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Bayesian reasoning, defined here as the updating of a posterior probability following
new information, has historically been problematic for humans. Classic psychology
experiments have tested human Bayesian reasoning through the use of word problems
and have evaluated each participant’s performance against the normatively correct
answer provided by Bayes’ theorem. The standard finding is of generally poor
performance. Over the past two decades, though, progress has been made on how
to improve Bayesian reasoning. Most notably, research has demonstrated that the
use of frequencies in a natural sampling framework—as opposed to single-event
probabilities—can improve participants’ Bayesian estimates. Furthermore, pictorial
aids and certain individual difference factors also can play significant roles in
Bayesian reasoning success. The mechanics of how to build tasks which show
these improvements is not under much debate. The explanations for why naturally
sampled frequencies and pictures help Bayesian reasoning remain hotly contested,
however, with many researchers falling into ingrained “camps” organized around
two dominant theoretical perspectives. The present paper evaluates the merits of
these theoretical perspectives, including the weight of empirical evidence, theoretical
coherence, and predictive power. By these criteria, the ecological rationality approach
is clearly better than the heuristics and biases view. Progress in the study of
Bayesian reasoning will depend on continued research that honestly, vigorously,
and consistently engages across these different theoretical accounts rather than
staying “siloed” within one particular perspective. The process of science requires
an understanding of competing points of view, with the ultimate goal being
integration.

Keywords: Bayesian reasoning, frequencies, probabilities, ecological rationality, heuristics and biases, pictorial
aids, numeracy

Introduction

Imagine, for one moment, the following scene: A !Kung woman begins her day by foraging
for berries in the Kalahari Desert. Wandering from patch to patch, she searches for substantial
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portions of subsistence. Foraging is not always fruitful; it does
not always yield food, and sometimes it does not yield enough
food to justify the calories expended during the act of foraging.
Foragers must decipher patterns from the environment in order
to be successful and efficient. For example, the !Kung woman
may have success 90% of the time she travels to the east canyon,
but only when she forages in springtime. During the summer
months, the east canyon may be barren of food. At some level
of cognition, the woman must coarsely analyze the data from her
travels in order to determine the odds of finding food in the east
canyon, given the fact that it is springtime or summer. From a
psychological perspective, we may wonder what is happening at
the cognitive, or algorithmic, level in the woman’s mind. How is
she storing the information, and how is she arriving at seemingly
appropriate solutions to this particular problem of calculating a
posterior probability of finding food given certain environmen-
tal cues? Although the surface of this paper provides guidance for
ways to improve Bayesian reasoning, it also delves into the deeper
questions of how and why the mind is designed to solve certain
problems with specific inputs.

The General Case of Bayesian
Reasoning

The technical name for what the !Kung woman is doing in
the above story is Bayesian reasoning. Although Bayesian rea-
soning sometimes has a narrow mathematical definition (i.e.,
the use of Bayes theorem, specifically), for the purposes of
psychological research the more relevant definition is the gen-
eral process of using new information (e.g., season of the
year) to calculate the revised likelihood that an event of a
known prior base rate will occur (e.g., successfully finding
food). Humans have, historically, needed to perform quick
computational estimates of such probabilities in order to nav-
igate various aspects of ancestral environments (Cosmides and
Tooby, 1996). Therefore, it seems scientifically unproductive
to insist on the narrow definition (in that an explicit Bayes
theorem is only a few centuries old) in describing human
judgments and decision making. It is important therefore to
distinguish between a narrow and rigid usage of “applying
Bayes’ theorem” in defining Bayesian reasoning, as compared
to a more general usage of Bayesian reasoning as a process
of adaptively updating prior probabilities with new informa-
tion (by whatever means) to reach a new, or posterior, prob-
ability. This more general definition of Bayesian reasoning,
which is the sensible one to take from the perspective of a
cognitive psychologist, is to evaluate behaviors as the poten-
tial product of cognitive mechanisms acting “as if ” they were
Bayesian. Specifically, this general definition of Bayesian rea-
soning can be used to classify behaviors based on the observ-
able evidence that the individual organism in question used
new evidence to update its estimate that an event would
occur. Often, this is ultimately tested through some measur-
able behavior (e.g., a decision to act in accordance with this
new evidence’s implications for the posterior probability of an
event).

Bayesian Reasoning as a Serious, Real
World Problem

Traditional research on people’s abilities to engage in Bayesian
reasoning uses the following protocol: a person is presented
with a description of a situation in which Bayesian reasoning is
relevant, the necessary numerical information for Bayesian cal-
culations, and then a request that the participant calculate the
posterior probability (expressed in terms of the relevant situa-
tion). For example, one such task (adapted from Chapman and
Liu, 2009) is as follows:

The serum test screens pregnant women for babies with Down’s
syndrome. The test is a very good one, but not perfect. Roughly
5% of babies have Down’s syndrome. If a baby has Down’s syn-
drome, there is a 80% chance that the result will be positive. If the
baby is unaffected, there is still a 20% chance that the result will
still be positive. A pregnant woman has been tested and the result
is positive. What is the chance that her baby actually has Down’s
syndrome?

Undergraduates, medical students, and even physicians do
quite poorly on this type of Bayesian reasoning task (e.g.,
Casscells et al., 1978; Gigerenzer et al., 2007), including when it
is in a medical testing context such as the above example. Such
failures of Bayesian reasoning suggest potentially tragic conse-
quences for medical decision making, as well as any other real
world topics that involve similar calculations.

Interestingly, evaluations of how and why people do poorly
in Bayesian reasoning has changed over the years. In the early
days of research on Bayesian reasoning, the dominant view by
researchers was that humans were approximating Bayes’ theo-
rem, but erred in being far too conservative in their estimates
(e.g., Edwards, 1982). That is, people did not utilize the new
information as much as they should; relying too much on the
base rate information. Later work, however, shifted to the idea
that the dominant error was in the opposite direction: that peo-
ple generally erred in relying too much on the new information
and neglecting the base rate, either partially or entirely (e.g.,
Kahneman and Tversky, 1972; Tversky and Kahneman, 1974,
1982). This later approach is one of the better known positions
within what is known as the heuristics and biases paradigm,
within which base rate neglect was considered so strong and per-
vasive that at one point it was asserted: “In his evaluation of
evidence, man is apparently not a conservative Bayesian: he is not
Bayesian at all” (Kahneman and Tversky, 1972, p. 450).

Improving Bayesian Reasoning

Nevertheless, research continued on human Bayesian reasoning
and how to improve it. Beginning in the 1990s, progress began to
occur, followed quickly by theoretical debates. There continue to
be disagreements to this day, but there now clearly are certain
procedures which do in fact improve human Bayesian reason-
ing. These include: using a natural sampling structure, using
frequencies, and using pictures. Each of these procedures also
raise theoretical issues about what cognitive processes underlying
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the improvement in human reasoning, and this paper will look
at each of these in turn. We will also look at the role of individ-
ual differences in aptitude and motivation within the context of
Bayesian reasoning before concluding with an overall assessment.

Natural Sampling and Frequencies in
Bayesian Reasoning
A seminal paper in terms of improving Bayesian reasoning
and the current issues revolving around those improvements is
Gigerenzer and Hoffrage (1995). This paper described a struc-
ture for presenting information in such a way that it greatly
helped people reach correct Bayesian conclusions. This struc-
ture is one of whole-number frequencies in a natural sampling
framework. (This original paper used the unfortunately ambigu-
ous label of “frequency format” for this structure, which has led
to some confusion; see Gigerenzer and Hoffrage, 1999, 2007;
Lewis and Keren, 1999; Mellers andMcGraw, 1999; Vranas, 2000;
Gigerenzer, 2001.) There are thus two aspect of this structure: (a)
the use of frequencies as a numerical format, and (b) the use of a
particular structure, called natural sampling, for the relationships
between the numbers. The rationale for both of these aspects
is similar: they map onto the type of information which the
human mind generally encounters in the natural environment,
both currently and over evolutionary history. For this reason,
the Gigerenzer and Hoffrage position is often described as the
ecological rationality approach.

It can be challenging to dissociate natural sampling from fre-
quencies. When considering the occurrence of objects or events
in the real world, that experience tends to strongly imply fre-
quency counts as the format in which that information would
be encoded. The actual format of natural sampling, however, is
actually the online categorization of that information into groups,
including groups which can be subsets of one another. Figure 1
shows the previously given Bayesian reasoning task information
(about a Down’s syndrome serum test) as naturally sampled fre-
quencies. In this case we imagine (or recall) 100 experiences with
this test, and five of those experiences were with a baby who
had Down’s syndrome (i.e., 5% base rate). Those five experiences
can be further categorized by when the test came out positive
(4 times; 4 out of 5 is 80%), and the 95 cases of babies without
Down’s syndrome can be similarly categorized by the test results
(19 false positive results; 19 out of 95 is 20%). This nested cate-
gorization structure creates numbers in the lower-most row for
which the base-rates (from the initial categorization groups) are
automatically taken into account already. This, in turn, makes
the calculations for Bayesian reasoning less computationally dif-
ficult. (Specifically, the probabilistic version of Bayes theorem
is p(H|D) =p(H)p(D|H)/p(H)p(D|H) + p(∼H)p(D|∼H), with
D = new data and H = the hypothesis, whereas with natural
sampling this equation can be simplified to p(H|D) = d&h/d&h
+ d&∼h, with d&h = frequency of data and the hypothesis and
d&∼h = frequency of data and the null hypothesis. Also note
that changing the natural frequency numbers to standardized for-
mats, such as percentages, destroys the nested categorizations,
and thus the computational simplification, of natural sampling.)
Thus, whereas it is pretty easy to create numerical frequencies
which are not in a natural sampling framework, it is difficult

FIGURE 1 | An illustration of a natural sampling framework: the total
population (100) is categorized into groups (5/95) and those groups
are categorized into parallel sub-groups below that.

to construct a natural sampling framework without reference to
frequencies.

The consequences of confusions about how natural sampling
and numerical frequencies are related to each other has led to a
number of claimed novel discoveries, which are observed from
the other side as “re-inventions.” One example of this is that the
principles of natural sampling have been co-opted as something
new and different. These situations require some clarification,
which hopefully can be done in a relatively concise manner.

Subsequent to the description and application of a natu-
ral sampling structure in the original Gigerenzer and Hoffrage
(1995) paper (which explicitly drew on the work by Kleiter (1994)
in developing the natural sampling idea), the basic structure of
natural sampling has been re-invented at least four times in the
literature. Each time, the new incarnation is described at a level
of abstraction which allows one to consider the structure inde-
pendent of frequencies (or any other numerical format), but the
natural sampling structure is unmistakable:

(a) Johnson-Laird et al. (1999) reintroduced the basic relevant
principle of natural sampling as their “subset principle,”
implying that ecological rationality researchers somehow
missed this property: “The real burden of the findings of
Gigerenzer and Hoffrage, (1995, p. 81) is that the mere use
of frequencies does not constitute what they call a ‘natu-
ral sample.’ Whatever its provenance, as they hint, a natural
sample is one in which the subset relations can be used to
infer the posterior probability, and so reasoners do not have
to use Bayes’ theorem.” Note also the confusion in this pas-
sage between the narrow definition of Bayesian reasoning as
using Bayes’ theorem and the more general, psychologically
relevant definition of Bayesian reasoning we clarified earlier
in this paper. Girotto andGonzalez (2001) continue from this
point in their use of the “subset principle,” which is simply an
abstraction of the natural sampling structure;

(b) Evans et al. (2000) proposed a process that involves “cue-
ing of a set inclusion mental model,” rather than a natural
sampling structure;

(c) Macchi (1995) and Macchi and Mosconi (1998) created the
label of “partitive formulation” to describe the natural sam-
pling structure; and
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(d) Sloman et al. (2003) use the term “nested-set relations” rather
than natural sampling, following Tversky and Kahneman
(1983).

As this last re-invention noted, Tversky and Kahneman (1983)
did discover that using frequencies sometimes improved perfor-
mance (e.g., in their work on the conjunction fallacy), but they
did not actually elaborate this observation into a theory; they only
speculated that frequencies somehow helped people represent
class inclusion.

Dissociating the natural sampling framework, claiming that
it is something else, and then looking at the effects of numeri-
cal frequencies by themselves (without natural sampling or with
malformed natural sampling) has allowed for all sorts of method-
ological and conceptual shenanigans. It is not interesting, either
methodologically or theoretically, that making Bayesian reason-
ing tasks harder (by adding steps, using wordings which confuse
people, switching numerical formats within the same problem)
can decrease performance (see, Brase, 2002, 2008, 2009a,b, 2014
for further elaboration). Indeed, it is generally difficult to make
strong theoretical claims based on people failing to accomplish
a task, as there are usually many different possible reasons for
failure.

In addition to multiple attempts to co-opt the concept of nat-
ural sampling there has been a notable attempt to co-opt the
numerical format of frequencies, claiming that the facilitative
effect of using frequencies is not actually about the frequencies
themselves. Girotto and Gonzalez (2001) asserted that people
actually can be good at Bayesian reasoning when given only
probabilistic information. The probabilities used in this research,
however, are of a peculiar type stated in whole number terms. For
example:

Mary is tested now [for a disease]. Out of the entire 10 chances,
Mary has ___ chances of showing the symptom [of the disease];
among these chances, ___ chances will be associated with the
disease. (p. 274)

Howmany times was Mary tested? Once or ten times? If tested
once, there is one “chance” for a result; if tested 10 times (or even
if 10 hypothetical times are envisioned), then this is an example of
frequency information. It seems odd to say that subjects are truly
reasoning about unique events and that they are not using fre-
quencies, when the probabilities are stated as de facto frequencies
(i.e., 3 out of 10). Although Girotto and Gonzalez (2001) claim
that “chances” refer to the probability of a single-event, it can
just as easily be argued that this format yields better reasoning
because it manages – in the view of the research participants—to
tap into a form of natural frequency representation. This alter-
native interpretation was immediately pointed out (Brase, 2002;
Hoffrage et al., 2002), but advocates of the heuristics and biases
approach were not swayed (Girotto and Gonzalez, 2002).

In order to adjudicate this issue, Brase (2008) gave partici-
pants Bayesian reasoning tasks based on those used by Girotto
and Gonzalez (2001). Some of these problems used the natural
sampling-like chances wording. Other versions of this problem
used either percentages (not a natural sampling format) or used

a (non-chances) frequency wording that was in a natural sam-
pling format. After solving these problems, the participants were
asked how they had thought about the information and reached
their answer to the problem. First of all, contrary to the results of
Girotto and Gonzalez (2001), it was found that frequencies in a
natural sampling structure actually led to superior performance
over “chances” in a natural sampling structure. (The effect size of
this result is actually similar to the Girotto and Gonzalez (2001)
results, which were statistically underpowered due to small sam-
ple sizes.) More notably, though, the participants who interpreted
the ambiguous “chances” as referring to frequencies performed bet-
ter than those who interpreted the same information as probabili-
ties. This result cuts through any issues about the computational
differences between natural sampling frameworks versus normal-
ized information, because the presented information is exactly
the same in these conditions and requires identical computa-
tions; only the participants’ understanding of that information is
different.

Using Pictures to Aid Bayesian Reasoning
Generally speaking, pictures help Bayesian reasoning. Like the
research on frequencies and natural sampling, however, there is
disagreement on how and why they help. The ecological rational-
ity account (Cosmides and Tooby, 1996; Brase et al., 1998) con-
siders pictorial representations as helping because they help to
tap into the frequency-tracking cognitive mechanisms of a mind
designed by the ecology experienced over evolutionary history.
That is, people have been tracking, storing, and using information
about the frequencies of objects, locations, and events for many
generations. Visual representations of objects, events, and loca-
tions should therefore be closer to that type of information with
which the mind is designed to work. An alternative heuristics
and biases account is that pictures help to make the structure of
Bayesian reasoning problems easier to understand. This account
of pictures helping because it enables people to “see the prob-
lem more clearly” is often tied to the co-opted and abstracted
idea of natural sampling; the pictures help make the subset struc-
ture, the set-inclusion model, or the nested-set relations more
apparent (e.g., Sloman et al., 2003; Yamagishi, 2003). Indeed,
there are parallels here in the comparison of these two perspec-
tives: the ecological rationality account proposes a more narrowly
specified (and evolutionary based) account, whereas the heuris-
tics and biases account favors a less specific (non-evolutionary)
account.

Subsequent research (Brase, 2009a, 2014) has taken advantage
of the fact that ambiguous numerical formats can be interpreted
as either frequencies or as probabilities. By using the “chances”
wording for the actual text and therefore holding the numeri-
cal information as a constant, while varying the type of pictorial
representation, this research has been able to compare differ-
ent types of pictorial aids against a neutral task backdrop. Brase
(2009a) found that, compared to control conditions of no pic-
ture at all, Venn circles (which should facilitate the perception
of subset relationship) did not help nearly as much as pictures
of icon arrays (which should facilitate frequency interpretations
of the information). Furthermore, a picture with intermediate
properties – a Venn circle with dots embedded within it – led
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to intermediate performance between solid Venn circles and
icon arrays. Subsequent research by Sirota et al. (2014b) took
an interesting intermediate theoretical position, claiming that the
heuristics and biases account predicted no facilitation of Bayesian
reasoning from using pictures (contra Sloman et al., 2003 and
Yamagishi, 2003). Their null findings of several different types of
pictures failing to improve Bayesian reasoning are used to chal-
lenge the ecological rationality account, which they agree does
predict an improvement with the use of pictures. A nearly con-
current publication replicated and extended the specific effects
of Brase (2009a), however, casting doubt on the significance of
the Sirota et al. (2014b) null findings. Brase (2014) found that
roulette wheel diagrams (like those used in Yamagishi, 2003) led
to performance similar to that of Venn diagrams, and that both
realistic and abstract icon shapes significantly improved perfor-
mance. Interpretation of the ambiguous numerical information
as frequencies also improved Bayesian reasoning performance
in all these conditions (replicating the findings of Brase, 2008),
separate from the effects of the different picture types.

Individual Differences in Bayesian
Reasoning

There have been various claims that certain individual differences
may moderate the often-observed frequency effect in Bayesian
reasoning. Peters et al. (2006) demonstrated that numerical liter-
acy (or numeracy)—an applicable understanding of probability,
risk, and basic mathematics—moderated many classic judgment
and decision making results, showing proof of concept that
not all judgment and decision making tasks may be viewed
the same by every individual. Specifically, Peters et al. (2006)
showed that low numerates may benefit the most from num-
ber formats designed to aid comprehension of the information.
The explanation proposed for these results can be summarized
as a “fluency hypothesis”: that more numerically fluent people
(higher in numerical literacy) are influenced less by the use of
different numerical formats because they are quite capable of
mentally converting formats themselves. In doing so, these highly
numerate people utilize the numerical format best suited for
the present task. Less numerically fluent people, on the other
hand, are prone to work only with the numerical information
as presented to them. This leaves them more at the mercy of
whatever helpful or harmful format is given to them. Although
Peters et al. (2006) did not assess Bayesian reasoning specifically,
Chapman and Liu (2009) later brought the issue of numerical
literacy to the topic of frequency effects in Bayesian reasoning
tasks.

The story takes an interesting turn at this point, because
although Peters et al. (2006) showed low numerates benefited
most from a number format change to frequencies, Chapman
and Liu (2009) showed instead that high numerates differentially
benefited from natural frequency formatted Bayesian reason-
ing problems. Specifically they found that this frequency effect
was only observed in highly numerate individuals, resulting in
a statistically significant numeracy x number format interaction.
Chapman and Liu (2009) pointed out that some other research is

consistent with these results. In particular, Bramwell et al. (2006)
provided different groups of participants with Bayesian reason-
ing problems framed as a test for a birth defect. The participants
were either obstetricians, pregnant women and their spouses, or
midwives. The effect of presentation format was assessed with a
between-subjects manipulation, with some participants receiving
naturally sampled frequencies and others receiving a single event
probability format. Although the frequency effect was observed
in their study, a closer examination showed that this effect was
limited to obstetricians, whereas the midwives, pregnant women,
and their spouses all showed equally poor Bayesian reasoning
performance regardless of number format.

To the extent that obstetricians have somewhat higher numer-
ical literacy, which is a plausible assumption, the Bramwell et al.
(2006) results would be consistent with those of Chapman and
Liu (2009). Both of these results, however, are inconsistent with
the findings and the fluency hypothesis of Peters et al. (2006).
Chapman and Liu (2009) proposed something akin to a “thresh-
old” hypothesis regarding the interaction effect they found. This
threshold hypothesis proposes that a certain level of numeri-
cal literacy is required for difficult problems (such as Bayesian
reasoning tasks) before helpful formats (e.g., naturally sampled
frequencies) are able to provide an observable benefit.

To assess this threshold hypothesis and the fluency hypoth-
esis proposed by Peters et al. (2006), Hill and Brase (2012)
systematically tested a variety of problem types with vary-
ing levels of difficulty and in different number formats, while
also assessing numerical literacy with the standard measure
used in this research (i.e., the General Numeracy Scale; Lipkus
et al., 2001). These findings generally showed an absence of
any interaction across several different problem types. Of most
importance to the current paper, the Bayesian reasoning prob-
lems originally used by Chapman and Liu (2009) also failed
to replicate the numeracy × number format interaction, caus-
ing some specific concern over the “threshold hypothesis” of
Bayesian reasoning, and to a lesser extent the “fluency hypoth-
esis” of judgment and decision making tasks in general. The
one constant across these studies was a consistent main effect
for numeracy and a consistent main effect for number format,
with higher numerates performing better on Bayesian reason-
ing tasks, and participants given the natural frequencies format
also performing better than those given single event probability
versions.

Support for the findings of Hill and Brase (2012) were
shown by Garcia-Retamero and Hoffrage (2013) who studied
the Bayesian reasoning ability of doctors and patients in medical
decision tasks. After fully crossing conditions by number format
(natural frequencies and single event probabilities) and display
(number only or pictorial representation), participants’ numer-
acy scores were also assessed. Garcia-Retamero and Hoffrage
(2013) found the traditional frequency effect, just as in Hill and
Brase (2012), and also an improvement in Bayesian reasoning
performance by including a pictorial representation. Numeracy
did not interact with the frequency effect, again consistent
with the Hill and Brase (2012) findings and with the ecologi-
cal rationality explanation of the frequency effect. Johnson and
Tubau (2013) also partially replicated the lack of a numeracy ×
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number format interaction, and found consistent improvement
in Bayesian reasoning as a result of using natural frequencies,
with the only exception being in very difficult problems, oper-
ationally defined by longer word length of the problem text.
Johnson and Tubau (2013) proposed that both Chapman and
Liu (2009) and Hill and Brase (2012) may be partially correct.
When given long (“difficult”) problems, the numeracy × num-
ber format interaction was present, with low numerates showing
a floor effect, and high numerates showing the benefit of natural
frequencies, a finding consistent with the “threshold hypothesis”
of Chapman and Liu (2009). However, with less difficult prob-
lems the numeracy × number format interaction disappeared, a
finding in line with Hill and Brase (2012).

The above set of results led Johnson and Tubau (2013) to
suggest a potential problem with evolutionary accounts pro-
posed by various researchers (e.g., Cosmides and Tooby, 1996;
Brase et al., 1998), in that there was not a frequency facilitation
effect for the very difficult problems. The present authors, how-
ever, do not see this as a problem for an evolutionary account.
We reach this conclusion because differences in problem context
(e.g., problem difficulty, word count) that are assessed in terms
of the written problem properties are only tenuously connected
to evolved cognitive abilities. Cognitive mechanisms evolved to
solve specific problems in specific environments. The perspec-
tive of ecological rationality, which is generally consistent with
evolutionary psychology, is also built upon a similar premise
(i.e., the fit between the structure of the environment and the
design of the mind; Gigerenzer et al., 1999; Gigerenzer and
Gaissmaier, 2011). By analogy, this situation can be compared
to someone proposing that humans have an evolved ability to
develop complex language. This proposal is not endangered by
the observation that people (even highly literate people) find a
college physics textbook difficult to read. Reading is a cultural
invention which taps into our evolved language ability, and thus
our ability to handle a particularly difficult written text is only
tenuously connected to the evolved cognitive ability for human
language.

More recent work on individual difference moderators of the
frequency effect in Bayesian reasoning has only made the afore-
mentioned research more perplexing. For instance, McNair and
Feeney (2015) demonstrated a “threshold” type effect despite
slightly different problem format manipulations. Specifically,
McNair and Feeney (2015) assessed the differences between the
standard format (single event probabilities) and a causal format
(still single event probabilities, but with additional text describing
a possible cause for false positive test results); previous research
by Krynski and Tenenbaum (2007) demonstrated evidence that
causal structures in problems could lead to improved Bayesian
reasoning performance. In separate studies, McNair and Feeney
(2015) found evidence for numerical literacy serving as a mod-
erator of problem structure’s benefits on Bayesian accuracy, with
the effect of problem structure only present in highly numerate
individuals. Similar to the discussion of the threshold hypothe-
sis of Chapman and Liu (2009), this observation of an apparent
moderating relationship between privileged representational for-
mats, and individual difference measures (e.g., numeracy, cogni-
tive reflection) might be seen as damaging to evolutionary and

ecological accounts. However, the same explanation as offered for
the Chapman and Liu (2009) results can hold for the McNair and
Feeney (2015) results: that performance near floor effect levels
can resemble an interaction. In fact, performance in the McNair
and Feeney (2015) studies was somewhat low (range: 3 to 32% in
lowest to highest performing conditions).

Other recent research (Lesage et al., 2013; Sirota et al., 2014a)
has addressed a commonly held assumption critics make about
the “ecological rationality account”: if naturally sampled fre-
quencies are a privileged representational format for an evolved
statistical reasoning module, then the module must be “closed,”
and automatic. Thus, any general cognitive traits (e.g., cognitive
reflection), or any method of decreasing general cognitive capac-
ity (e.g., cognitive load), should not significantly interfere with
Bayesian performance, or the frequency effect. In general terms,
this idea is the assumption of modular encapsulation (Fodor,
1983), which is still promoted by Fodor but actually not accepted
by any prominent evolutionary psychology views (e.g., compare
Fodor, 2000 and Barrett, 2005).

Although both groups of authors readily acknowledge the
research conducted, and the reviews published, concerning the
massive modularity hypothesis, there does seem to be some mis-
understanding. For example, Barrett and Kurzban (2006, see
specifically pp. 636–637), which is cited by some of the work
mentioned above, discuss at length the misunderstandings about
automaticity of evolved modules, and the method of using cog-
nitive load induced deficits as evidence against evolved modules.
Without getting too detailed, their arguments can be summarized
by the following analogy: personal computers have a variety of
specialized programs (modules). Few would argue that a word
processor works as efficiently at storing and computing numer-
ical data, as compared to a spreadsheet program. Thus, these
programs are separate, and specialized. However, if I down-
load 1,000 music files to my computer, the overall performance
of those separate programs will suffer, at least with respect to
processing time. Also, if I drain the battery power in my lap-
top, the programs will fail to operate at all. This observation
does not lead directly to the conclusion that the programs are
not specialized. It simply points to the conclusion that the pro-
grams require some overlapping general resources. The same
conclusion should be made with respect to cognitive modules.
The examples in this analogy are extreme instances of general
situations which can impair the functioning of functionally spe-
cific modules, but the point holds. The question becomes not
one of modular abilities being impervious to general resource
constraints, but rather one of understanding how particular sit-
uational contexts influence the functioning of specific cognitive
abilities.

In a different study of individual differences, Kellen et al.
(2013) found the standard benefits of pictorial representations
(Venn diagrams, in this case) in answering complex statisti-
cal tasks such as Bayesian reasoning. Furthermore, this gen-
eral pattern interacted with measured spatial ability, which was
independently assessed. In low-complexity problems, low spa-
tial ability participants actually were hurt by pictorial represen-
tations, whereas high spatial ability participants demonstrated
no difference between pictorial and text displays. However, in

Frontiers in Psychology | www.frontiersin.org 6 March 2015 | Volume 6 | Article 340

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Brase and Hill Good fences and bad science

high-complexity problems, high spatial ability participants were
aided in their understanding by the presence of pictorial repre-
sentations, whereas low spatial ability participants saw no benefit.
This last result is somewhat consistent with a threshold hypoth-
esis, but there are many issues within these studies in need of
deeper assessment. Further research is needed to clarify how
different spatial ability levels are related to the use of different
types of visual displays and if there is any relationship between
spatial ability, numeracy, and the effects of naturally sampled
frequencies.

Finally, there are differences in performance that are related
to the incentive structures under which people are asked to do
Bayesian reasoning tasks. Research participants who do Bayesian
reasoning tasks as part of a college course (either through a
research “subject pool” or as in-class volunteers) tend to perform
less well than participants who are paid money for their participa-
tion (Brase et al., 2006). This same research also documented that
participants from more selective universities generally performed
better than those from less selective universities, most likely due
to a combination of different overall ability levels and differ-
ent intrinsic motivation levels to do academic-type tasks. Brase
(2009b) extended this research to show that people whose pay-
ments were tied to performance (i.e., correct responses received
more money) did even better than people who were given a flat
payment for their participation. This is an important factor in, for
example, understanding the very high level of Bayesian reasoning
performance found by Cosmides and Tooby (1996; paid partici-
pants from Stanford University) versus the lower performance on
the same task in Sloman et al. (2003; in-class participants from
Brown University). In all cases, however, it should be noted that
the relative levels of performance when varying the use of natural
sampling, frequencies, and pictorial aids were consistent across
studies. Absolute performance levels vary, but these methods for
improving Bayesian reasoning remain effective.

Conclusion

Overall, the literature on Bayesian reasoning is clear and straight-
forward in terms of what works for improving performance:
natural sampling, frequencies, icon-based pictures, and more
general development of the prerequisite skills for these tasks
(i.e., numerical literacy, visual ability, and motivation to reach
the correct answer). The more contentious topic is that of why
these factors work to improve Bayesian reasoning. The bal-
ance of evidence favors the ecological and evolutionary ratio-
nality explanations for why these factors are key to improving
Bayesian reasoning. This verdict is supported by multiple con-
siderations which flow from the preceding review. First, the
ecological rationality account is consistent with a broad array
of scientific knowledge from animal foraging, evolutionary biol-
ogy, developmental psychology, and other areas of psycholog-
ical inquiry. Second, the ecological rationality approach is the
view which has consistently tended to discover and refine the
existence of these factors based on a priori theoretical consid-
erations, whereas alternative accounts have tended to emerge
as post hoc explanations. (To be specific, the facilitation effect

of natural frequencies documented by Gigerenzer and Hoffrage
(1995), the facilitative effect of pictorial representation docu-
mented by Cosmides and Tooby (1996), the effect of using whole
objects versus aspects of objects documented by Brase et al.
(1998), and the differential effects of specific types of pictorial
aids in Bayesian reasoning documented by Brase (2009a, 2014)
all were established based on ecological rationality considera-
tions which were then followed by alternative accounts.) Third,
the actual nature of the evidence itself supports the ecological
rationality approach more than other accounts. For instance,
in head-to-head evaluations of rival hypotheses, using uncon-
testable methodologies, the results have supported the ecological
rationality explanations (e.g., Brase, 2009a). Furthermore, a quite
recent meta-analysis (McDowell and Jacobs, 2014) has conclu-
sively established the validity of the effect of naturally sampled
frequencies in facilitating Bayesian reasoning, as described from
an ecological rationality perspective.

Distressingly, some proponents of a heuristics and biases view
of Bayesian reasoning have not engagedwith the bulk of the above
literature which critically evaluates this view relative to the eco-
logical rationality view. As just one illustration, Ayal and Beyth-
Marom (2014) cite the seminal work by Gigerenzer and Hoffrage
(1995), yet ignore nearly all of the other research done from
an ecological rationality approach in the subsequent nearly 20
years. Robert Frost (1919/1999) noted that people often say “good
fences make good neighbors,” but that this is not necessarily a true
statement:

Before I built a wall I’d ask to know
What I was walling in or walling out,
And to whom I was like to give offence.
Something there is that doesn’t love a wall,

In science, perhaps even more than in other domains of life,
fences are not good. Willingness to engage openly, honestly, and
consistently with the ideas one does not agree with should be
a hallmark of scientific inquiry. Failing to do so is scientifically
irresponsible.

In conclusion, the vast majority of studies in human Bayesian
reasoning align well with evolutionary and ecological rationality
account of how the mind may be designed. These accounts are
theoretically parsimonious and established in a rich set of liter-
ature from a wide range of interrelated disciplines. Alternative
explanations, however, tend to appeal to stripped down parts of
this account, often losing clear predictive power in the process,
which neglect the ecological and evolutionary circumstances of
the human mind they purport to explain. That does not mean
that the heuristic and biases account no longer has any validity.
The intellectually invigorating component of this debate is that
we do not fully understand all that is to learn about how peo-
ple engage in (or fail to engage in) Bayesian reasoning. There is
still much to learn about the possible environmental constraints
on Bayesian reasoning (e.g., problem difficulty, number of cues),
and how those constraints may be interwoven with individual
differences (e.g., numerical literacy, spatial ability), and even dif-
ferent measures of specific individual differences (e.g., subjective
vs. objective numeracy). We look forward to disassembling walls
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and integrating various perspectives, with the hope of more fully
understanding how to improve Bayesian reasoning, and how
those methods of improvement illuminate the nature of human
cognition.
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