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The current study tested the quantity and quality of human exploration learning in a

virtual environment. Given the everyday experience of humans with physical object

exploration, we document substantial practice gains in the time, force, and number

of actions needed to classify the structure of virtual chains, marking the joints as

revolute, prismatic, or rigid. In line with current work on skill acquisition, participants

could generalize the new and efficient psychomotor patterns of object exploration

to novel objects. On the one hand, practice gains in exploration performance could

be captured by a negative exponential practice function. On the other hand, they

could be linked to strategies and strategy change. After quantifying how much was

learned in object exploration and identifying the time course of practice-related gains

in exploration efficiency (speed), we identified what was learned. First, we identified

strategy components that were associated with efficient (fast) exploration performance:

sequential processing, simultaneous use of both hands, low use of pulling rather

than pushing, and low use of force. Only the latter was beneficial irrespective of the

characteristics of the other strategy components. Second, we therefore characterized

efficient exploration behavior by strategies that simultaneously take into account the

abovementioned strategy components. We observed that participants maintained a

high level of flexibility, sampling from a pool of exploration strategies trading the level of

psycho-motoric challenges with exploration speed. We discuss the findings pursuing the

aim of advancing intelligent object exploration by combining analytic (object exploration in

humans) and synthetic work (object exploration in robots) in the same virtual environment.

Keywords: object exploration, skill acquisition, virtual environment, strategy selection

Introduction

For humans (e.g., Vaesen, 2012) as well as for robots (Höfer et al., 2014) exploration of the kinematic
structure of objects is a pre-requisite for tool use. While both can precisely perform complicated
movement patterns (Pfeifer et al., 2012; Verrel et al., 2013), relatively little is known about efficient
strategies for exploring the kinematic properties of objects in either case. A combination of an ana-
lytic (humans) and synthetic (robot experiment) approach can provide an efficient means to study
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intelligent object exploration. However, this requires a common
test-bed for human and robot object exploration, as well as means
to qualitatively and quantitatively analyze and describe human
exploration behavior. Focusing on the latter, we present first steps
to develop such an approach in a virtual environment similar to
the one used in the robot simulation studies of Katz et al. (2008).

Humans can interact easily and accurately with objects,
because they explore their structure and features very efficiently
(Klatzky et al., 1985). The ability to perform such exploratory
behavior constitutes an important component of humans’ ability
to adapt to significant variability in the environment. Of course,
competent object use is driven in part by knowledge about the
object’s structure and function (Rosch et al., 1976; Lederman and
Klatzky, 1990, 2004). For instance, a human familiar with scis-
sors will not need a long time to explore and use the structure of
gas pipe pliers, since kinematic structure and function are simi-
lar. However, efficient exploration strategies might be at least as
important for efficient object exploration, as precise sensors and
effectors. For example, an assistance robot should use minimal
time and a low number of interactions in order to explore the
most crucial aspects of an object that could potentially serve as
a tool. Humans already exhibit this capability and can adapt to
new environments and tasks flexibly and effectively. We there-
fore believe that the analysis of human exploration behavior will
not only lead to an understanding of human behavior but will
also enable exploration behavior in a novel generation of robots
that learn from interactions with their environment.

Exploration problems are often presented to humans as sym-
bolic problem solving tasks. These tasks place minimal demands
on physical interaction with the environment so that neither its
potential costs nor its potential scaffolding function in the prob-
lem solving process can be evaluated (e.g., Wason, 1960; Gaschler
et al., 2012; Wakebe et al., 2012). Note that in some cases, sym-
bolic problem solving has been combined with elaborate phys-
ical interaction (e.g., Klahr and Dunbar, 1988). However, flex-
ible variation of experimental factors of an exploration task in
a physical environment is difficult to achieve. In contrast, vir-
tual environments effortlessly afford such variability and also
enable the recording of force-interaction data. In virtual envi-
ronments the experimenter can, for instance, flexibly arrange
rooms to explore (Williams et al., 2007) and experimental con-
trol can involve behavior-contingent manipulations that can only
be achieved in a virtual environment. For instance, Patsenko
and Altmann (2010) exchanged virtual discs of the Tower of
Hanoi problem solving task contingently upon eye-movements
in order to probe adherence to advance planning vs. ad-hoc re-
planning. Participants adapted their plans for the next problem
solving steps in line with the (predominantly unnoticed) changes
in the virtual environment. Apart from attractive options in data
logging and experimental manipulations, virtual environments
allow for massed training before or after exposure to test situa-
tions outside the virtual environment (e.g., Monge Pereira et al.,
2014). Challenge level can be fine-tuned to the needs of special
populations, and training can involve situations that would be
too infrequent, too dangerous or too expensive to train outside
the virtual environment. For instance, researchers have reported
transfer of motor training to test measures (e.g., Monge Pereira

et al., 2014), as well induction of spatial orientation by vision
and movement (e.g., Williams et al., 2007) or by haptics (e.g.,
Afonso et al., 2010) in virtual environments. Most important
for the current research, virtual environments allow to enrich
problem solving tasks by psycho-motoric demands. Different
from many learning tasks involving exploration (cf. Gaissmaier
and Schooler, 2008; Gaschler et al., 2014a), stimuli are complex,
come in varied form and change dynamically according to par-
ticipants’ actions. Data logging in the virtual environment allows
to keep track of the dynamically changing stimuli and actions,
allowing to analyze changes in exploration behavior across tri-
als. With a virtual environment, the same exploration task can
be offered to different research participants. In addition, on the
long run, exploration behavior can even be compared between
humans and simulated robots operating in the same virtual
environment.

Recent work in human movement research (e.g., Verrel et al.,
2013) and robotics (e.g., Deimel et al., 2013) suggests that physical
constraints inherent in physical interaction with the environment
can be used to foster adaptive behavior. However, as of yet this
notion is not well represented in work on human skill acquisi-
tion and problem solving—two potential components of efficient
object exploration skills. Human skill acquisition is often stud-
ied either with focus on psychomotor demands (Newell et al.,
2001) or with focus on cognitive demands (e.g., Logan, 1988;
Gaschler et al., 2015)—rather than with focus on the combina-
tion of psychomotor and cognitive demands. In contrast, work
on human problem solving has stressed that problem solving
can profit from grounding in physical interaction (Watson, 1920;
Kirsh, 1995; Vallée-Tourangeau et al., 2011; Werner and Raab,
2013). The arguments presented above suggest that exploration of
the kinematic structure of objects should be studied from a learn-
ing perspective in a virtual task environment that provides both
cognitive and psychomotor challenges. Such a setup offers oppor-
tunities and challenges for learning of efficient exploration behav-
ior that would be masked when focusing either on the cognitive
or the psychomotor aspects in isolation. Moment-to-moment
variation in psychomotor demands influences the amount of cog-
nitive resources available for other tasks and vice versa (e.g.,
Verrel et al., 2009). Importantly, variability in psychomotor
demands can help to avoid that learning processes incorporate
arbitrary motor contingencies (cf. Butz et al., 2007). For instance,
research on category learning has documented surprising bind-
ings between cognitive learning processes and arbitrary percep-
tual and motoric demands of the interface. Ashby et al. (2003)
observed a striking encapsulation of categorization knowledge.
After learning how to differentiate stimuli according to a single-
dimensional rule, participants could transfer the acquired cate-
gorization knowledge to a setup where the fingers pushing the
response buttons changed. However, transfer was not possible
if the categorization task demanded the weighing of features on
two dimensions, rather than a one-dimensional cutoff rule.While
participants were able to acquire the knowledge necessary to clas-
sify objects based on a two-dimensional separation criterion, they
could no longer use this (supposedly non-verbal) categorization
knowledge when the assignment of fingers to response keys was
changed.
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The Present Study

Instructing participants to repeatedly classify the kinematic struc-
ture of chains in a virtual environment, the current study tested
the quantity and quality of human exploration learning. First we
tested to what extent people would increase exploration efficiency
(in terms of speed and force) with practice—despite that they can
count on many object exploration episodes from outside the lab.
Second we tested whether practice would lead to changes in the
exploration strategies selected. This could be reflected in a reduc-
tion of strategy repertoire vs. maintained flexibility in selecting
from a large pool.

Participants had the task to physically manipulate chains in a
virtual environment (Figures 1A,B) in order to classify the kine-
matic structure of each of these chains (i.e., by which type of
joints the links of a chain were connected to one another). Every-
day observation suggests that people seem to playfully explore the
kinematic structure of objects and use them as tools (e.g., decom-
posing a new type of pen while talking on the phone). Here we
tested the extent and kind of learning gains of adults in efficiency
of object exploration despite such prior practice. We quantified
the practice gains in time, force, and number of actions needed
to classify the structure of virtual chains by marking the joints as
revolute (i.e., hinge), prismatic (i.e., slider/spring), or rigid (i.e.,
fixed). With respect to quantity of learning, our research question
was whether we could capture practice-related gains in explo-
ration efficiency in a simple mathematical function tied to skill
acquisition theories.While such an approach has proven useful in
laboratory research on strategy change in skill acquisition when
employing tasks with low psycho-motor demands (cf. Anderson,
1982, 2002; Gaschler et al., 2015), learning outside the lab has
not always been accessible to such modeling (cf. Gaschler et al.,
2014b). It is thus an open question whether mathematical model-
ing can help to summarize exploration learning in a complex task
posing cognitive and psycho-motor challenges.

Apart from testing how much is learned and in what
time-course, we probed what is learned. On the one hand, we
investigated whether gains in exploration efficiency are based on
specific memories of prior exploration episodes (cf. Logan, 1988),
or, alternatively on the formation of more general exploration
strategies (cf. Gaschler et al., 2015). The latter would allow par-
ticipants to transfer exploration knowledge across chains of dif-
ferent size and shape. On the other hand, we aimed at pinning
down exploration strategies. For this we investigated whether
components of exploration behavior could be captured by quan-
titative indicators and whether these components could be traced
back to overarching strategies. With practice, participants might
optimize the selection of exploration strategies—potentially at
the cost of maintaining a diverse repertoire of flexible explo-
ration strategies. In a nutshell, our goal was to quantitatively
describe exploration behavior and identify patterns related to
efficient exploration. By extracting general features of efficient
exploration, we tried to gain a general understanding of what
works/does not work for humans so that later work can try to
implement parts of these behavioral patterns in robots.

We tested the exploration behavior on randomly generated
chains in a human sample (N = 19). Similar to Gaschler
et al. (2012), the task was to identify the joints of the chain,

but this time by physical exploration rather than by keyboard-
commanded discrete tests. The structure of the chain was
explored by exerting force at blocks or joints of the chain by
pulling or pushing (Figure 1A). Interacting with the chain at or
close to one link could also move or distort other parts of the
chain—the more remote from the point of contact, the less the
influence. The movement and position of the links allowed par-
ticipants to reveal of which type a specific joint was. The haptic
interfaces (Figure 1B) provided force feedback to the user, so that
the exploration would appear more realistic and intuitive. Both
haptic devices (one for the left and one for the right hand) could
be used simultaneously.

Criteria for Learning
As we wanted to determine how humans learn to explore the
kinematic structures, we needed a criterion for learning. The sim-
ulation software of the virtual environment recorded the time
which was needed to classify the type of all joints in a chain,
registered all interactions with links and recorded expenditure of
force. We expected a strong learning effect, denoted by a decrease
of the exploration time per chain over the experiment. Apart
from recording how much was learned, we wanted to character-
ize what was learned. Onemeans to characterize learning is to test
if this learning is bound to particular material trained or general-
izes to variants not practiced or practiced less often (cf. Kramer
et al., 1991; Katz et al., 2008; Gaschler et al., 2012). For instance,
Katz and Brock (2008) found that a simulated robot could trans-
fer 30% of the gain in speed of exploration from a shorter chain
(it was trained on) to a longer chain and Gaschler et al. (2012)
found that once a redundancy in the task material is discovered,
it is transferred to novel stimuli.

Identifying Interaction Strategies
In the current study, we identified general interaction strategies.
These interaction strategies were examined on two different lev-
els: the strategy level and the component level. In order to analyze
strategy components, each interaction trace in the logged data was
analyzed on its own: The amount of force used on the haptic
interfaces, the usage of hands (left vs. right vs. both hands simul-
taneously), the preferred interaction type (pushing vs. pulling
the kinematic structure) and the organization of the exploration
(sequential interaction vs. unsystematic interaction) are crucial
components. These components could be evaluated with regard
to frequency of occurrence in the sample and efficiency. Based
on this we analyzed combinations of components (i.e., strategy
level).

Methods

Participants
We tested 19 participants (12 female,mean age 24.7 years, range:
19–30, SD = 3.85, all right handed) from the participant pool
of the department of psychology of Humboldt-Universität zu
Berlin. Data collection took place in the Robotics and Biology
Laboratory at Technical University Berlin. Participants received
course credit or e8 as compensation for participating in the
experiment lasting 45–60min.
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A

B

FIGURE 1 | (A) shows a schematic description of events in one exploration trial. (B) depicts the haptic interface used for the experiment.

Materials and Apparatus
On each trial participants were faced with the task to explore
and mark the structure of a kinematic chain. They used two
Novint Falcon haptic devices for physical exploration in the

virtual environment of 9.8 × 9.8 ×9.8 cm with a position res-
olution of 400 dpi on a 24-inch LCD screen and force feedback
capabilities of 2 lbs controlled by physics engine NVIDIA PhysX
Version 2.8.3 on a Linux platform. OpenSceneGraph 3.0 was
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used for visualization, while the simulation environment was
programmedwith C++. The visual perspective in the virtual envi-
ronment was fixed to top view, so that participants had the expe-
rience of a two-dimensional setting. The cursors of the haptic
interfaces were rigid gray hands with the tips of the virtual index
fingers as contact points. All links of the chains had the same form
and size (2.4×1.3 cm) and were presented in red. The joints were
displayed as gray balls at the beginning of each trial and colored
specific to the joint type by the participants. Participants used one
button of the haptic device for marking the joint types. Another
button was reserved for pulling the chains.

To mark a joint, the haptic device had to be moved close to
the gap between the links before pressing one marking button.
The color of the joint changed with each pressing of the button to
indicate the joint type currently selected. The allocation of color
to joint type was displayed in the bottom left of the screen (pris-
matic = green, rigid = red, revolute = blue). When a trial was
completed by the correct marking of all joints, the time needed to
complete the trial appeared on the screen in green letters. To pro-
ceed to the next trial, the experimenter had to press the space bar.

We assigned all joint types (revolute, prismatic, rigid) ran-
domly with equal probability with one exception. For some par-
ticipants, the 2nd joint from the left was always revolute. Such
a redundancy was discovered by the participants in our ear-
lier work with shorter chains and a simplistic interaction mode
(Gaschler et al., 2012). Here, we wanted to test whether this
would extent to situations with longer structures and enriched
interaction opportunities.

Procedure
Prior to the experiment, participants received an instruction
sheet, informing them about the handling of the haptic interface
and their task of identifying the joints. Participants underwent
a training to get used to control the haptic interfaces under the
supervision of the experimenter. In this warm up phase, three
boxes had to be moved into a cell on the right side of the screen.
This task could only be completed if pushing and pulling behav-
ior were used to navigate the boxes. For pushing, the index fin-
ger of the hand-shaped cursor had to be moved against a block
in the virtual environment. For pulling, the cursor was moved
away while pressing a button at the handle of the haptic inter-
face. After training, the experimenter started the main experi-
ment and later refrained from commenting on the performance
of the participants.

On each trial, one chain of 6–9 links (thus, 5–8 joints) was pre-
sented. Each participant had to run through four training blocks
of eight trials to complete the experiment. We manipulated two
variables on two levels, frequency of long chains (length-set con-
dition) and simplification condition. Half of the participants
explored 12 chains each of Length 7 and 8 and four chains each of
Length 5 and 6 in each of the four training blocks. Reversely, for
the other participants the short chains were frequent and the long
chains infrequent. Orthogonal to the frequency manipulation we
varied between participants whether or not there was an oppor-
tunity for a shortcut. In the simplification condition, all chains of
the first three blocks had the regularity that the second joint from
the left was of the revolute type. Participants were not told about
the regularity and randomly assigned to the conditions.

While the experiment was running, the status of the haptic
devices was logged with a frequency of 3Hz. After the exploration
of the chains was completed, participants were interviewed con-
cerning whether they had recognized a regularity in the kinematic
structures.

Experimental Design
Dependent variables were the time participants needed to com-
plete a trial, the physical force they used on the haptic interface
and the interaction type (pushing vs. pulling). Within subjects
factors were practice—indexed either in terms of training Block
(1–4) or in terms of trials (1–32), as well as the length of the
chain (5–8 joints). Between-subjects variables were the manip-
ulations of length set (short chains frequent vs. long chains fre-
quent) and simplification option (shortcut possible vs. not pos-
sible). Due to technical difficulties we lost data of one partici-
pant in the cell of the design with no simplification condition
and high frequency of long chains, leaving four participants in
this cell and five in each of the other cells of the two-by-two
design. In all analysis reported here, the significance level was set
to α = 0.05. The reported ANOVAs were Greenhouse-Geisser
corrected.

Results

Our major goal was to analyze how participants explored the
kinematic structures and how exploration changed with practice.
Below, we first we characterize practice-related gains in explo-
ration efficiency (speed) according to how learning generalized
across different virtual chains. Second, moving beyond this sim-
ple ANOVA approach to test transfer, we used mathematical
modeling to compare the practice functions derived from dif-
ferent theories on human skill acquisition with the time course
of improvements on the group level as well as the level of indi-
vidual participants. Third, we developed measures to identify
components of exploration strategies and related these compo-
nents to exploration efficiency via hierarchical regression. Last
we combined different components to strategies differing in the
exploration efficiency they bring about.

Quantifying Practice Related Gains and Transfer
Across Chains
Figure 2 (left panel) shows that average time demand per suc-
cessful exploration decreased by 50% from 30 to 15 s per chain
from Block 1 (Trials 1–8) to Block 4 (Trials 25–32). While the left
panel depicts the data averaged across all participants, in the right
panel two groups of participants were analyzed separately: partic-
ipants exposed to chains with joints selected fully at random vs.
participants for whom the second joint from left was revolute in
Blocks 1–3 (and random in Block 4). This provided participants
with the opportunity to directly mark the fixed joint if they had
learned about the regularity.

While prior results of tasks placing little load on psychomotor
control showed substantial shortcut usage based on the discovery
of simple regularities (Gaschler et al., 2012), this was not the case
in the current setup with long chains, two-handed operation and
kinematic feedback. The right panel of the graph does not sug-
gest any differences in exploration time for participants with vs.
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without option for simplification. Accordingly, a mixed repeated
measures analysis of variance (ANOVA) with Block as within
participants factor and simplification option as a between partic-
ipants factor only showed a main effect of Block, F(1.44, 24.59) =

42.38, MSE = 46.21, p < 0.001, η
2
p = 0.714. There was no

effect of simplification option (F = 0), nor any interaction effect.
In line with the lack of a behavioral effect, the debriefing inter-
view revealed that no participant in the simplification condition
(N = 10) was aware of the regularity in the chain structure. Con-
sistent with the absent difference in exploration time between the
two groups, participants were not slowed down either, when in
Block 4 the regularity in Joint 2 did no longer hold (Figure 2,
right panel).

As explained above, the experiment contained a second
manipulation in order to probe the nature of the learning under-
lying the substantial improvement in performance we observed.
Apart from varying whether or not the joint type of one joint
was predictable, we varied the frequency with which chains of

different length were presented. If learning was in part specific
to chain length (cf. Katz and Brock, 2008), participants should
explore chains of the length they are exposed to most frequently
faster as compared to chains of the less frequent length. To the
extent however, that learning generalizes across chains of differ-
ent length, there should not be an effect of training frequency.
Furthermore, there could in principle be an overall advantage of
participants exposed to the long chains frequently. This is because
long chains contain more joints and in consequence, the partic-
ipants exploring many long chains had more exposure to joints
during the 32 trials performed in the task.

The results (Figure 3) suggest that learning was not specific
to chain length and was based on trials (exploring all joints of
one entire chain) rather than on number of joints per trial. Par-
ticipants exploring many long chains were not faster on long
chains than participants with many short and few long chains.
A mixed ANOVA verified the impression of Figure 3. Speedup
across blocks led to a main effect of block, F(1.21, 20.48) = 37.43,

FIGURE 2 | Training effect in exploration performance. The left panel shows the average time participants needed to complete exploration on one chain. The

right chart depicts the same relation with separated groups of simplification vs. no simplification condition.

FIGURE 3 | Average exploration time depending on the frequency

of the chain types (short chains frequently vs. long chains

frequently). The left panel depicts that participants in the condition with

high frequency of long chains on average needed more time for

exploration. As the right panel pictures, this effect is exclusively explained

by the larger amount of longer chains contributing to the average. There

are no differences between the length-set groups in the speed of

exploring the chains of different lengths.
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MSE = 718.86, p < 0.001, η2
p = 0.69.As trials with longer chains

led to longer exploration times as compared to trials with shorter
chains, we obtained a main effect of length, F(2.20, 37.53) = 14.90,
MSE = 415.85, p < 0.001, η2

p = 0.47. However, exploration time
did not differ for participants exploringmany long vs. many short
chains, (F = 0.20 for the between group effect of length-set).
No interaction was found (Figure 3). Though participants with
a high frequency of long chains had more training material (224
joints vs. 192 joints in total) they were not overall faster. A t-test
calculated on the average exploration time per joint between the
length-set conditions did not reveal any difference, t(17) = 0.033,
p = 0.974.

Practice Function
Quantitative description of practice gains in exploration perfor-
mance can be captured by fitting a learning curve. The exact
shape of the learning curve is relevant, because it is linked to
assumptions in theories of skill acquisition (see below and dis-
cussion). One distinction linked to qualitative differences in skill
acquisition is whether practice related performance gains con-
firm to the power law or rather to the negative exponential
(Heathcote et al., 2000). The most significant difference between
the exponential and the power law is the relative learning rate
(RLR). While the power function assumes a decreasing RLR, it is
constant in the exponential function. A constant RLR means that
from trial to trial participants improve performance by the same
proportion—relative to the performance gains yet to be reached
till the asymptote (e.g., on each trial learn 20% of what remains
to be learned). However, many theories of skill acquisition pos-
tulated a power law of practice implying a decreasing rather than
a constant RLR (Newell and Rosenbloom, 1981; Anderson, 1982;
Logan, 1988).

A power law learning curve is modeled by t = A + B ∗ N−C,
where t is the dependent variable for the time to perform the
task, A the asymptote, B a constant and N the number of practice
trials. C defines the rate of acceleration with practice. Accelera-
tion is generally negative, i.e., the more trials pass by, the smaller
becomes the increase in speed from trial to trial.

To compute the exponential and the power functions we
seized the trial-number as the index of practice (N) and trial-time
as the dependent variables. We used the Levenberg-Marquart
estimation in PASW 19. In a first step we checked whether the
power function would be an adequate description of the data
averaged over participants. The regression for exploration time,
t = 17.04+ 72.21 ∗ N−1.23, R2 = 0.914, was described well by a
power function regression (Figure 4).

The fit of the power law regression to the averaged explo-
ration time data is very good and better than the exponential fit,
t = 20.38 + 183.8 ∗ e−0.975∗N, R2 = 0.851. However, Heathcote
et al. (2000) argued that the regression of averaged data favors
the power over the exponential function as a statistical artifact
and suggest to compute power and exponential regressions for
each participant separately. Indeed, when fitting the data of the
participants individually, the average R2 of the exponential func-
tion (M = 0.58) was larger than the one of the power function
[M = 0.46; t(18) = 3.286, p < 0.01, d = 0.73]. This confirms the
analysis of Heathcote et al. (2000), who found an advantage of the

FIGURE 4 | Averaged data and the power law regression for the

exploration time (R2
= 0.914).

exponential function over the power function in 33 of 40 different
data sets with an average improvement in fit of 17%. Our results
and Heathcote et al.’s analysis speak for a constant RLR.

Components of Exploration Strategies
After considering the practice function, we wanted to describe the
exploration behavior on a more specific level. In a next step we
analyzed various specific characteristics of the interactions with
the chains in isolation (i.e., the strategy components) in order to
lay the ground for combined analyses (i.e., the strategies).

Hand vs. Hands

The average percentage of right-handed interactions over all par-
ticipants was 50%, while on average 38% of the interactions were
executed with the left hand only and 12% were carried out with
both hands simultaneously. A t-test confirmed the dominance of
the right hand (all participants were right-handed) over the left
hand, t(18) = 2.98, p < 0.01, d = 0.66.

Use of Force

Pushing and pulling of the chain required both force and coor-
dinated movement. Typically, in the first trials, participants
tended to explore the chains very carefully. Each single joint
was explored by an interaction of the adjacent links. Participants
switched back and forth between applying force to the chain and
marking a joint type. With further experience, in many cases,
pushing and pulling was massed at the beginning of each trial.
Some participants seemed to aim at bringing the chain into a
shape where the type of most of the joints could be identified
without interacting with it again during the exploration trial.
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Joints were then labeled without strong usage of pushing and
pulling, just by the visual inspection of the idle structure. Thus,
high force in the beginning of a trial should be related to large
movements across the chain which could classify the structure
of the chain with respect to many joints. Later in the trial, small
forces were necessary to explore the remaining joints. For analy-
sis, each trial was separated into three equal time intervals. Force,
as the dependent variable was computed as average percentage of
force used per third in each block, so that it added up to 100%
for each block. Figure 5 (upper panel) suggests that from Block
2 onwards participants allocated the largest percentage of the
overall force they applied within a trial to the first third of the
trial. This was confirmed by a two factorial repeated measures
ANOVA. A significantmain effect of time-interval, F(1.28, 23.00) =
8.80, MSE = 0.053, p = 0.004, η

2
p = 0.329, and a signif-

icant time-interval by block interaction, F(2.99, 53.90) = 6.56,
MSE = 0.014, p = 0.001, η2

p = 0.267. An independent effect of
block could not be computed since each block added up to 100%
of force. The results suggest that at first participants used force at

a constant level throughout the trials and then learned to apply
force in the beginning of an exploration trial to bring the chain
into a shape where the joints could be identified.

Sequential Interaction with Joints

To allow for comparisons between the chains of different length,
we indexed the position of a link relative to the ends of the chain.
Figure 6 shows the relative frequencies for pushing and pulling
on the first three and last three links of the chains. The crossing
of the two lines illustrates that pushing dominated in the middle
part of the chains, while pulling was more prevalent at the outer
parts. This behavior was adaptive: Pulling at the ends allowed to
stretch the whole chain to reveal the type of many joints while
pulling in the middle of the chain would only affect one side of
the chain. Conversely, not all links were affected, if the chain
was pushed only at one end. Pushing the middle of the chain,
however, lead to deformation of the whole structure.

The differences in frequencies are visible in the interaction
effect of link position and interaction type, F(3.66, 65.89) = 16.48,

FIGURE 5 | Use of force within trials and across blocks of practice

(upper panel): The x-axis displays thirds of time per trial on the four

blocks. The y-axis shows the percentage of force used on the thirds

averaged over all trials of the block, as each block accounts for 100%. The

decline of force with proceeding trial-time illustrates the strategy change from

constant pushing and pulling in the first block to a more initial use of force at

the beginning of the trial. Lower panel: All participants show a strong use of

pushing, no participant uses pulling as the dominant (>50%) strategy.

Frontiers in Psychology | www.frontiersin.org 8 April 2015 | Volume 6 | Article 374

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Buckmann et al. Exploring virtual kinematic chains

FIGURE 6 | Percentage of pulling and pushing on the first three and

last three links. Each interaction type over all of the six shown links accounts

for 100%. The crossing of the graph illustrates that pulling is used more often

at the poles than in the center of the chain, while pushing is mostly used in the

center.

MSE = 65.89, p < 0.001, η
2
p = 0.48. There were no main

effects of link position (F = 1.27) and interaction type (F =

0.357). Both types of interaction were used on every part of the
chain. This fact and the large error bars indicate capacious inter-
individual differences and show that the different usage of push-
ing and pulling on the links is a general tendency rather than a
dichotomized, stringent strategy.

In which Order Did Participants Explore the Links of

the Chains?

To answers this question, the interaction with the links was ana-
lyzed as a function of time. For instance, participants might start
pushing or pulling in the middle of the chain and then move out-
wards. Alternatively, they might explore joint after joint from left
to right (or from right to left). In order to quantify the direc-
tion and amount of ordering in the sequence, we computed the
correlation between (a) the timestamp of the interaction in the
trial and (b) the position of the affected joint in the chain indi-
vidually for each exploration trial in each participant. The posi-
tions were numbered from left to right, longer chains ending
with higher numbers than shorter chains. In many trials par-
ticipants either strictly followed the sequential order from right
to left or from left to right. The distribution of the correlation
over all trials was bimodal (Figure 7). Interaction from left to
right in sequence would be reflected in a high positive correla-
tion while negative correlations indicate exploration from right to
left. The histogram demonstrates that sequential processing was
dominant.

Evaluating Strategy Components
The descriptive analysis above helps us to understand how par-
ticipants explore the kinematic structures and might help to dis-
cuss how to improve robotic exploration behavior. However, the
diversity of strategic elements will make it difficult to evaluate
their advantage unless we relate them to ameasure of efficiency of
exploration. Sequential processing, the simultaneous use of both
hands or the preferences of pushing might differ with respect to
how quickly they lead to the discovery of the structure of the
chain in a trial. We first report regression analyses linking the

FIGURE 7 | Histogram of the correlation between time-stamp in the

trail and position of the link which was interacted with at that point in

time. Negative values denote a sequential interaction from right to left. Data

was averaged over all trials of each participant and then over the participants.

different strategy indicators to exploration time per trial. After-
wards we will discuss combinations of strategy indicators that
were observed in fast trials. Correlations and regressions were
computed over all single trials (i.e., episodes of exploring a sin-
gle chain) in the data set. As we collected 32 trials from 19
participants, our basis was N = 608 trials.

We used a multiple regression with time till completion of
exploration in the trial as the criterion variable. If a strategy
indicator shows a negative correlation, this indicates that explo-
ration time is the shorter the more evidence for that indicator
was obtained in the trial. The multiple regression method allows
us to interpret beta weights of the strategy indicators as singular
proportions of variance of the criterion. In contrast to a simple
correlation analysis the interrelation between the indicators were
partialed out in the criterion. To keep track of the gains of the
solitary components, a hierarchical setup with four models was
applied. To control for the general learning effect, we included
the logarithm of the trial-number as the basic predictor. Anal-
ogous to the power and exponential function (Figure 4), taking
the logarithm leads to a strong effect in the first trials which is
reduced with further progress in the experiment. Trial-number’s
beta therefore should absorb the systematical variance of prac-
tice (e.g., getting used to the haptic interface and the task in
general). As strategic variables we include (a) the absolute cor-
relation between time-stamp and position of link as an indicator
for sequential processing, (b) the average amount of force used on
the trial, (c) the percentage of pulling on all interactions (push-
ing + pulling =̂ 100%) and, (d) the percentage of simultaneous
use of both hands.
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The zero order correlations (Table 1) of all predictors show
the isolated role of the trial-number. Log trial-number correlated
only weakly with the use of force, r(608) = −0.1, p = 0.02.
This correlation implies the more efficient and therefore reduced
use of force during later trials. The high correlation between the
simultaneous use of both hands and use of pulling, r(608) = 0.40,
p< 0.001, was also to be expected, because the simultaneous hand
use is only an efficient strategy if the chain is stretched through
pulling. The additional force which was needed to pull on both
sides of the chain was the result of the resistance of the other hand
when pulling, and was reflected in the high correlation with the
force variable, r(608) = 0.63, p < 0.001.

The hierarchical regression (Tables 2, 3) revealed that each
predictor is legitimated by a significant increase in R2 from
model to model, so we will use the most comprehensive Model
including all predictors to describe the results of the regression
analysis.

The log trial-number (beta = −0.455) had the largest beta
weight, since it binds the general learning effect. Force has the
second strongest weight (beta = 0.261). The positive value indi-
cates that a stronger usage of force slows down the exploration
process. The converse argument is that a sparse but concen-
trated use of force, which reveals information about more than
one joint, makes faster exploration possible. Compatible with this
finding, the simultaneous use of both hands was associated with
a faster exploration (beta = −0.134). As discussed earlier, this
can be explained by the fact that stretching the chain with both
virtual hands on the ends, allows to gather information about
many joints at the same time. Also, using both hands to push the
chain into a shape, where most of the joints could be identified,
is a similarly adaptive approach. Yet the general use of pulling
was associated positively with the criterion. Since pulling requires
more fine-tuned movements, it needs more time (beta = 0.115).
Sequential processing predicted faster trials (beta = −0.135).
Likely, we have to take into account that participants were not
perfectly adjusted to the handling of the haptic interface after our
warm-up phase. The behavior described above might have served
to minimize the need for large movements to distant parts of the
chain.

While the results have a high face validity and match
the informal observations made during the experiment, this
regression analysis has several limits. Trials were included
in the model without accounting for the variability across
participants. However, lending credibility to the current

TABLE 1 | Zero-order correlations of the five predictors.

1 2 3 4

1 Trial-number (log)

2 Sequential Processing −0.03

3 % of Pulling 0.05 −0.17**

4 Force −0.1* −0.11** 0.42**

5 Simultaneous Hand-Use 0.07 −0.30** 0.40** 0.63**

*p < 0.05, **p < 0.01.

approach, participants did not show highly idiosyncratic strate-
gies. This can be seen in the strong asymmetry of the pre-
dictor variables. For instance, the use of both hands was very
rare (Median = 0.06% of all interactions over all trials) and
sequential processing was very common, since the median of
absolute correlation values linking the joint index to the explo-
ration order was r = 0.91. This constraint does not allow
a precise evaluation of the strategy components within par-
ticipants, because not all possible exploration strategies were
applied by each of them. Also it is debatable if speed is the
exclusive relevant operationalization for efficiency. The over-
all force used per trial would also be a reasonable operational-
ization in some environments. For instance, robots in remote
areas (e.g., space robots) would not need to operate fast but
power-saving.

TABLE 2 | Coefficents of the hierarchical regression.

Model beta t Sig. Collinearity statistics

Tolerance VIF

1

Trial-Number (log) −0.486 −13.768 p <.001 0.999 1.001

Sequential

Processing

−0.145 −4.116 p < 0.001 0.999 1.001

2

Trial-Number (log) −0.462 −13.444 p < 0.001 0.985 1.015

Sequential

Processing

−0.119 −3.460 p < 0.001 0.975 1.025

Forces 0.224 6.470 p < 0.001 0.980 1.021

3

Trial-Number (log) −0.470 −13.701 p < 0.001 0.792 1.263

Sequential

Processing

−0.107 −3.084 p < 0.007 0.787 1.271

Forces 0.179 4.692 p < 0.001 0.955 1.047

% of Pulling 0.103 2.699 p < 0.001 0.890 1.124

4

Trial-Number (log) −0.455 −13.159 p < 0.003 0.778 1.286

Sequential

Processing

−0.135 −3.762 p < 0.006 0.493 2.027

Forces 0.261 5.431 p < 0.001 0.999 1.001

% of Pulling 0.115 2.997 p < 0.001 .999 1.001

Simultaneous

Hand-Use

−0.134 −2.778 p < 0.001 0.988 1.013

TABLE 3 | Summary for all regression models.

Model R2 R2 Change Significance of change

1 0.254 0.254 p < 0.001

2 0.303 0.049 p < 0.001

3 0.311 0.008 p = 0.007

4 0.32 0.009 p = 0.006

Frontiers in Psychology | www.frontiersin.org 10 April 2015 | Volume 6 | Article 374

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Buckmann et al. Exploring virtual kinematic chains

Reliability and accordingly error-proneness can also be beheld
as measures of the quality of strategies. The more experience the
participants gained, the less deformation of the chain was used to
mark a joint. A very slight bend was often enough to recognize
a joint as revolute. For instance, we observed that participants
sometimes tended to mark a joint incorrectly instead of exam-
ining it by pushing and pulling. This happened most frequently
with revolute joints, falsely marked as rigid because no bend was
visible in the shape of the chain. Certainly this error-proneness
is associated with strategy components, for instance the intense
use of force on every joint expulses misinterpretation on little
information about joints.

Identifying Strategies Based on Components
The multiple regression highlighted the importance of the four
different strategy components. Sparse use of force, sequential
processing, less pulling behavior and simultaneous hand-use all
seem to be adaptive strategy components accelerating exploration
behavior. However, only through the combination of the predic-
tors, the definition of strategies becomes possible. For instance,
high percentage of pulling is not a strategy for itself, but only
a component, which can be included in several strategies. To
unfold all strategies, we dichotomized the four predictors by
median split and created a table with every possible combination
(Table 4, 0 accounting for below median, 1 for above median).
The table is ordered by exploration time, so that the most suc-
cessful strategies are listed first with low strategy numbers. The
number of trials which reckon among the pattern of the predic-
tors are displayed, as well as the average trial-number, accounting
for the stability and difficulty of the strategy. The average trial-
number is computed by averaging the trial-number of all trials

assigned to the respective strategies. Therefore, a high number
denotes a difficult strategy that was only used in the later trials,
while a low number implies simple or ineffective behavior, which
was abandoned with further experience. We excluded combina-
tions of predictors, if the average trial-time was not interpretable
because of a too small subset (Table 4, crossed cells).

The excluded cells (strategies 1 and 3) show that sequential
processing does not go along with simultaneous hand use, when
sparse force is used. Simultaneous hand use in combination with
sparse force is associated with stretching (strategy 3) or pushing
(strategy 1) the whole chain to identify all joints at the same time.
This process cannot go along with sequential processing, since
the chain has to be pulled on both ends at the same time for
stretching the whole structure, or pushed in the middle part to
reveal all joints. Moving the whole chain in the beginning of the
trial, so that the joint types can be directly derived from the shape,
is an adaptive and efficient strategy, as discussed before. Strate-
gies 2, 4, and 6 all account for this initial “shaping” and show fast
exploration time: Strategy 2 denotes pushing the chain with both
hands, strategy 4 stands for pulling the chain with both hands
at the ends of the structure and strategy 6 is described by pushing
the chain with one device. The average trial-number is rather high
for strategies 2 and 4 (20.00, 21.86), indicating comparatively
high difficulty.

Another successful strategy was exploring the chain strictly
sequentially by interacting with single joints or at least with sev-
eral parts of the chain successively in sequential order. Strategy
5 depicts this strategy with a low use of force, Strategy 8 with a
high use of force. Force is necessary to reveal the properties of
the joints, nevertheless a reduced usage of force on sequential
processing of the chain is associated with fast exploration (16.40

TABLE 4 | Exploration strategies.

Strategy- Sequential Force % of Pulling Simultaneous Average trial-time CI Average Number of

number processsing hand-use in sec trial-number trials

1 1 0 0 1 11.94 ±1.92 17.33 3

2 0 0 0 1 13.58 ±2.19 20.00 29

3 1 0 1 1 14.44 ±2.60 19.00 3

4 0 0 1 1 15.12 ±4.43 21.86 14

5 1 0 0 0 16.40 ±2.20 16.55 115

6 0 0 0 0 17.44 ±3.67 16.90 39

7 1 0 1 0 19.70 ±2.98 18.23 53

8 1 1 0 0 19.81 ±2.78 13.18 39

9 0 1 0 1 20.10 ±3.76 17.29 34

10 0 0 1 0 20.79 ±5.38 19.66 44

11 1 1 1 0 25.95 ±5.01 17.11 38

12 1 1 0 1 26.43 ±14.45 17.33 9

13 1 1 1 1 34.42 ±6.44 13.20 41

14 0 1 1 0 35.68 ±9.58 14.10 29

15 0 1 0 0 36.48 ±14.16 11.90 39

16 0 1 1 1 36.57 ±9.10 16.36 73

All combinations of predictors were defined as independent variables and average trial-time, number of trials and average trial-number as dependent variables. The predictors were

dichotomized at their median respectively, 0 accounting for below median, 1 for above median.
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vs. 19.69 s). Sequential processing can also go along with pulling,
though it affords more time to uncover the structure by pulling
several joints (Strategy 7) than by pushing them. Strategies 5 and
7 together are used in 168 trials (∼28% of all trials), which reflect
the strong prevalence of these adaptive sequential strategies.

Slow, non-adaptive strategies are found in the bottom part
of the table. The most pronounced gap in trial-time is found
between Strategies 12 and 13. While sequential processing with
both hands and high percentage of pushing is rather fast (Strat-
egy 12: 26.43 s) the enforced usage of pulling slows down pro-
cessing by 8 s (Strategy 13: 34.42 s). Strategy 13 can be described
as pulling two adjacent links to uncover the interjacent joint.
This procedure is repeated on every joint of the chain. Though
this strategy helps to avoid any marking errors, it is very slow.
The last three strategies are even slower, all applying much force
and non-sequential processing. The low average trial-number of
Strategies 13–15 (13.2, 14.1, 11.9) indicates that these strategies
are not robust and were mainly adopted in the beginning of the
experiment, when participants had deficient experience with the
simulation environment. The last strategy is similar to number
13, though exploration is not sequential and therefore not as
systematic, reflected in even slower exploration time.

Force is not only the strongest predictor in the regression
besides the trial-number, but also the only one, which can be eval-
uated without accounting for interactions. Sparse average use of
force generally goes along with faster exploration behavior. How-
ever, this average does not reveal how the force is applied best
along the trial. Strategies 2, 4, and 6 are associated with “shap-
ing” behavior, a concentrated use of force in the beginning of
the exploration. On the other hand Strategies 5, 7, and 8 describe
sequential processing with a consistent sparse use of force. These
two meta-strategies cannot be combined, since shaping the chain
is performed at the ends or in the middle of the chain, but not
sequentially along the structure. Notwithstanding both strategic
concepts are the most promising ways of exploration. While the
shaping strategies seem to be most successful, sequential process-
ing can also be a fast way of exploration, provided that not every
joint is explored to carefully with both hands or too much force
application (comp. Strategies 12–14). Shaping behavior’s effec-
tiveness is fostered by simultaneous hand use (Strategies 2–4)
while it is obstructive for sequential processing. Though shaping
strategies (2, 4, 6) had a slight advantage over sequential pro-
cessing in the experiment, they were also more difficult for the
participants, as reflected in higher average trial-number. Note
that since difficult strategies were applied later in the experiment,
they may have in part been executed faster, because participants
already had gained more experience with the setup (handling the
haptic interface etc.). However, choosing the most efficient strat-
egy is part of the learning progress and accounts for the speeding
as well, additional to the adaption to the control of the interfaces.

The descriptive analysis of all strategies (Table 4) revealed the
importance of the interaction of the four predictors. We con-
cluded above, that a sparse average use of force is always adaptive,
independent of other strategy components. However, the other
simple implications of the multiple regression cannot be sus-
tained: The sequential exploration behavior is not per se benefi-
cial, because it excludes fast “shaping behavior.” Reduced pulling

is also not generally adaptive as the regression data suggested
(beta = 0.115). Indeed a comparison between strategies 14 and
15 implies an advantage for pulling behavior. The same principle
accounts for the last predictor: Data leads to the assumption that
simultaneous hand use is impedimental for sequential strategies,
while it fosters the effectiveness of “shaping” behavior (compare
strategies 2 and 6).

The negative Spearman rank correlation between the aver-
age trial-number and the strategy-number of all 16 strategies,
r = −0.63, p = 0.008 suggests, that participants learned adaptive
but more complex strategies (low strategy-number) with further
experience on the experiment (high average trial-number). Non-
adaptive strategies, which are characterized by slow and unsys-
tematic exploration behavior would be found in the beginning
of the experiment and replaced later by shaping or sequential
strategies. To test this assumption, we categorized the strategies
as non-adaptive (14, 15, 16), shaping (2, 4, 6, 9, 10) and sequential
(5, 7, 8, 11, 12, 13) and tested if the distribution of the strategies’
absolute frequencies was dependent of the training block. Since
not all participants were able to develop adaptive strategies and
their learning progress was very heterogeneous, we decided to
test the strategy distribution on the whole sample, not accounting
for individual strategy use. The application of shaping strategies
increased from 14 trials in Block 1–53 trials in Block 4, while
the frequency of sequential strategies was reduced in the second
half of the experiment (Figure 8). The accordant chi-square test
confirmed that the usage of the strategies was dependent on the
experience participants already had gained in the experiment,
X2
(6) = 16.21, p = 0.013. This analysis fits the negative cor-

relation of strategies’ average trial-number and strategy-number
and approves our expectation that shaping was the most difficult
and most successful strategy. It was developed later in the experi-
ment and used with increasing frequency because of its efficiency.
The rather constant level of non-adaptive strategies in Blocks 2–4
might confuse, since we expected a decline with further expe-
rience. It can be explained by the computation of the singular
strategies. The median split did not allow a discrete distinction
of the strategy components so that many non-adaptive strategies
might also reflect behavior, which is very similar to sequential
or shaping behavior, as its values on the strategies components
might be very close to the median.

Again we want to stress that the interpretations involving
causality have to be considered with caution. It is possible that
the allocation of exploration behavior to the strategies is mediated
by the learning of the controllers. The experience with the haptic
devices might have led to a reduced usage of force, which changed
the value on a strategic component from below median to above
median or vice versa. Thus, the experience with the controls,
might imply a putative change in strategies, though participants
did not change their exploration strategies.

Discussion

In the current work we studied how humans explore the kine-
matic structure of chains in a virtual environment by pushing
and pulling them bimanually via a haptic interface. In a simi-
lar setup Katz et al. (2008) showed that virtual agents are able to
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FIGURE 8 | Absolute frequency of strategies applied on the four training blocks. While shaping behavior increased constantly over all blocks, the use of

non-adaptive strategies decreased after the first block.

gather manipulation knowledge and increase speed in the explo-
ration of chain structures. As a first step toward our goal to
combine analytic (humans) and synthetic (robots) study of intel-
ligent exploration, we developedmeans to quantitatively describe
human object exploration. For the first time we could identify
and integrate qualitative and quantitative gains in exploration
practice in a task tapping cognitive- as well as psycho-motor abil-
ities. We observed large practice-related gains in efficiency in
terms of time and force used to classify the kinematic structure
of the chains. These learning gains generalized across chains dif-
fering in length and composition. Improvements followed the
practice function suggested by current work on human skill
acquisition. Apart from documenting how much was learned
(i.e., the size of the exploration learning effect), we also detailed
what was learned. On the one hand, we identified strategy com-
ponents that were associated with efficient (fast) exploration
performance: sequential processing, simultaneous use of both
hands, low use of pulling rather than pushing, and low use of
force. However, only the latter was beneficial irrespective of the
characteristics of the other strategy components. Thus, efficient
exploration behavior has to be characterized by strategies that
simultaneously take into account the abovementioned strategy
components.

With practice participants adopted a portfolio of different
exploration strategies, allowing for large information gain at the
cost of high psycho-motor demands as well as simple-to-execute
checking routines. While strategies that were efficient in terms
of time and force exerted were used more often with practice,
participants did not converge to stereotypical exploration behav-
ior with practice. Neither on the group level, nor on the level
of individual participants, the portfolio of strategies was sub-
stantially reduced with practice. Rather, participants remained
flexible and used multiple exploration ways. In fields as diverse
as mental arithmetic in primary school (e.g., Chen and Siegler,
2000), heuristics inmulti-reason decisionmaking (e.g., Rieskamp
and Otto, 2006), or motor control (e.g., Wolpert and Ghahra-
mani, 2000; Imamizu et al., 2004) probabilistic models of strategy
selection have been proposed that lead to practice-related shifts
of strategy mixtures rather than to a reduction in strategy vari-
ability. For instance, the overlapping waves theory by Siegler and

colleagues suggests that old and newly acquired strategies are
both used as learning proceeds, so that people can easily fall back
on robust and simple calculation strategies in case that newly
acquired shortcuts no longer apply. Early on, detailed observa-
tions by Muenzinger (1928) have shown that even simple lever
presses do not become stereotyped with repeated reinforcement.
Applying reinforcement principles on the level of motor rou-
tines (e.g., Thorndike, 1898/1911) one could have expected that a
guinea pig that (by chance) presses a lever with the right food for
the first time will use this food more often, if this motor pattern
leads to the delivery of a food pellet. While, according to Muen-
zinger (1928), the animals did increase their lever press activity,
they did not reduce the portfolio on how to press the lever with
practice (e.g., continuing to vary between all feet and the noose to
press the lever).

We suggest that it is adaptive to keep a large portfolio of strate-
gies and motor patterns to reach a desired end state (i.e., lever
quickly pressed for food delivery or structure of chain object
quickly classified). Apart from avoiding local minima in the qual-
ity strategies used, variability in means might help to reduce the
chance that arbitrary aspects of the situation are bound into the
learning episode (Ashby et al., 2003; Colzato et al., 2006). Also
it might secure a buffer of fallback options to work on a task
even when environmental conditions become less stable (poor
light, wind, unstable surface) or cognitive and motor resources
are reduced by age-related decline or secondary task load (e.g.,
Verrel et al., 2009). One can speculated that exploration tasks
that include psychomotor interactions involving large degrees of
freedom in how to reach an exploration goal might help to avoid
mechanization in problem solving (Luchins, 1942). While par-
ticipants working on symbolic paper-and-pencil exploration task
tend to stick with the first-best solution that seems applicable
throughout the set of problems (e.g., Wason, 1960), exploration
tasks stressing physical interaction with the object might secure
that alternative ways of solving the task are maintained. How-
ever, flexibility might come at the cost that redundancies in the
composition of the task material are less readily acquired and
exploited as compared to setups that place minimal demands on
psycho-motor control and offer little potential for variability in
performing the task (e.g., Gaschler et al., 2012).
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Our results suggest that at the same time participants learned
(a) how to operate the haptic input device in the virtual envi-
ronment and (b) where to affect the chains structures how for
revealing the properties of the joints. This might explain the very
high gains in performance across the first few trials of practice.
Perfect separation between these two aspects of acquisition of
exploration skills does not seem reasonable, since some strate-
gies (i.e., bimanual pulling) require highly skilled handling of the
interface. We presume that learning of controls is most promi-
nent in the beginning of the experiment, while learning of strate-
gies accrues after some experience with the controls. Compared
to many other skill acquisition tasks, the current task was rather
complex (cf. Heathcote et al., 2000). The control of the hap-
tic devices was new to the participants and included motor-,
sensory,- and cognitive affordances. However, despite task com-
plexity, fitting of practice functions indicated a smooth negative
exponential learning process. In line with the decomposition the-
sis (Lee and Anderson, 2001; Anderson, 2002) this suggests that
the practice function summarizing the practice-related perfor-
mance gains of a complex task does not have to be complex itself.
Rather, it can be attributed to the improvement of individual
components. One qualitative aspect of learning curves is that they
represent the diminishing absolute payoff of practice-investment.
From the total performance gain that can be achieved through
practice, a large part is yielded by the first few practice units. Later
units bring about comparatively modest gains. Exponential and
power function have the advantage in common that they offer a
quantitative description of practice data in line with this reason-
ing. Exponential practice functions can be derived from a narrow
set of assumptions. As Heathcote et al. (2000) explained, one
need only assume that learning is proportional to the time taken
to execute the component in case of a continuous mechanism.
First, a component that takes longer to execute presents more
opportunity for learning. For instance, a slow motor program
in service of exploration offers much opportunity for speedup.
Second, as learning proceeds, the time to execute the compo-
nent decreases. Therefore, the absolute learning rate decreases,
resulting in exponential learning. Similarly, for discrete mecha-
nisms, such as chunking, exponential learning can be explained
by a reduction in learning opportunity. As responses are pro-
duced by larger and larger chunks, fewer opportunities for fur-
ther composition are available. For instance, small motor patterns
in service of exploration that are at first executed serially based
on online control, become integrated into higher order patterns.
Time-demanding control is no longer necessary for small steps
but only for scheduling sets consisting of fixed series of small
patterns. Naturally, the opportunities for compilation of small
single motor programs into larger ones reduce, as more andmore
patterns are already chunked.

More assumptions are needed in order to theoretically accom-
modate a decreasing RLR. For instance, Newell and Rosen-
bloom (1981; see also Anderson, 2002) assumed that chunks are
acquired hierarchically and that every time a larger chunk is
practiced, this entails practice of its smaller components. Thus,
by practicing an exploration motor pattern consisting of sin-
gle steps, the single steps and the overall pattern are fine-tuned.
Furthermore, at least in combinatorial environments, acquisition
proceeds ordered by chunk span. No larger span chunk is

acquired until all chunks of smaller span have been acquired. An
exponential learning curve (constant RLR) instead of a power
curve (decreasing RLR) would be readily predicted by Newell
and Rosenbloom’s view on skill acquisition if the second assump-
tion was altered to the stance that chunks are executed as a sin-
gle unit and therefore practice only themselves, not their con-
stituents. This modification would fit nicely with Newell and
Rosenbloom’s claim that the execution time for a chunk is inde-
pendent of its size. Furthermore, Newell and Rosenbloom’s the-
ory (even without the lattermodification) only predicts a decreas-
ing RLR in case of a combinatorial environment, while other-
wise a constant RLR would be predicted (Neves and Anderson,
1981) for the chunking mechanism “composition” producing an
exponential practice curve. In a combinatorial learning envi-
ronment larger chunks are encountered less often than smaller
chunks.

In conclusion, the finding that individual participant data are
fitted best by the exponential function (while aggregate data are
fitted best by the power function) are well in line with work
questioning the power law of practice. In each trial participants
improved by the same proportion relative to the improvements
still possible till the asymptote. Likely, improvements resulted
from the fact that individual motor patterns in service of explo-
ration became compiled into larger chunks—not that individ-
ual motor patterns received considerable amounts of fine-tuning
in addition to the compilation. Potentially, practice phases tak-
ing several days rather than 45min, could have helped to iden-
tify both kinds of learning processes. Our results are notewor-
thy, because our task is much more complex as compared to
many skill-acquisition tasks for which this phenomenon has been
shown before (compare Heathcote et al., 2000). On the psy-
chomotor level, learning was likely producing performance gains
based on improved handling of the haptic interface and haptic
and visual processing of the virtual environment. On the cog-
nitive level, participants likely developed knowledge about the
kinds of possible joints, their likelihood of occurrence, and their
marking color.

The current work provides analytical techniques to describe
human exploration behavior quantitatively and qualitatively in
a virtual environment that can also be operated by simulated
robots. In the future this should allow us to study how efficient
human behavior can provide a teaching signal for robot explo-
ration learning and vice versa. Linking human and robot object
exploration seems promising as learning and control of explo-
ration behavior can take place on different levels and has com-
plementary weaknesses and strengths. In the simulation study of
Katz et al. (2008), training on one chain reduced the number of
actions to uncover the structure of another chain by 60% com-
pared to an agent without any experience. These results seem
rather impressive, though one has to consider that the virtual
robots conducted 50 trials on the training chain before exploring
the new chain. Also the new chain, to which the manipulation
knowledge was transferred to, was very similar to the initial.
When the new chain was not only differing from the initial chain
in length but in composition of the joints, the transfer effect
was very small. Therefore, the manipulation knowledge trans-
fer seems to be rather specific to the chain material. In contrast,
the antecedent analysis of human exploration reveals a far more
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general effect of training which is even more significant. To com-
pute it, the average exploration time for the 1st trial (no experi-
ence) was compared with the average exploration time of the last
trial (experience on 31 different chains). The mean reduction in
exploration time was 83.5% (CI = 72–90%) in our sample. Par-
ticipants who worked on many long chains, were not faster on
these compared to participants exploring many short and few
long chains, so that learning was not specific to the length of
the chain, but based on the number of trials already completed.
This signifies that human learning processes appear to be more
effective and more general than learning in a virtual agent since
speeding up was not dependent on the specific attributes of the
chains.

Humans followed two different main strategies: (1) Sequential
exploration from one end to the other, with several interactions
along the chain and (2) Shaping behavior, a massed application
of force to the chain either pushing it or stretching it, mak-
ing nearly all joints definable. After this initial interaction, the
joints were marked sequentially. Both of the strategies need only
sparse memory capacity and a small focus of attention, as only
the movement or the position of the joints just interacted with,
are regarded in sequential exploration. When shaping behavior is
applied to the chain, the joint type is directly derivable from the
rearranged state of the whole structure. For instance, bends in the
chain indicate revolute joints, while stretched joints can directly
be defined as prismatic.

In contrast, the virtual agent does not analyze the status of
the joints in their idle positions, but charts the movement of the
chain resulting from the interaction and uses this information to
determine the kinematic properties. Therefore, the virtual agent
can only gather information while the chain is in motion. The
simulated robot analyses all joints simultaneously and has no
restriction of focus or memory capacity, so a movement which
affects as many joints as possible at one time is adaptive for the
robot. It is therefore not surprising that the machine learning
algorithm learned to push the chain in the middle, because this
reveals information about most of the joints. This robot strategy
is comparable to human shaping behavior, as it also should affect
the whole chain. However humans gather different information,
because they focus on the state of the chain and cannot analyze
the movement of all joints simultaneously due to attentional con-
straints. Notwithstanding, shaping strategies offer robots useful
implications for interaction. Strategies 2 and 4 (Table 4) were
the most efficient ones in our dataset. Both are shaping strate-
gies comprising simultaneous hand-use. Pulling the chain at both
ends or pushing it simultaneously at two contact points should
allow the virtual agent to gather a lot of information because this
should lead to an expansive movement of the chain as a response
to interaction. Besides shaping behavior, sequential exploration is
considered as an efficient human strategy. However, it might not
be a successful adaption for robotic exploration behavior, since

sequential interactions often reveal redundant information about
a reduced area of the chain not involving movements of all joints.

With the current work we established the basis for study-
ing human and robot object exploration in a common test bed.
We suggest that a perspective joining an analytical (experi-
ments in humans) and a synthetic (designing robot exploration)
perspective can advance our understanding of object explo-
ration learning. A joint consideration of psycho-motor as well
as cognitive challenges in object exploration seems to be cru-
cial to obtain meaningful results. Furthermore, psycho-motor
challenges might be employed to maintain flexibility in object
exploration so that agents do not run the risk of binding arbi-
trary context factors into their learning episodes and are not
trapped by local minima in exploration efficiency. The virtual
environment allows to flexibly pose such psycho-motor chal-
lenges in exploration to humans and to log exploration behav-
ior. On the long run, performance of human and (simulated)
robot agents can be compared in the same environment. This
offers the potential for human-robot interaction in object explo-
ration as well as for blended learning situations. Robots might
be provided with exploration routines as well as heatmaps com-
prising the relative frequency of human actions in the spatial
and temporal space of the exploration environment. Conversely,
humans can profit from robot support in dangerous or demand-
ing exploration tasks. In establishing the virtual environment as
common test bed for human and robot object exploration, we so
far neglected some relevant aspects of virtual environments. The
extent to which participants feel presence in the virtual environ-
ment has been related to immediate reactions in terms of postural
control (e.g., Freeman et al., 2000) and physiological reactions
to virtual depth (cf. Insko, 2003). Feeling of presence has been
linked to interindividual differences in ignoring vs. using con-
text information to judge orientation (e.g., Hecht and Reiner,
2007). Likely, human performance in object exploration can be
boosted by designing the virtual environment such that feeling
of presence is high, because participants can rely more on preex-
isting fast psycho-motor routines in object exploration and less
so on effortful online control of actions in the virtual environ-
ment. Later research should thus assess and optimize feeling of
presence.
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