in Figure 1, the colored
(blue and orange) portions of the pie reflected the winning prob-
abilities, where blue always indicated the higher probability. The
white areas represented the probabilities of winning nothing.

The gains for each lottery ranged from 1 to 600 Cent
(Eurocent). They were randomly selected, but restricted in two
ways: First, for each gamble, the difference in gain between the
two lotteries could either be 50 or 200 Cent, with a ±10 Cent jitter.
By jittering the values, variability was increased in order to min-
imize learning effects through recognition of specific pairs, and
also allowed to test the influence of the magnitude of the value
difference. Second, probability-value pairs had to be in line with
our manipulation of gamble type, as explained below.

In the original version of the WOF (Ernst et al., 2004; Smith
et al., 2009), the option with the highest winning probability had
an overall advantage with respect to choosing EV-optimally. The
gambles in our experiments, however, can be categorized into two
types. For pro-win gambles, the lottery with the higher winning
probability represents the optimal choice according to EV the-
ory, whereas for pro-gain gambles the lottery with the higher gain
is optimal. An overview of these configurations can be found in
Table 1. It is noteworthy that we omitted lotteries where both the
higher probability and the higher gain indicated EV-optimality.

1The experiment was performed in accordance with the ethical standards laid
down in the 1964 Declaration of Helsinki and its later amendments. In agree-
ment with the ethics and safety guidelines at the Universität Konstanz, we
obtained a verbal informed consent statement from all individuals prior to
their participation in the study. Potential participants were informed of their
right to abstain from participation in the study or to withdraw consent to
participate at any time without reprisal.
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Participants had to choose the left or right lottery as quickly
as possible by pressing the left or right mouse key, respectively.
The left/right position of the lotteries was randomized across tri-
als. Each trial started with the presentation of all information
(see Figure 1). After each choice, another gamble was presented.
Participants had one training block to familiarize with the mode
of presentation.

Altogether, the experiment comprised a 2 (80:20 vs. 60:40) ×
2 (50 vs. 200 Cent) × 2 (pro-win vs. pro-gain) within-participant
design. For each of the 8 condition there were 120 trails, result-
ing in 960 trials (divided in 40 blocks of 24 randomized trials).
Participants were not informed about the number of trials to
avoid riskier choices at the end of the experiment. However, they
were informed about the length of the study.

Analysis of strategy fit
To assess whether the observed choice proportions are in line
with a specific strategy or heuristic, we compared five prominent
choice strategies (of which two yielded the same predictions). The
strategies differ with respect to the extent to which the available
information is used.

- Most-Likely / Priority Heuristic (ML/PH): For both strategies,
the lottery with the higher winning probability has to be
chosen. According to the Most-Likely heuristic, only the high-
est winning probabilities are compared. The Priority Heuristic
assumes that choices are made by sequentially comparing min-
imum gains, minimum probabilities and maximum gains.
The examination of a gamble is stopped if, for example,
minimum gains differ by 1/10 of the maximum gain, oth-
erwise the next aspect of the gambles is examined. For the
gambles in this experiment ML and PH predict the same
choices2.

- Maximax (MM): The lottery with the larger gain has to be
chosen, irrespective of the winning probabilities.

- Expected Value theory (EV): For each lottery, the expected value
(probability × gain) is computed and the lottery with the
higher EV is chosen.

- Cumulative Prospect Theory (CPT): The lottery with the higher
attractiveness according to CPT is chosen. How attractiveness
is calculated and how the required parameters were estimated
for every subject using a probabilistic choice rule is described
in next section. The averaged parameter estimates for all exper-
iments can be found in Table 2. For each of the 960 lotteries,
predictions were computed.

Parameter estimation of cumulative prospect theory
According to Cumulative Prospect Theory (CPT; Tversky and
Kahneman, 1992), the subjective value V of a lottery A is
defined as,

2We applied the three rules formally described by Glöckner and Betsch (2008).
As the minimum gains of both lotteries were zero and did not differ, Step
1 had to be skipped. In Step 2, the probabilities of the minimum gains had
to be compared. For each of the lotteries, the differences of the minimum
probabilities pmin(B) − pmin(A) exceeded the aspiration level of 0.10 (0.80 −
0.20 = 0.60 or 0.60 − 0.40 = 0.20), thus Lottery A had to be chosen. As Step
2 applied to all lotteries, Step 3 was not considered.

Table 2 | Averaged parameters for Cumulative Prospect Theory (CPT).

CPT Parameter Experiment 1 Experiment 2 Experiment 3

No feedback Outcome feedback Error feedback

α 0.68 (0.35) 0.32 (0.32) 0.93 (0.24)

γ 1.40 (0.21) 1.29 (0.44) 1.40 (0.36)

δ 0.36 (0.27) 0.97 (1.08) 0.36 (0.11)

ϕ 0.69 (0.78) 2.23 (2.77) 0.01 (0)

Values show the mean parameters with standard deviations in brackets.

V (A) = v (x) · w
(
p
)
, (1)

where the value function v characterizes the subjective value of a
single lottery’s gain x, and the probability weighting function w
denotes the transformation of the corresponding probabilities p.
In the present study, a lottery consisted of two probability-gain
pairs. The potential gain of one pair was always zero. Thus, one
probability-gain pair was only needed for the calculation of V(A).

As value function, we used the function proposed by Tversky
and Kahneman (1992),

v (x) = xα if x ≥ 0, (2)

where α determines the curvature of the value function. A value
of α = 1 would indicate that subjective and objective values are
identical, whereas α < 1 indicates decreasing subjective values
with increasing objective values.

We furthermore implemented a two-parameter probability
weighting function proposed by Gonzalez and Wu (1999),

w
(
p
) = δpγ

δpγ + (
1 − p

)γ if x ≥ 0, (3)

where γ controls the curvature, with γ < 1 indicating an over-
weighting of small probabilities. The parameter δ denotes the
elevation of the function, and is interpreted as characterizing the
attractiveness of a lottery (Glöckner and Pachur, 2012).

To determine the probability of choosing Lottery A over
Lottery B, we used the exponential version of Luce’s choice
rule3,

p (A, B) = eϕV(A)

eϕV(A) + eϕV(B)
, (4)

where V denotes the subjective value of the entire Lottery A or
B, and ϕ describes the sensitivity of how the model reacts to
differences in-between the subjective values of the two lotteries.
A large ϕ indicates that the choice probabilities are a function
of the lotteries’ subjective value difference, rather than based on
probabilistic choices (e.g., Rieskamp, 2008).

3For some combinations of lottery values, probabilities and parameter sets,
the Luce rule component eϕ·V(A) can yield infinite values. We solved the prob-
lem by setting the choice predictions of respective lotteries to 1. Additionally,
we added a penalty to the goodness-of-fit measure G2, in order to avoid the
optimization routine to further explore an inappropriate parameter space.
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As goodness-of-fit measure we used the G² statistic (e.g., Sokal
and Rohlf, 1994),

G2 = −2
n∑

i=1

ln[fi
(
y | θ

)], (5)

where n denotes the total number of lottery choices, and fi(y|θ)
represents the probability of choosing a lottery y given parame-
ter set θ. If Lottery A or B was chosen, then fi(y|θ) = pi(A, B),
or fi(y|θ) = 1 − pi(A, B), respectively. Following suggestions of
Rieskamp (2008), choice probabilities were truncated to a min-
imum of 0.01 and a maximum of 0.99.

CPT parameters were restricted to 0 < α ≤ 1, 0 < γ ≤ 1.5,
0 < δ ≤ 4, and 0 < ϕ ≤ 10. Usually, γ is not allowed to be larger
than 1. However, experienced-based decisions are typically char-
acterized by an underestimation of small probabilities, which can
be reflected by γ > 1.

To derive the set of best fitting parameters, we used the statisti-
cal software R (R Development Core Team, 2010). We first applied
a grid search within entire parameter space in steps of 0.1 to derive
appropriate starting values for each participant. We then used
the optimization function optim, with the L-BFG-S method4 to
obtain a set of best fitting parameter values for each participants
by minimizing G2.

Conditional choices functions
To examine how participants’ choice behavior varies with
response time Conditional Choice Functions (CCFs) were con-
structed for each experimental condition and participant by sort-
ing the corresponding data into five 20% bins. We then computed
the proportion of optimal choices (according to EV theory) and
the mean RT for each bin. The resulting values were then averaged
across participants in order to obtain a group distribution (for an
evaluation of this method, see Rouder and Speckman, 2004).

RESULTS
All analyses were conducted with R (R Development Core Team,
2010) and visualized using the package ggplot2 (Wickham, 2009).

Choices with RTs smaller than 200 ms and larger than 3000 ms
were considered as outliers and excluded from analysis (<0.6% of
all data).

Choice behavior
The mean choice proportions show that the lottery with the
higher winning probability was chosen on 70.3% (SD = 45.8%)
of the trials. For pro-win gamble this lottery was chosen more
frequently (M = 82.5%, SD = 38.0) than for pro-gain gam-
bles (M = 57.5%, SD = 49.4%). A repeated-measures ANOVA
revealed that the factor gamble type was significant, F(1, 16) =
38.60, p < 0.001, ηG2 = 0.707.

Block by block learning
To test whether choice proportions changed across experimen-
tal blocks, we subjected the data to a 2 (gamble type) ×

4The L-BFG-S method within the optim-function allows the setting of inde-
pendent constraints for each parameter.

40 (block number) repeated-measures ANOVA. No significant
effects involving block number were present, suggesting stability
over the time course of the experiment (see Figure 2B).

Strategy fits
Using the parameter estimates obtained from model fitting, CPT
predicted that, on average, lotteries with higher winning probabil-
ities are chosen in 73.4% of the trials. Other strategies predicted
overall proportions of either 0% (MM), 50% (EV), or 100%
(ML/PH) choices for the same lotteries. As a goodness-of-fit mea-
sure, we computed the proportion of correct predictions based
on single decisions for each strategy. The strategy with the over-
all highest fit to the observed data was ML/PH (M = 70.0%,
SD = 45.8%), followed by CPT (M = 68.3%, SD = 46.5%),
EV (M = 62.5%, SD = 48.4%), and MM (M = 30.0%, SD =
45.8%). However, paired t-tests revealed no significant differences
between the fits of EV, CPT, and ML/PH (see Table 3).

As Figure 2A shows, the fit was not equally well between gam-
ble types. Except for MM, the strategies fared better in predicting
pro-win gambles than pro-gain gambles. The differences between
gamble types were significant for every strategy, paired |ts| >

4.51, ps <. 001, and Cohen’s |ds|> 1.555.

Conditional choices
Figure 2C shows the CCFs for the two gamble types in the
different conditions. As can be seen, for fast responses more
EV-optimal choices were made in pro-win gambles (blue line),
compared to pro-gain gambles (red line). This indicates that
spontaneously the lottery with the higher winning probabil-
ity was chosen. With an increasing RT, however, the propor-
tions changed. Whereas the proportion of EV-optimal choices
decreased for pro-win gambles, it increased for pro-gain gambles.

The black lines in Figure 2C represent the average CCFs, which
indicate whether the overall performance increased with RT.
Linear regression coefficients were computed for each participant
and average CCF. The slopes indicate whether the proportion of
EV-optimal choices increased with RT in steps of 1 ms (positive
slopes), decreased with RT (negative slopes) or remained constant
(slopes close to zero). They were subjected to a 2 (probabilities:
80:20, 60:40) × 2 (gain differences: 200, 50) repeated-measures
ANOVA.

The analysis revealed an overall increase of optimal responses
as the intercept term indicated a significant deviation of the
slopes’ grand mean (M = 0.008, SD = 0.037) from zero, with
F(1, 16) = 9.41, p < 0.01, ηG2 = 0.232. The base level of opti-
mal responses, that is the averaged point where CCF regression
lines intersect with the y-axis at 0 ms, was at 56.9%. In addi-
tion, we found a main effect of probability with F(1, 16) = 11.03,
p < 0.01, ηG2 = 0.114 (b̄80:20 = 0.013 and b̄60:40 = 0.003). As
can also be seen in Figure 2C, the average proportion of opti-
mal choices increased substantially with RT in 80:20 gambles, but
only weakly improved in 60:40 gambles. There were no further
significant results.

5Detailed analyses for the comparisons of pro-win and pro-gain gambles are
available from the authors upon request.
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FIGURE 2 | Overview of the results for the modified Wheel of Fortune task without feedback. (A) Proportions of correctly predicted choices for pro-win
and pro-gain gambles across different strategies, (B) changes of choice proportions across 40 experiment blocks, and (C) conditional choice functions (CCFs).

DISCUSSION
The results clearly show that participants performed nearly opti-
mally in pro-win gambles, but chose suboptimally in pro-gain
conditions. This indicates that participants based their decisions
mostly on partial information. More specifically, they largely
neglected the monetary outcomes and preferred the lottery with
a higher winning probability. This conclusion is also supported
by results obtained from comparing different decision strategies
with the observed choice behavior. The ML/PH strategy, accord-
ing to which the lotteries with the higher chance of winning
should always be chosen, explained our results better than the
other strategies. The match was even better for pro-win gambles,

which suggests that these gambles further encouraged the use of
such a strategy. CPT did equally well in predicting the choices. In
this model probability-dominance was reflected by a rather flat
value function (see parameter estimations in Table 2), indicating
that choices were mainly driven by probabilities.

By comparing decision strategies with choice proportions, one
assumes that participants always use the same strategy through-
out the experiment. However, it is reasonable to assume that
several strategies compete for execution and that, therefore, the
observed performance reflects a mixture of applied strategies.
Furthermore, if simple but fast strategies compete with more
optimal but slow ones, then this should be reflected by the CCFs.
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Indeed, as can be seen in Figure 2C, the proportion of optimal
choices changed substantially with RT. They decreased for pro-
win gambles but increased for pro-gain ones. This indicates that
fast choices relied more on simple strategies that take only par-
tial information into account, whereas slow choices were based
on more information. Specifically, the CCFs suggest that fast
responses resulted from the application of ML/PH, i.e., from
simply choosing the lottery with the higher winning probabil-
ity. For slower responses more or other information was taken
into account. The fact that the overall performance increased
with RT indicates that the participants did not only switch from
the ML/PH to the MM strategy, because in this case overall per-
formance would have remained constant with RT. Rather, the
increase in performance signals that slower responses were indeed
based on some integration of probability and gain information,
which was particularly the case for 80:20 gambles. That lotter-
ies with a higher chances of winning are generally preferred is
already known (e.g., Kahneman and Tversky, 1984). However, up
to now, it has not been shown that this preference declines with
the duration of processing (but see Dambacher et al., unpublished
manuscript).

Although repeated choice performance improved for slow
responses, it was still far from optimal. One reason could have
been that no feedback was provided. Without this information
the participants were obviously not able to adjust their behav-
ior toward optimal performance and simply stuck to their initial
choices preference. To see whether feedback helps to improve
performance, we conducted a further experiment.

EXPERIMENT 2
This experiment was similar to our first one, except that feedback
was provided. Specifically, after each choice, the chosen lottery
was played by the computer and the respective outcome (x Cent
or nothing) was presented on the display. If participants can use
this information to improve their choice strategy, then perfor-
mance should be better than in our first experiment. Moreover,
due to learning, performance should now improve during the
experimental session. To see whether this is the case, and if so,
how quickly learning takes place, we again examined how the pro-
portion of optimal choices varied across the experimental blocks.
Finally, learning could produce a generally increased mean RT,
because more time is spent for information integration. In the
CCFs this should be reflected by a shift to longer RTs and/or flat
curves, if a single strategy has been adopted.

METHODS
Participants
Nineteen participants (16 female, 3 male; aged between 18 and
45 years, M = 22.5, SD = 6.3) took part in the experiment.
All were students from the Universität Konstanz, and did not
participate in the previous experiment. They received either
course credit or monetary incentives for their participation,
with the same payment structure as in the previous experiment
(see Footnote 1).

Material and procedure
We used the same procedure as in Experiment 1, except that, after
each choice, the chosen lottery was played by the computer and

the resulting outcome was presented at the center of the screen.
300 ms later the next gamble started (see Figure 1).

RESULTS
Responses faster than 200 ms and slower than 3000 ms were con-
sidered as outliers and excluded from analysis (<0.6% of all
data).

Choice behavior
Across all trials, lotteries with a higher probability of winning
were chosen in 73.0% (SD = 44.2%) of the cases. This pro-
portion was higher for pro-win gambles (M = 80.5%, SD =
39.6%) than for pro-gain gambles (M = 65.4%, SD = 47.6%).
A repeated-measures ANOVA indicates that this difference of
gamble types was significant, with F(1, 18) = 26.58, p < 0.001,
ηG2 = 0.596.

Block by block learning
To test whether the choice proportions changed during the ses-
sion, we extended the repeated-measures ANOVA by the factor
block number (1 – 40), which revealed a significant interaction,
F(39, 702) = 1.49, p < 0.05, ηG2 = 0.020. As Figure 3B shows,
choice proportions for the lottery with the higher winning proba-
bility increased slightly stronger in pro-gain gambles, compared to
the relatively constant proportions in pro-win gambles. However,
the data do not suggest a systematic increase of optimal perfor-
mance with experience, because this should have resulted in an
increasing number of choices for the lottery with higher gain in
pro-gain gambles.

Strategy fits
Figure 3A shows the fit of the different choice strategies. The best
fit with the observed performance was obtained for ML/PH (M =
73.0%, SD = 44.2%) closely followed by the CPT (M = 69.6%,
SD = 46.0%), EV (M = 57.6%, SD = 49.4%), and MM (M =
27.1%, SD = 44.2%). Apart from ML/PH and CPT, the overall
fit significantly differed between the strategies (see Table 3).

As in Experiment 1, differences for the gambles types could
be observed. The strategy fits were better in pro-win gambles
compared to pro-gain gambles, except for MM. The differences
between gambles types were significant for each strategy, paired
|ts| > 5.17, ps < 0.001, and Cohen’s |ds|> 1.68.

Conditional choices
A 2 (probabilities) × 2 (gain difference) repeated-measures
ANOVA of the CCF slopes revealed a significant intercept,
F(1, 18) = 21.40, p < 0.001, ηG2 = 0.333. The positive grand
mean of slopes (M = 0.011, SD = 0.057) indicates an over-
all increase of optimal responses with RT. The base level of
optimal responses was at 49.1%. A significant main effect also
occurred for probabilities, F(1, 18) = 6.78, p < 0.05, ηG2 =
0.093, (mean slopes: b̄80:20 = 0.016, and b̄60:40 = 0.006). As
Figure 3Cs shows, for 80:20 gambles more optimal choices were
made as RT increased, whereas the increase was only weakly the
case in 60:40 gambles. The latter was mainly driven by a strong
decline of optimal responses for pro-win gambles with 60:40
lotteries.
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FIGURE 3 | Overview of the results for the modified Wheel of Fortune task with outcome feedback. (A) Proportions of correctly predicted choices for pro-win
and pro-gain gambles across different strategies, (B) changes of choice proportions across 40 experiment blocks, and (C) conditional choice functions (CCFs).

Comparison with Experiment 1
In order to test for differences between Experiments 1 and 2,
we compared participants’ mean slopes and mean intercepts. For
the mean slopes (Exp. 1: 0.008; Exp. 2: 0.011), there was no sig-
nificant difference, paired t(33.3) = −0.85, p = 0.401, Cohen’s
d = −0.28. The intercepts (Exp. 1: 56.9; Exp. 2: 49.1), however,
did significantly differ, paired t(22.8) = 2.10, p < 0.05, Cohen’s
d = 0.70. CCFs were highly similar to those in Experiment 1.
However, choices for lotteries with high winning probabilities in
pro-gain gambles were more pronounced in very fast RT bins.
This did not affect slope differences but resulted in an overall shift
of the intercept toward less optimal responses.

DISCUSSION
In this experiment outcome feedback was provided after each
choice. Surprisingly, it had little effect. Participants’ performance
was similar to that in Experiment 1, where no feedback was given,
and where performance did not improve during the experimen-
tal session. Participants again preferred lotteries with a higher
probability of winning, which is again reflected in CPT by a
flat value function (see Table 2). Also the CCFs were similar
to those in the previous experiment. Impulsive choices mainly
followed the ML/PH strategy, whereas for slower choices also
the gains were taken into account. However, this did not always
lead to more optimal choices. In particular, participants had
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Table 3 | Paired comparisons of the overall proportion of correctly predicted choices within the three experiments, with t-statistic and effect

size Cohen’s d.

No feedback Outcome feedback Error feedback

t df p d t df p d t df p d

EV vs. CPT −1.32 16 0.207 −0.45 −3.30 18 ** −1.07 17.49 16 *** 6.18

EV vs. ML/PH −1.26 16 0.226 −0.43 −3.00 18 ** −0.97 12.60 16 *** 4.46

EV vs. MM 9.39 16 *** 3.22 8.76 18 *** 2.84 12.60 16 *** 4.45

CPT vs. ML/PH −0.89 16 0.384 −0.31 −1.80 18 0.088 −0.59 6.51 16 *** 2.30

CPT vs. MM 5.26 16 *** 1.81 6.52 18 *** 2.12 4.09 16 *** 1.45

ML/PH vs. MM 4.52 16 *** 1.55 5.56 18 *** 1.81 0.57 16 0.579 0.2

EV: Expected value; CPT: Cumulative Prospect Theory; ML/PH: Most-Likely/Priority Heuristic; MM: Maximax; **p < 0.01; ***p < 0.001; df: degrees of freedom.

difficulties to properly integrate feedback information when con-
fronted with similar outcome probabilities, such as for 60:40
lotteries.

Thus, outcome feedback seems not to be sufficient for gen-
erally improving choice performance. This raised questions
about the type of feedback. What information might be appro-
priate for improving choice performance? Or are participants
generally unable to learn a more optimal strategy under the
present conditions? These questions were examined in the next
experiment.

EXPERIMENT 3
This experiment was similar to the previous one, except that a
different type of feedback was provided. Whereas the outcome
feedback in the previous experiment indicated only probabilis-
tically whether a choice was optimal or not, the feedback in
the present case indicated whether the choice was “mathemati-
cally” optimal (i.e., EV-optimal) or not. Because this feedback is
not only deterministic, but also more informative than outcome
feedback, we hypothesized, that it should improve performance,
compared to the previous experiments.

METHODS
Participants
Seventeen psychology students (2 male, aged between 18 and 33
years, M = 21.2, SD = 3.5) from the Universität Konstanz, par-
ticipated in the experiment, either for course credit or money (see
Footnote 1). None of the participants took part in the previous
two experiments.

Material and procedure
The procedure was the same as in Experiment 2, except that error
feedback was given on trials on which the lottery with the lower
expected value was chosen. For one second, a text was presented
at the center of the screen stating that the choice was not optimal.
After an optimal choice, no feedback was given and the next trial
started without delay.

RESULTS
Choices with RTs smaller than 200 ms and larger than 3000 ms
were considered as outliers and excluded from analysis (<3.7% of
all data).

Choice behavior
The lottery with the higher winning probability was chosen more
frequently in pro-win gambles (M = 78.6%, SD = 41.0%) than
in pro-gain gambles (M = 23.2%, SD = 42.2%). This main effect
of gamble type was significant, F(1, 16) = 272.99, p < 0.001,
ηG2 = 0.945.

Block by block learning
To test whether error feedback improved participants’ choice dur-
ing the experimental session, we computed a 2 (gamble type)
× 40 (block number) repeated-measures ANOVA. The analyses
revealed that block number was not involved in any significant
effect. Thus, choice proportions remained steady across blocks
(see also Figure 4B). However, a visual inspection suggested that
there was at least a small trend of learning in the first five blocks.

Strategy fits
An inspection of the overall proportion of correct predictions of
the tested strategies revealed that EV-based choices were of supe-
rior match (M = 77.7%, SD = 41.6%), compared to CPT (M =
58.5%, SD = 49.3%), ML/PH (M = 50.8%, SD = 50.0%), and
MM (M = 49.2%, SD = 50.0%), of which only the latter two did
not significantly differ from each other in a pairwise comparison
(see Table 3).

By taking the gamble type into account (see Figure 4A), the
predictions suggest that participants decided on the majority of
trials according to EV, irrespective of whether a high gain or a high
probability indicated the optimal choice, paired t(16) = 0.62, p =
0.541, Cohen’s d = 0.21. The remaining strategies significantly
differed in their fit within gamble types, paired |ts| > 8.55, ps
<0.001, and Cohen’s |ds| > 2.78. ML/PH and CPT fared better in
predicting pro-win gambles, whereas the strategy fit for MM was
better in pro-gain gambles. Note that ML/PH and MM predicted
performance well only in gambles for which these strategies were
optimal. Due to the design of gambles types, however, the overall
fit was the same.

Conditional choices
A 2 (probabilities) × 2 (gain differences) repeated-measures
ANOVA of slopes derived from CCFs yielded a significant main
effect of gain difference, F(1, 16) = 5.63, p < 0.05, ηG2 = 0.050,
(b̄50 = −0.004 and b̄200 = 0.001). When confronted with lot-
teries whose gains differed by 200 Cent, the choice proportions
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FIGURE 4 | Overview of the results for the modified Wheel of Fortune task with error feedback. (A) Proportions of correctly predicted choices for pro-win
and pro-gain gambles across different strategies, (B) changes of choice proportions across 40 experiment blocks, and (C) conditional choice functions (CCFs).

remained similar with an increasing RT. With a gain difference
of 50 Cent, the proportion of optimal choices slightly decreased.
Whereas in Experiments 1 and 2, the mean RTs of the fastest
responses were about 400 ms, they increased in the present exper-
iment to about 600 ms. No other significant effects were found.
However, as can be seen in Figure 4C, even fast responses were
already at a relatively high level of EV-optimality.

Comparison with Experiment 2
We compared the mean slope and intercept with those in the pre-
vious experiment. The difference between the mean slopes (Exp.
2: 0.011; Exp. 3: −0.001) was significant, paired t(33.3) = 3.912,

p < 0.001, Cohen’s d = 1.31, as was the difference between the
intercepts (Exp. 2: 49.1: Exp. 3: 79.3), paired t(22.8) = −8.56,
p < 0.001, Cohen’s d = −2.86.

DISCUSSION
The present results demonstrate that participants can indeed
improve their choice performance if they are provided with a
highly informative feedback. By signaling whether their choice
was EV-optimal or not, choices became more EV-optimal, com-
pared to no feedback (Experiment1), or outcome feedback
(Experiment 2). Comparing the predictions of the different
strategies to the data revealed that the EV strategy accounted
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better for the performance than the CPT. This is surprising,
because the EV strategy is a special case of the CPT. A possi-
ble explanation could be that the fit procedure did not work
well. Since performance was more EV-optimal than in the pre-
vious experiments, fitting the CPT might this time suffer from an
over-parameterization.

The type of feedback also affected the CCFs. This time they
were relatively flat, but started at a more optimal level, also for
pro-gain gambles. Thus, it seems that the participants integrated
probabilities and gains also for relatively fast choices. However,
the fastest choices were generally slower, compared to the previ-
ous experiments. Finally, our data indicated that the participants
learned rather quickly to improve their performance if error
feedback was provided.

GENERAL DISCUSSION
The various strategies that have been proposed to explain how
people deal with risky-choice problems differ, among others, in
the amount of information that is considered. Whereas some
strategies assume that all relevant information is taken into
account for a decision (e.g., von Neumann and Morgenstern,
1944; Kahneman and Tversky, 1979), others suppose that only
some of that information is utilized (e.g., Brandstätter et al., 2006;
Gigerenzer and Gaissmaier, 2011). The extent to which either is
the case varies strongly between individuals (e.g., Venkatraman
et al., 2009), but also depending on whether choices were based
on description or experience (e.g., Glöckner et al., 2012). However,
it is largely unknown how much information is considered when
participants are fully informed about all probabilities and out-
comes, and when they have multiple trials on which they can
evaluate their utilization of the available information through
feedback and possibly adjust their choice on subsequent trials.

To investigate choice behavior in such interesting but rarely
studied situations, we conducted a series of three experiments in
which participants had repeatedly to choose between two fully
described lotteries. A specific question was whether participants
based their decisions on the winning probabilities, on the possi-
ble gains, or on both. Moreover, we wanted to examine to what
extent the type and amount of information used for deciding
changes with experience, and whether it depends on the nature of
the provided feedback. Finally, we were interested in the dynamics
of decision making within a given trial.

For answering these question, we used gambles in which either
the lottery with the higher winning probability (pro-gain) or the
one with the larger potential gain (pro-win) coincided with the
EV-optimal choice. From other studies it is well known that deci-
sion makers have the strong tendency to prefer the option with
the higher probability, at least if losses are not possible (e.g.,
Tversky and Kahneman, 1981; Fiedler and Unkelbach, 2011). In
our experiments, this probability dominance would have been
optimal for pro-win gambles, but suboptimal for pro-gain gam-
bles. Thus, to achieve a proportion of optimal choices larger
than 50%, probabilities and gains would have to be integrated in
some way. As the results of our first experiment indicate, such an
integration hardly took place. The participants mostly chose the
lottery with the higher winning probability, and largely ignored
the potential gains. This was also confirmed by comparing the

predictions of different decision models with the observed choice
behavior. The best fit was obtained with the Most-Likely heuris-
tic and with a CPT model, where probability-dominance was
reflected by flat value functions.

Beyond the common inspection of strategy fits, a far more
detailed analysis of information integration that also accounts for
the dynamics of the decision process was achieved by examining
conditional choice functions (CCFs). Instead of a static prefer-
ence for lotteries with a higher winning probability, we observed
that this preference decreased with response time (RT). Moreover,
performance was improved for slow relative to fast decisions.
This not only suggests that participants applied different strate-
gies across trials, but also that more information was considered
for slower decisions (see also Dambacher et al., unpublished
manuscript). A possible scenario is provided by the dual-process
idea (e.g., Hübner et al., 2010; Mukherjee, 2010). It is conceivable
that suboptimal but fast and automatic heuristic processes (e.g.,
Most-Likely, or Maximax) competed with more optimal but slow
and controlled processes (e.g., CPT) for execution. On some tri-
als the participants impulsively chose the lottery with the higher
winning probability, whereas on other, presumably if they man-
aged to suppress their impulsive choice tendency, the possible
gains were also taken into account, at least to some extent. This
is in line with the idea that risky decision making is based on
a toolbox of strategies (e.g., Payne et al., 1993; Gigerenzer and
Selten, 2001). An alternative explanation for the observed devi-
ations is proposed by models that assume that participants intend
to use a single strategy but make erroneous choices (e.g., Bröder
and Schiffer, 2003). Yet, such error models might not be able to
account for systematic variations with RT.

Nevertheless, despite the fact that the decisions were slightly
improved for slower decisions, the overall performance was rel-
atively poor and far from EV-optimal. Moreover, information
usage did not change during the experimental session. This might
not be surprising, given that there was no feedback. Therefore,
to see whether performance improves if some feedback is pro-
vided, we conducted Experiment 2, where each gamble was
played by the computer and the outcome displayed to the par-
ticipants. Unexpectedly, this feedback had no substantial effect.
Performance was similar as in Experiment 1. Does this result indi-
cate that persons are generally unable to learn optimal decision
making? Or is outcome feedback simply useless for learning? To
answer these questions we ran Experiment 3, where a normative
error feedback was provided. That is, if a decision was not EV-
optimal, the participants were informed that their performance
was suboptimal. As a result, decision performance improved sub-
stantially. Obviously, this type of feedback motivated the partici-
pants to base their decisions not only on probability information,
but to also consider the possible gains. That this was indeed the
case is supported by the fact that the decision times were gener-
ally increased. Moreover, this time choice proportions were rather
constant with RT.

How can the different effectivity of the two feedback types be
explained? Outcome feedback might be rather useless, because the
provided information is probabilistic and, therefore, ambiguous.
In particular for 60:40 lotteries, a positive outcome frequently sig-
nals a “good choice,” even when the choice was not EV-optimal.
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In other studies, however, outcome feedback was not ignored.
Yechiam and Busemeyer (2006), for example, observed reduced
choice proportions for risky, suboptimal options. In their exper-
iment in the loss domain, very small probabilities certainly pro-
vided less ambiguous feedback (sample gamble: lose 8 [300] cents
with a probability of 5%, otherwise lose 2 [1] cents; competing
lottery in brackets). Larger differences between the probabilities,
or rare events can provide a better opportunity for optimally
reevaluating lotteries. Thus, it is reasonable to assume that the
composition of choice problems is likely to interact with the
applicability of outcome feedback.

Error feedback, on the other hand, provides a deterministic
and consistent signal of how to choose optimally. Accordingly,
participants quickly learn to combine the available information
in a rather optimal way for their decisions. However, feedback
might not have had the same effect for each participant. Research
has already shown that individuals differ with respect to learning
from feedback (e.g., Schonberg et al., 2007). In our experi-
ments, individual differences were more apparent for outcome
feedback. When we exploratively looked for individual choice
behavior, we found, for example, that one participant perma-
nently chose the lottery with the higher gain, whereas another
predominantly chose randomly. The variation between individ-
ual CCFs was also relatively large. However, choice behavior
was relatively similar between participants when error feedback
was provided. This underpins the effectiveness of error feed-
back in facilitating information integration and shaping choice
behavior.

Taken together, our results show that participants mainly use
only some of the available information for decision making, even
if outcome feedback is provided. Specifically, there is a strong
probability dominance, i.e., mostly the lottery with the higher
winning probability is chosen. This is especially true for fast
decisions. Only if normative error feedback is provided, partic-
ipants learn to take also the possible gains into account. It is
open, however, how general these conclusions are, because we
imposed several constraints on our gambles. One consequence is,
for example, that the EVs in the different gamble types were not
balanced, which could have influenced information processing
(e.g., Ayal and Hochman, 2009). Whether further studies with dif-
ferent gambles but a similar setting will find comparable results,
or how long the learning effects from error feedback will last, has
yet to be shown.
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