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Decision making in healthy
participants on the lowa Gambling
Task: new insights from an operant
approach

Peter N. Bull, Lynette J. Tippett and Donna Rose Addis *

School of Psychology, The University of Auckland, Auckland, New Zealand

The lowa Gambling Task (IGT) has contributed greatly to the study of affective decision
making. However, researchers have observed high inter-study and inter-individual
variability in IGT performance in healthy participants, and many are classified as
impaired using standard criteria. Additionally, while decision-making deficits are often
attributed to atypical sensitivity to reward and/or punishment, the IGT lacks an integrated
sensitivity measure. Adopting an operant perspective, two experiments were conducted
to explore these issues. In Experiment 1, 50 healthy participants completed a 200-trial
version of the IGT which otherwise closely emulated Bechara et al.’s (1999) original
computer task. Group data for Trials 1-100 closely replicated Bechara et al.’s original
findings of high net scores and preferences for advantageous decks, suggesting that
implementations that depart significantly from Bechara’s standard IGT contribute to
inter-study variability. During Trials 101-200, mean net scores improved significantly
and the percentage of participants meeting the “impaired” criterion was halved. An
operant-style stability criterion applied to individual data revealed this was likely related to
individual differences in learning rate. Experiment 2 used a novel operant card task—the
Auckland Card Task (ACT)—to derive quantitative estimates of sensitivity using the
generalized matching law. Relative to individuals who mastered the IGT, persistent poor
performers on the IGT exhibited significantly lower sensitivity to magnitudes (but not
frequencies) of rewards and punishers on the ACT. Overall, our findings demonstrate
the utility of operant-style analysis of IGT data and the potential of applying operant
concurrent-schedule procedures to the study of human decision making.

Keywords: decision making, lowa Gambling Task, operant psychology, sensitivity to reward and punishment,
learning rate

Introduction

Life is like a game of cards. The hand that is dealt you represents determinism; the way you play it is free
will.
(Jawaharlal Nehru).

Poor decision making, particularly in situations involving complexity (where choice alternatives
have multiple reward and punishment dimensions which may conflict) or uncertainty (where
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rewards and punishers occur unpredictably), is associated with
brain injury to ventromedial prefrontal cortex (VMPFC). The
Iowa Gambling Task (IGT; Bechara et al., 1994) was designed
to assess decision-making abilities in VMPFC patients under
such conditions of complexity and uncertainty. Participants are
instructed to maximize winnings while choosing repeatedly from
four decks of playing cards that unpredictably yield wins and
losses. Importantly, the contingencies of reward and punishment
are counter-intuitively arranged so that the decks with higher
wins ($100) result in a long-term net loss, while the decks with
smaller wins ($50) yield a net gain. Participants who do not learn
to prefer one or both of the $50 decks over the course of 100
trials are considered to exhibit a decision-making impairment.
Over the last 20 years the IGT has become a de-facto standard for
decision-making research (Dunn et al., 2006) and has been mar-
keted as a tool for clinical assessment (Bechara, 2007). Indeed,
the IGT has not only contributed to understanding decision-
making deficits in patients with VMPFC damage, but has also
been successfully applied to a variety of disorders arising from
poor impulse control (e.g., pathological gambling; Brand et al,,
2005).

Theorists from disparate disciplines assume that in tasks such
as the IGT, where participants make repeated choices between
two or more alternatives with differing outcomes, healthy indi-
viduals attempt to maximize net rewards over time (Samuelson,
1937; MacArthur and Pianka, 1966; Charnov, 1976; Rachlin et al.,
1976; Damasio, 1994)!. When presented with the IGT—or any
other novel choice task in which the contingencies of reward and
punishment for each alternative are initially unknown—to maxi-
mize net rewards an individual must first learn the contingencies
via trial and error. In a simple two-alternative choice task, learn-
ing is rapid and an exclusive preference may quickly develop,
while in a more complex choice task, learning rate may be
reduced and uncertainty increased. Preference at any given time
depends on the individual’s level of certainty of the relative con-
tingencies. Behavioral economists traditionally distinguish three
discrete categories of certainty—ambiguity, risk, and certainty
(Knight, 1921; Ellsberg, 1961; Levy et al., 2010). However, in a
choice task that requires learning, the boundaries between cate-
gories are not clear-cut; thus we argue that it is more helpful to
conceptualize these classes as regions lying along a continuum of
certainty (Figure 1). Initially an individual is completely uncer-
tain, and frequently switches between alternatives to learn the
contingencies—and preference can appear random or indiffer-
ent. But as the individual learns the approximate frequency and
magnitude of rewards and punishers, preference will typically
become biased toward alternatives with higher net rewards, and
the individual may come exclusively to prefer the better alterna-
tive. Thus, an individual’s location on the certainty continuum at
the time preference is measured can critically impact the apparent
“goodness” of their decision-making abilities.

Bechara et al. (1994) found that on the IGT, healthy partic-
ipants appeared to exhibit this pattern of gradual learning over

There is evidence that organisms do not invariably maximize (reviewed in Her-
rnstein, 1997); however, it is outside the scope of this paper to examine the validity
of the maximization assumption.

A Uncertainty Uncertainty Certainty
(Ambiguity) (Risk)
time

B Random Preference Exclusive Preference
FIGURE 1 | Continuum representing the change in a participant’s (A)
level of certainty and (B) preferences in a decision-making task as a
function of time.

100 trials and attained high net scores (an index of relative pref-
erence for good decks), while patients with VMPFC lesions gen-
erally failed to learn the contingencies, preferring alternatives
with long-term net losses (Bechara et al., 1994; Damasio, 1994).
This failure to maximize net rewards by VMPEC patients (and
other clinical populations) was attributed by Bechara et al. (2000),
Bechara and Damasio (2002) to atypical sensitivity to reward
and/or punishment in these patients. More specifically, Bechara
et al. (2000) hypothesized that poor IGT performance may result
from three distinct types of decision-making deficit: hypersen-
sitivity to reward; hyposensitivity to punishment; or myopia for
the future—that is, insensitivity to delayed or infrequent events,
whether they be rewards or punishers (Bechara et al., 2000, 2002;
Bechara and Damasio, 2002).

Sensitivity to reward and sensitivity to punishment are terms
used across multiple literatures but rarely formally defined.
According to Davis and Fox (2008), individuals with high reward
sensitivity “... are more prone to detect signals of reward in
their environment, to approach with greater alacrity potentially
rewarding stimuli, and to experience more positive affect (plea-
sure/reinforcement) when they are in situations with cues of
reward.” (p. 43). Thus, sensitivity may be likened to an indi-
vidual’s subjective perception of, and “reactivity” to, a reward or
punisher (e.g., a student may be more excited when given a $50
bill than a billionaire). This conception of sensitivity originates
in reinforcement sensitivity theory (RST; Gray, 1970, 1991; Gray
and McNaughton, 2000), in which reward sensitivity and punish-
ment sensitivity are considered stable personality characteristics,
associated with distinct neural substrates?.

In the IGT, sensitivity cannot be measured by analyzing behav-
ioral metrics such as the number of responses to each deck,
because each deck yields both rewards and punishers. For exam-
ple, a high proportion of responses to Deck B (large, frequent
rewards and large, infrequent punishers) may indicate either high
sensitivity to reward or low sensitivity to punishment. Therefore,
supplemental measures have been used to measure sensitivity.
For instance, Bechara et al. (2000, 2002); Bechara and Damasio
(2002) used a physiological measure (skin conductance response;
SCR), inferring that, for example, a low-magnitude SCR (rela-
tive to control participants) in response to losing money during a
trial was indicative of a low sensitivity to punishment. Other IGT
studies (e.g., Suhr and Tsanadis, 2007; Buelow and Suhr, 2013)
have utilized self-report measures of sensitivity (e.g., Carver and
White, 1994; Torrubia et al., 2001).

2Personality has been likened to “behavioral state;” defined as a distillation of an
individual’s previous history of reinforcement and punishment (Davison, 1998).
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A limitation of physiological and self-report approaches is
that they don’t measure the specific dimensions of sensitivity—
such as sensitivity to the frequency and magnitude of rewards and
punishers—that influence preferences in the IGT. To this end,
it may be worthwhile adopting an alternative approach used in
other literatures that also investigate decision making. In behav-
ioral economics the perceived, or subjective value of a reward or
punisher (referred to as its utility; Herrnstein, 1990; Glimcher
and Rustichini, 2004) is assumed to differ from its physical, or
objective value. This idea converges with the concept of sensi-
tivity from RST: Individuals may differ in the extent to which
they scale the physical properties of rewards and punishers to
subjective perceptions. A variety of methods and models have
been developed to quantify this scaling (e.g., Wearden, 1980; Her-
rnstein, 1990; Glimcher and Rustichini, 2004; Takahashi, 2005;
McKerchar et al., 2010; Doyle, 2012). Some of these models were
derived from the generalized matching law, an equation devel-
oped by operant psychologists (Baum, 1974; for an introduction
see Poling et al., 2011). Advantages of the generalized matching
law are that it mathematically formalizes sensitivity and offers a
well-validated procedure to measure the individual dimensions
of reward and punishment (e.g., frequency, magnitude, or delay).
The generalized matching law has not previously been applied to
investigating decision-making deficits in human participants; its
use may potentially complement the physiological and self-report
measures of sensitivity previously applied to IGT research by
providing a more nuanced picture of decision-making processes.

In order to derive sensitivity estimates using the generalized
matching law, operant psychologists utilize concurrent-schedule
procedures (Bouton, 2007). In a concurrent-schedule task, partic-
ipants choose between two or more responses (e.g., key presses),
each of which yields a reward with a different probability. That
is, two or more schedules of reward are presented to partici-
pants concurrently. The IGT can thus be considered a type of
concurrent-schedule task. Nevertheless, despite the similarities,
the decision-making literature has not yet drawn on the operant
study of concurrent schedules to enhance understanding of how
sensitivity contributes to performance on the IGT; the present
study will be the first to do so.

In addition to lacking a direct measure of sensitivity, the IGT
also experiences high inter-study variability. A recent review by
Steingroever et al. (2013) revealed that the strength of the learn-
ing pattern in Bechara et al’s (1994) healthy control group has
rarely been matched by authors outside Becharas laboratory.
Rather, high inter-study variability was apparent, including a
number of studies reporting very low net scores for healthy indi-
viduals. Such findings raise concerns about the interpretation of
low scores as indicative of a decision-making deficit (Dunn et al.,
2006). Further, deck-by-deck analyses of group data suggest that
what was assumed to be a preference for the decks yielding higher
long-term net gains may in fact reflect a preference for decks with
a low frequency of losses (e.g., Wilder et al., 1998; Dunn et al.,
2006; Lin et al., 2007, 2013; Steingroever et al., 2013). This ten-
dency to avoid frequent losses (i.e., the frequency-of-losses effect)
throws into question the assumption that healthy participants
learn to maximize net rewards (Bechara et al., 1994).

An issue that may contribute to high inter-study variabil-
ity, but which has rarely been discussed, is that the IGT

procedure itself has been inconsistently implemented across
studies (Areias et al., 2013). The majority of IGT researchers
have devised proprietary implementations in which fundamen-
tal parameters—including task complexity, task instructions, and
task length —often vary. Task complexity (equivalent to contin-
gency discriminability in operant psychology; Davison and Jenk-
ins, 1985) is determined by basic design parameters including
the number of choice alternatives, the number of dimensions
(e.g., valence, magnitude, frequency, or delay), the predictabil-
ity of rewarding and/or punishing events, and the variability of
reward/punisher magnitudes. Operant studies (e.g., Takahashi
and Iwamoto, 1986; Hanna et al, 1992) suggest that partic-
ipants’ choice behavior may be affected even by subtle task
variations (e.g., appearance, color, and spatial positioning of
stimuli on the screen; labeling of decks; randomization of deck
position and card order; changes in card appearance or color,
printed feedback, and audio associated with wins or losses).
Moreover, task instructions often include information about the
reward/punishment contingencies, which can influence partic-
ipants’ initial level of certainty. Both operant (e.g., Horne and
Lowe, 1993) and IGT (e.g., Balodis et al, 2006; Fernie and
Tunney, 2006; Glicksohn and Zilberman, 2010) research has
demonstrated that instructions can profoundly affect the ability
of participants to learn the contingencies. In particular, a “hint”
in Bechara’s instructions (stating that some decks are better than
others and that participants should avoid bad decks) has been
shown to be critical to good IGT performance (Balodis et al.,
2006; Fernie and Tunney, 2006; Glicksohn and Zilberman, 2010).

In addition to high inter-study variability in the IGT, Stein-
groever et al. (2013) found high inter-individual variability when
net scores and deck preferences for individual participants (as
opposed to group data) were examined in detail. Not only did
individual net scores vary widely, but up to a third of healthy
participants in some studies obtained scores low enough to be
classified alongside VMPFC patients. Thus, it appears that the
typical practice of aggregating individual participants, decks, and
trials when analyzing IGT data may obscure important informa-
tion, creating confusion in interpretation and perhaps leading
one to believe in the fictitious average healthy participant.

Following Bechara et al.’s (2000) explanation of poor IGT
performance in terms of atypical sensitivity to reward or pun-
ishment, and consistent with the view of sensitivity as a criti-
cal personality trait (Gray and McNaughton, 2000), it might be
hypothesized that the high inter-individual variability in IGT
performance is due to individual differences in reward sensitiv-
ity or punishment sensitivity in healthy participants. However,
Steingroever et al. (2013) also found that individual learning tra-
jectories did not typically resemble the gradual learning curve
suggested by group data. While many participants established a
stable preference for one or more decks during the allowed 100
trials, they did so at varying times, and final deck preferences
often differed. Still other participants never established stable
preferences, exhibiting high switching rates between decks and
low net scores throughout the task.

This variability in learning rate may be an important con-
tributor to high inter-individual variability: If some healthy
individuals learn the task very slowly, then their net scores
(based on all 100 trials) will be considerably lower than those
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who learn the task very quickly, resulting in a wide range of
individual net scores. Thus, as some authors have noted (Dunn
et al., 2006; Wetzels et al., 2010; Buelow et al., 2013; Ryterska
et al., 2013), one cannot infer that a poor net score in the IGT
is due to a decision-making deficit (i.e., atypical sensitivity), or a
low rate of learning, or both.

In operant research, to control for individual differences in
learning rate, a task will typically continue until participants have
developed a stable preference according to some predefined sta-
bility criterion (see Sidman, 1960; Killeen, 1978; Baron and Per-
one, 1998). Data from earlier, learning trials are then discarded
and analysis is only carried out on data from later, stable trials. In
contrast, the IGT is typically fixed at 100 trials for all participants,
and all data are analyzed—including data from early trials when
participants were learning by trial and error (refer Figure 1). This
is somewhat akin to evaluating the balance and coordination of
a group of novice snowboarders by allowing them 10 attempts at
negotiating an intermediate-level trail, and measuring the total
number of times they fall over. This is effectively an assessment
of learning rate—a better approach would be to first allow each
participant to reach a predefined competency level (which will
inevitably take a varying amount of time for each individual),
before evaluating their performance on the intermediate trail.
Indeed, several IGT studies have shown that when allowed more
than 100 trials, many individuals who perform poorly during the
first 100 trials are able to achieve good performance by Trial 200
(e.g., Fernie and Tunney, 2006; Buelow et al., 2013) or Trial 300
(Lin et al., 2013).

The present study comprised two experiments. In Experi-
ment 1 we investigated factors other than sensitivity (i.e., poor
task standardization and individual differences in learning rate)
that may contribute to the high variability in IGT performance
in healthy participants. In Experiment 2 we developed a novel
card task based on human operant experimental procedures
and applied the generalized matching law to derive behavioral
estimates of sensitivity for the participants in Experiment 1
to investigate whether sensitivity differed between individuals
categorized as good or poor decision makers on the IGT.

Experiment 1

In Experiment 1 a 200-trial version of the IGT was administered
to 50 participants, systematically replicating two recent stud-
ies that examined the effect of trial length on IGT performance
(Buelow et al,, 2013; Lin et al., 2013). In addition to increasing
task length, we controlled task complexity and task instructions
by implementing the IGT as closely as practicable to Bechara’s
original computer-based IGT (first described in Bechara et al.,
1999)%. Operant procedures guided the analysis—we did not
limit our analyses to group data, but also examined individual
learning trajectories, allowing us to better capture individual dif-
ferences in deck preferences. Moreover, similar to operant analy-
ses, we established a stability criterion that allowed us to limit the
analysis of net scores to stable data.

3We consider only the widely-used ABCD version of the Iowa Gambling Task and
do not address the A’B'C'D and E'F'G’H variants introduced by Bechara et al.’s
(2000).

We hypothesized that group data in the first 100 trials would
replicate Bechara et al.’s (1994, 1998, 1999) findings with healthy
controls more closely than other studies that have introduced
variations in instructions, procedure, and stimuli. Nevertheless,
we predicted that individual net scores during the first 100 tri-
als would be highly variable, and up to a third of healthy par-
ticipants would perform as poorly as VMPEC patients. When
given another 100 trials in which to learn the contingencies, how-
ever, we expected that mean net scores would improve and the
majority of participants would develop stable preferences for one
or both good decks. Thus, we hypothesized that individual dif-
ferences in learning rate and deck preferences across 200 trials
would contribute to high inter-individual variability and poor
mean net scores.

Method

Participants

In line with previous sample sizes reported by Bechara and col-
leagues (N ranging from 13 to 49; Bechara et al., 1994, 1998,
1999, 2000, 2002; Bechara and Damasio, 2002), we enrolled
50 young adults (20 males) aged from 17 to 32 years (M =
21.44; SD = 3.79) as participants in the current study. Par-
ticipants were recruited in response to advertisements at the
University of Auckland and were informed they would receive
NZ$10 for completing the study, and could earn up to an addi-
tional NZ$20 depending on their performance in the “card
games.” This was intended to encourage participant engage-
ment (particularly in the more onerous tasks in Experiment
2); in actuality the design ensured all participants received the
full NZ$30.

Experimental Task

The IGT was based on the implementation in Version 0.12 of the
Psychology Experiment Building Language test battery (PEBL;
Mueller, 2009; Mueller and Piper, 2014). Mueller’s version was
modified to more closely replicate Bechara’s computer-based IGT
(Bechara et al., 1999)* Instructions (see Supplemental Materials)
were based on those provided by Bechara to Davison (2009) and
similar to Bechara et al. (1999); notably, they included the follow-
ing hint, previously shown to be critical to good IGT performance
(Balodis et al., 2006; Fernie and Tunney, 2006; Glicksohn and
Zilberman, 2010):

The only hint I can give you, and the most important thing to
note is this: Out of these four decks of cards, there are some that
are worse than others, and to win you should try to stay away from

bad decks.

As argued in the Introduction, subtle variations in the exper-
imental task may have an important influence on performance;
therefore the IGT is described here in detail. A screen shot of
the task is shown in Figure 2. Three differences distinguished
this implementation from Bechara et al.’s (1999) version. First,

4The modified IGT used in this study has been adopted as the default IGT
implementation in PEBL Version 0.14 and can be downloaded from http://pebl.
sourceforge.net/
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FIGURE 2 | Screen shot of the lowa Gambling Task (modified PEBL implementation). The participant has just clicked on Deck A and received a $100 reward.

the task was run for 200 trials instead of the standard 100 tri-
als. Becharas schedule only defined outcomes for 40 cards in
each deck, so to ensure that a given deck in the current study
would not run out of cards, the original schedule was repeated if
a participant chose more than 40 times from a single deck. Sec-
ond, instructions were presented on the computer screen rather
than verbally to mitigate potential experimenter effects. Third,
to promote task engagement, participants were told that their
real-money winnings would be proportional to their play-money
winnings in the IGT®.

Participants used the mouse to select a card from a deck.
Following card selection, the card changed to either black or
red while the outcome was displayed. Note that black and red
cards did not necessarily correspond to wins or losses, but were
arranged according to the schedule designed by Bechara et al.
(1994, 2000). The message “You have won $” followed by the
amount of the reward was then displayed alongside a smiley face,
and a winning sound was played. If a penalty was also scheduled,
it was displayed immediately after the winning sound; the phrase
“But you also have lost $” was displayed alongside a sad face, and
a losing sound was played. Sounds were identical to those in the
implementation provided to our laboratory by Bechara (Davison,
2009). The inter-trial interval was approximately 2.5 s for reward-
only trials, or 5s when a reward was also followed by a penalty.
Two bars were displayed at the top of the screen. The upper
(green) bar displayed the amount of play money won during the
game, and was updated appropriately after each card selection.
The lower (red) bar displayed the amount of play money bor-
rowed to play the game. If the participant’s winnings fell below
zero, a further loan of $2000 was automatically added to the red

5The weight of evidence suggests that healthy participants who receive real money
in the IGT do not differ significantly in performance from those who do not (Bow-
man and Turnbull, 2003; Carter and Pasqualini, 2004; Fernie and Tunney, 2006;
but see Vadhan et al., 2009).

bar, and the green bar was reset appropriately. After participants
had made 200 selections, they were informed of their net win-
nings (total winnings less the total amount borrowed) and the
task ended.

Procedure

Informed consent was obtained in a manner approved by the
University of Auckland Human Participants Ethics Committee.
Participants performed all tasks alone in a quiet testing room.
Experimental tasks were run on a Dell PC running Microsoft
Windows XP. Stimuli were presented in full-screen mode on
a Dell 22-inch LCD display at the native screen resolution of
16801050 pixels.

Results
Group Data
In line with standard IGT analytical approaches, we first ana-
lyzed data at the group level. In their seminal study, Bechara
et al. (1994) introduced two summary statistics: mean number
of selections from each deck over 100 trials, and mean net score
(number of choices from good decks C and D minus number of
choices from bad decks A and B) over 100 trials. Later analyses
(beginning with Bechara et al., 2000) presented mean net score
as a function of each 20-trial block (highlighting the learning
curve in the IGT). To facilitate comparison with previous studies,
we present similar analyses; however, as the present study used
200 trials, net scores are expressed as proportions (i.e., net score
divided by the number of trials) rather than absolute numbers,
and in some cases data are shown separately for Trials 1-100, Tri-
als 101-200, and Trials 1-200. For inferential analyses we utilized
ANOVAs as per the standard approach to IGT data analysis since
Bechara et al. (1999).

Table 1 shows that mean net scores in the first 100 tri-
als were similar to those found previously by Bechara and
colleagues—particularly studies that utilized the computer-based
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TABLE 1 | Mean net scores (expressed as proportions of number of trials) and aggregated deck preferences in Bechara et al.’s studies and in the present

study.
Study N Trials Mean Mean proportion of choices
Net score® Good decks Bad decks
Bechara et al., 19942 44 1-100 0.36 0.68 0.32
Bechara et al., 1998 21 1-100 0.24 0.62 0.38
Bechara et al., 1999° 13 1-100 0.28 0.64 0.36
Present study 50 1-100 0.24 0.62 0.38
101-200 0.60 0.80 0.20
1-200 0.42 0.71 0.29

abproportions were extrapolated from figures in the original papers; however, the estimated proportions for the 1994 and 1999 studies differ slightly from those reported by Steingroever

etal. (2013).

SMean net score is mean proportion of choices from good decks (C and D) minus mean proportion of choices from bad decks (A and B). Proportions rather than whole numbers are
used to allow comparison across different numbers of trials (multiply by 100 to compare with net scores from 100-trial IGT studies).

IGT (Bechara et al., 1999) rather than the original IGT, which
employed physical cards and facsimile money (Bechara et al,
1994). Mean net scores for Trials 1-100 in the present study
were in the top 25% of the studies reviewed in Steingroever et al.
(2013)8. Notably, the top-scoring study in Steingroever et al.’s
review (North and O’Carroll, 2001) used the original comput-
erized IGT supplied by Bechara. Thus, our results support the
hypothesis that closer adherence to Bechara’s experimental task
and instructions would facilitate a closer replication of their
results.

In Figures 3A,B, standard graphical depictions of IGT data
are presented. Figure 3A shows mean net score as a function
of 20-trial blocks. To determine whether, on average, per-
formance continued to improve after 100 trials, a repeated-
measures ANOVA (Greenhouse-Geisser corrected) was carried
out on net scores, which confirmed a significant effect of block
(Fs.86. 287.01) = 47.75,p < 0.001,;7,% = 0.49]. Significant lin-
ear [Fj 49 = 126.00,p < 0.001, 77}2, = 0.72] and quadratic
trends [F(;, 49y = 69.64,p < 0.001, r]f, = 0.59] were found,
supporting the visual impression from Figure 3A that perfor-
mance improved over time and had a curvilinear shape, leveling
out somewhat in later blocks in an asymptotic pattern. Planned
comparisons indicated that net scores in Blocks 1-5 were signifi-
cantly lower than net scores in Blocks 7, 9, and 10 (all p < 0.05),
supporting the hypothesis that average IGT performance would
improve if participants were given more trials in which to learn
the task.

Figure 3B shows the total proportion of selections from each
deck for all participants. Results are shown separately for Tri-
als 1-100 and Trials 101-200 (referred to here as epochs).
A repeated-measures ANOVA (epoch x deck; Greenhouse-
Geisser adjusted) revealed a main effect of deck [F(; 55, 76.15) =
19.20, p < 0.001, '7;% = 0.28] and an interaction between epoch

®Note that one of the studies in Steingroever et al.’s review (Overman et al., 2004)
administered 200 trials instead of the standard 100, so it is questionable whether it
should have been included. Excluding Overman et al., the mean net scores in Trials
1-100 of the present study are the seventh highest (alongside Bechara et al., 1998)
of the 31 studies reviewed.

and deck [F(1.49, 72.81) = 20.55, p < 0.001, 75 = 0.30]. Post-hoc
pairwise comparisons showed that in each epoch, significantly
more choices were made from the good decks C and D than the
bad decks A and B (all p < 0.01). That is, on average, participants
chose advantageously. The interaction between epoch and deck
was reflected in different patterns of choice in the first and second
epochs: Choice of Deck A (p < 0.001) and Deck B (p < 0.001)
decreased significantly between the first and second epoch, while
choice of Deck C increased significantly (p < 0.001). Preference
for Deck D did not change across the two epochs (p = 0.39).
Thus, the group data suggest that the improvement in perfor-
mance in later trials was characterized by a shift in preference
away from Decks A and B toward Deck C.

As several authors (e.g., Fernie, 2007; Buelow et al., 2013;
Steingroever et al., 2013) have pointed out, the above analyses
have limitations. The aggregation of data by block (Figure 3A)
obscures preferences for individual decks, while aggregating by
deck (Figure 3B) obscures the effects of time. Figure 3C is a
more informative representation of the data, and is increas-
ingly favored by IGT researchers. Figure 3C illustrates the trend
toward good decks and away from bad decks over time (similar
to Figure 3A), whilst also breaking down individual deck pref-
erences (as in Figure 3B). Figure 3C indicates that, on average,
participants learned to prefer the good decks (C and D) rather
than the decks with lower frequencies of losses (B and D; cf. Ste-
ingroever et al., 2013). An examination of individual data further
revealed that only 8% of the sample (Participants 9, 10, 45, and
46) exhibited a preference for Decks B and D over other decks in
the first 100 trials, and only one (Participant 9) maintained this
pattern of preference in the second 100 trials.

Steingroever et al. (2013) introduced a new descriptive anal-
ysis plotting the mean proportion of switches from one deck to
another made during each block of trials. Figure 3D presents
the corresponding data for the present study (though here each
block is 20 trials in length whereas in Steingroever et al. each
block was 10 trials). In contrast to most of the studies reviewed
by Steingroever et al., mean switching appeared to decrease over
blocks, suggesting that, on average, preferences stabilized as the
task progressed.
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FIGURE 3 | Plots of group data (N =50) for the lowa Gambling
Task. (A) Mean net score by block (secondary axis displays absolute
mean net score for comparison with previous literature). (B) Mean
proportion of choices by deck for each 100-trial epoch. (C) Mean
proportion of choices by block for each deck (error bars omitted for
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clarity). (D) Mean proportion of switches by block. Error bars show
standard error of the mean. Vertical dashed line demarcates trials 1-100
and 101-200, where relevant. Horizontal dashed line indicates the level
at which the number of choices from bad decks was equal to the
number of choices from good decks (A), or chance selection (B,C).

Individual Data

Group analyses may conceal important individual differences
in behavior; therefore individual data were examined in more
detail. Table 2 indicates that, as hypothesized, net scores showed
high inter-individual variability, reflected in high standard devi-
ations (relative to means) and ranges (when averaged across
100-trial epochs). The standard deviation was higher in Trials
101-200 than in Trials 1-100 because 44 participants improved
their scores (with six obtaining perfect scores) but six partic-
ipants actually obtained lower scores in the second epoch. In
the first epoch, 30% of the sample scored as low as VMPFC
patients according to Bechara et al.’s (2001) criterion, consistent
with previous studies (Steingroever et al., 2013). However, in the
second epoch, only 16% remained in this category. Thus, as pre-
dicted, running the IGT for 200 trials evidently provided partici-
pants with more opportunity to learn the contingencies and thus
reduced the number of participants classified as poor decision
makers. Increasing the number of trials to 200 did not require
an unreasonable amount of time; participants took an average of
13.72 min (SD = 2.68) to complete the task.

We examined individual learning trajectories to establish
whether individual differences in learning rate and deck prefer-
ence contributed to the inter-individual variability evident when
the data are aggregated into epochs of 100 trials (first two rows
of Table 2). Initial visual inspection of individual participant
profiles (see Supplemental Materials) suggested that, consistent
with Steingroever et al.’s (2013) analysis, participants took vary-
ing amounts of time to develop strong preferences, with many

TABLE 2 | Mean net scores (expressed as proportions of number of trials)
in the present study, variability statistics, and proportions of participants
satisfying criteria for impaired performance.

Trials Net score Proportion of
participants impaired®
M SD Min. Max. Range Net Net
score <0.10 score <0.00
1-100 024 024 -034 0.68 1.02 0.30 0.14
101-200 0.60 0.40 -0.48 1.00 1.48 0.16 0.08
1-200 042 030 -0.41 0.81 1.22 0.18 0.12

aThe criterion used to classify a participant as “impaired” was originally defined by Bechara
et al. (2001), (p. 384) as an overall net score < 10 (i.e., net score < 0.10 in proportional
terms), based on norms calculated from VMPFC patients. Most subsequent studies have
also adopted this criterion; however Steingroever et al. (°2013) used a stricter criterion of
net score < 0.00 (in proportional terms), also shown here for comparison.

failing to do so even by 200 trials. Moreover, different partici-
pants developed stable preferences for different decks, or pairs of
decks.

To quantify these visual observations, a stability criterion (see
Baron and Perone, 1998) was devised for the IGT. While no spe-
cific operant criterion was suitable for the IGT, an analogous
approach was taken. Specifically, a participant was considered to
show a strong preference for a single deck when the proportion of
choices from that deck during a block was (a) at least 0.50 and (b)
at least 0.25 greater than the proportion of choices from any other
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deck. For participants who did not prefer one particular deck, a
strong preference for a pair of decks was assumed when (a) the
sum of the proportion of choices from the two decks during a
block was at least 0.75 and (b) the preference for each of the two
decks differed by less than 0.25. Behavior was considered stable
when the same preference was maintained for three consecutive
blocks (i.e., 60 trials).

Figure 4A indicates that individual participants achieved sta-
ble preferences at varying times between the second and eighth
block of trials. Only 54% of participants met the stability cri-
terion by 100 trials, while 72% of participants had done so by
160 trials (however, note that 4% of those who met the stabil-
ity criterion preferred bad decks). The results are consistent with
the view that healthy individuals differ widely in learning rate,
and that many require more than 100 trials to develop a strong
preference. Indeed, 28% did not meet the stability criterion even
after completing 200 trials. Note that the new stability criterion
is stricter than Bechara et al.’s (2001) criterion (Table 2), which
only classified 16% of participants as impaired.

Figure 4B summarizes preferences for each deck and each
pair-wise combination of decks according to the stability cri-
terion. Of those who developed strong preferences, almost all
preferred the good decks: 34% of the sample preferred Deck
C, 24% preferred Deck D, and 10% preferred both C and D
approximately equally. There were two exceptions: One partici-
pant strongly preferred Deck A, whilst another preferred Decks
BandD.

The individual differences in learning rate and deck prefer-
ences apparent in Figure 4 contributed to high inter-individual
variability (Table 2) due to the influence of the low net scores
achieved by many participants. For example, in Trials 1-100
half the sample: 46% (23 participants) did not learn to prefer
the good decks, while 4% (2 participants) developed preferences
for bad decks. To examine the effect on performance in Trials
1-100 of controlling these two factors, analysis was restricted to
the 50% of participants who mastered the IGT within 100 trials
(see first row of Table 3). Compared to the entire sample (first
row of Table 2), the mean net score was considerably higher and
variability lower, supporting the hypothesis that individual dif-
ferences in learning rate and deck preference contribute to poor
performance and high inter-individual variability in the standard
100-trial IGT.

In operant research, differences in learning rate are controlled
by discarding early learning data from analysis and focusing on
preferences after subjects have satisfied the stability criterion.
Similarly, to obtain a more accurate impression of how well
healthy participants perform on the IGT, early learning trials
should be excluded. In the present study, 68% of participants had
achieved stable preferences for good decks by Trial 160; therefore
data for these participants in the final 40 trials of the 200-trial
IGT were examined (second row of Table 3). The mean net score
of participants at stability was 0.87, and 13 of the 34 participants
achieved scores of 1.0, suggesting certainty. We conclude that,
given sufficient time to learn the task, the majority of healthy
participants are able to perform extremely well on the IGT. Nev-
ertheless, 28% failed to develop a strong preference even after 200
trials—this was investigated further in Experiment 2.
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FIGURE 4 | Histograms summarizing the results of applying the
stability criterion to individual data in the lowa Gambling Task. (A)
Proportion of participants to reach the stability criterion by each block of trials
(vertical dashed line demarcates trials 1-100 and 101-200). (B) Proportion of
participants who preferred each deck or pair of decks. No Pref., No preference
by the end of the task.

Discussion

Historically, IGT studies have not placed high importance on
procedural details, evidenced by the wide variety of procedures
used (Areias et al., 2013), and the tendency not to report details
of the experimental task in method sections. In the present study
we report evidence supporting the hypothesis that the variations
in IGT task complexity and instructions found in the literature
may contribute to inter-study variability. Specifically, our close
replication of Bechara et al.’s (1999) computerized experimental
task and instructions resulted in mean net scores in Trials 1-100
that were comparable to Bechara et al. (1998, 1999), in contrast to
the relatively low scores reported in the majority of IGT studies
reviewed by Steingroever et al. (2013).

Also like Bechara et al. (1994), but in contrast to many of the
IGT studies reviewed by Steingroever et al. (2013), our group data
for the first 100 trials showed no evidence of the tendency to avoid
frequent punishers (i.e., the frequency-of-losses effect; Dunn et al.,
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TABLE 3 | Mean net scores (expressed as proportions of number of trials)
and variability statistics in participants who developed stable preferences
for the good decks (C and/or D) in the present study.

Trials Net score

M SD Min. Max. Range
1-100 (n = 25) 0.39 0.14 0.08 0.68 0.60
161-200 (n = 34) 0.87 0.17 0.35 1.00 0.65

2006; Lin et al., 2013). Rather, the descriptive data for our first
100 trials (see Figure 3B) resembled the pattern of strong prefer-
ences for Decks C and D in Bechara et al.’s (1994) control group,
and only four individuals clearly preferred Decks B and D over
other decks in the first 100 trials. It is unclear why the frequency-
of-losses effect was not observed in the present study. We can
only speculate that payment of participants (admittedly a depar-
ture from Bechara et al’s original implementation) might have
led them to be more averse to risky Deck B, although previous
studies found that payment of real money in the IGT had little
effect on performance (e.g., Bowman and Turnbull, 2003; Carter
and Pasqualini, 2004; Fernie and Tunney, 2006). Thus, while it
seems unlikely that in this case, payment affected performance,
future work that systematically varies a variety of task factors is
needed to determine precisely which aspects of the procedure are
critical to achieving reliably high net scores’.

As hypothesized, mean net scores exhibited the high variabil-
ity typically found in IGT studies, along with the common find-
ing that many healthy participants (30% in the present study)
perform as poorly as VMPEC patients in the standard 100-trial
IGT (Steingroever et al., 2013). Also as predicted, increasing the
number of trials greatly improved performance—in Trials 101-
200 the number of participants who performed in the range of
VMPEFC patients was nearly halved to 16% of the sample. The
improvements in performance after 100 trials replicated the find-
ings of the few papers that have examined the effect of extending
the number of trials (e.g., Fernie and Tunney, 2006; Buelow et al.,
2013; Lin et al., 2013). Thus, our study adds to a growing chorus
that the existing standard 100-trial IGT may be inappropriate for
clinical assessment, as it classifies a disproportionate number of
healthy participants as impaired.

Our novel analysis of individual data supported the hypothe-
sis that the inter-individual variability in IGT net scores is likely
attributable to individual differences in learning rate and, to some
extent, to differing preferences for individual decks. When learn-
ing rate was controlled by adopting an operant approach—that
is, restricting analysis to stable data from participants who met
the stability criterion—inter-individual variability in net scores
was reduced relative to the group as a whole. This observation
suggests that the misclassification of many healthy individuals
as impaired may reflect wide differences in individual learning

7Unfortunately few clues can be found in previous published IGT studies, which
generally provide little to no detail about the experimental task. However, we note
that in some studies (e.g., Chiu and Lin, 2007; Fernie, 2007) the spatial positions of
the card decks were randomized to control location bias, so an interesting initial
avenue of research may be to investigate the effects of spatial position.

rates. Indeed, while some participants required only 40 trials to
develop stable preferences for the good decks, others required
160 trials. Moreover, contrary to Brand et al’s (2007) assertion
that most participants have a good idea of the contingencies
by 40-50 trials, only 16% of our participants developed stable
preferences by 40 trials. We suggest that preferences should be
analyzed only when they have stabilized in the majority of par-
ticipants, which appeared to take at least 160 trials in the present
sample. Nevertheless, 160 trials was close to the limit of 200 tri-
als, and it is possible that given more trials, a larger majority
of participants would have mastered the task. Further work is
required to clarify the appropriate absolute trial limit in the IGT
that allows the majority of healthy individuals to develop stable
preferences.

Note that due to the novelty of this analytic approach to
the IGT, the basic stability criterion used herein was somewhat
exploratory, and therefore our conclusions are tentative. For
instance, the stability criterion employed here will not detect a
late change in preference once an earlier preference has stabilized
(examining the individual data, approximately seven participants
showed late changes in preference after 60 stable trials). Given the
wide range of learning rates across individuals, a higher absolute
trial limit (e.g., 300 or 400 trials) would ideally be combined with
a dynamic stability criterion—that is, where the task would halt
once stability was reached in each participant. This would help
prevent loss of engagement in the task, which we speculate may
have led some of our participants to begin experimenting with
other decks again after they had reached stability.

One might argue that applying a stability criterion and dis-
carding learning trials from analysis defeats the purpose of the
IGT—the designers of the IGT may have deliberately limited the
task to only 100 trials because they intended the IGT to be an
implicit measure of learning rate. The underlying assumption
is that atypical sensitivity is likely to be associated with slower
learning. However, slower learning is not necessarily due to atyp-
ical sensitivity—in the present study, 18% of healthy participants
did not develop strong preferences for good decks until the sec-
ond 100 trials. In Buelow et al.’s (2013) study, the equivalent fig-
ure was 26.5% (though a different calculation was used). Buelow
et al. speculated that these slow learners may exhibit a differ-
ent type of decision-making deficit, albeit less severe than those
who never develop strong preferences. However, given that the
slow learners represent approximately 20-25% of healthy partic-
ipants, arguably the more parsimonious explanation is that this
simply represents normal individual variability in learning rate
(i.e., the upper tail of the distribution of learning rates). By dis-
regarding learning data, we don’t wish to imply that learning
rate is not of interest in its own right. However, when examining
learning rates, due to individual variability it is advisable to (1)
analyze individual learning curves rather than the group learning
curve, and (2) focus on behavior prior to attaining stable prefer-
ence (given that stable preference is assumed to be a function of
sensitivity, not learning per se).

The individual analyses further extend prior IGT work by
classifying participants into sub-groups according to stable deck
preference. Previous studies aggregated all participants and made
conclusions based on group data. For example, both Buelow et al.

Frontiers in Psychology | www.frontiersin.org

April 2015 | Volume 6 | Article 391


http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Bull et al.

The IGT: an operant approach

(2013) and Lin et al. (2013) reported an overall preference for
Deck D in Trials 101-200 (though by the third 100 trials in Lin
et al’s study, mean preference for C and D was almost equal),
while our group data showed an overall preference for Deck C
in the second 100 trials. However, focusing on group data can
lead to an inaccurate perception of the preferences of healthy
participants. Examination of our individual data revealed that
participants fell clearly into three main sub-groups: About a third
preferred Deck C; a quarter preferred Deck D, and 10% showed
an approximately equal preference for Decks C and D. The small
sample size in the present study restricts further statistical inves-
tigation of the characteristics and sensitivity profiles of these
sub-groups. However, future work with larger samples might use
these sub-groups to investigate several hypotheses. For example,
high sensitivity to penalty magnitude may be associated with a
preference for Deck C over Deck D (larger penalties); conversely,
individuals with a high sensitivity to penalty frequency might
prefer Deck D to Deck C (more frequent penalties).

The individual analyses raise a further question that cannot
be addressed by the IGT data alone. Although in the second
100 trials only 16% of participants were classified as impaired by
Bechara et al.’s (2001) criterion, by our stricter stability criterion
28% of participants failed to exhibit a stable preference for any
particular deck or decks, even after completing 200 trials. These
participants may have been particularly slow learners—perhaps
they would have developed preferences for the good decks if
allowed more than 200 trials (e.g., Lin et al., 2013). Alternatively,
their weak preferences may be explained by atypical sensitiv-
ity to reward and/or punishment (Bechara et al., 2000). Lacking
additional physiological (e.g., SCR) or self-report measures, the
behavioral data in the IGT (i.e., preference for each deck) can-
not be used to compute sensitivity measures. Therefore, Experi-
ment 2 employed a novel operant card task to derive behavioral
estimates of sensitivity in participants, facilitating a comparison
of poor decision makers with good decision makers.

Experiment 2

Operant researchers have traditionally investigated choice using
concurrent-schedule procedures, in which subjects are presented
with choices between two alternatives, one of which may pro-
vide rewards with a higher probability (responses are typically
rewarded at variable intervals of time). Research has established
that organisms ranging from fruit flies (e.g., Zars and Zars,
2009) to human beings (e.g., Takahashi and Shimakura, 1998)
approximately match their preference for an alternative to the
proportion of rewards received (once they have learned the con-
tingencies, and behavior has stabilized). For example, if one alter-
native provides 75% of the rewards then approximately 70-75%
of responses will be made to that alternative. This phenomenon,
first quantified by Herrnstein (1961) and subsequently dubbed
the matching law, allows researchers to derive an estimate of
sensitivity to reward based on choice behavior.

To measure sensitivity, subjects typically complete a series of
conditions, each with a different ratio of rewards arranged on
the two alternatives. A linear function is then fitted to the log-
transformed response ratios and reward ratios, with the slope

of the line yielding a quantitative measure of sensitivity. Thus,
sensitivity is defined as the degree to which the subject’s relative
choices change when the ratio of rewards changes. The supple-
mental materials contain an overview of this approach and pro-
vide the generalized matching law equation and its derivation
(see Supplement C). For an introduction to the matching law,
please see Poling et al. (2011). For more complete coverage, refer
to Davison and McCarthy (1988).

A limitation of applying operant procedures to human partic-
ipants is the large number of sessions normally required for each
condition, which may lead to loss of engagement (e.g., Buskist
et al., 1991). Davison and Baum (2000) introduced a new proce-
dure in which a range of reward ratios is presented to participants
as a series of components, or mini-conditions, within a single
session. This approach was adopted by two recent human oper-
ant studies (Lie et al., 2009; Krigeloh et al., 2010) as an efficient
way to measure sensitivity while keeping the task relatively short
and thus maintaining participant engagement. While in Krégeloh
et al. and Lie et al. only a single dimension was measured (sensi-
tivity to reward frequency), the present study extends measure-
ment to three additional dimensions: sensitivity to reward mag-
nitude, sensitivity to punishment frequency, and sensitivity to
punishment magnitude.

In Experiment 2, a sub-sample of participants completed
our novel operant concurrent-schedule task—the Auckland Card
Task (ACT). The generalized matching law (Baum, 1974; see
Supplement C)? was fitted to data, yielding behavioral estimates
of sensitivity to reward magnitude, reward frequency, punish-
ment magnitude, and punishment frequency. We hypothesized
that sensitivity estimates would increase systematically as partic-
ipants learned the contingencies; nevertheless, based on previous
human operant research (see Kollins et al., 1997), we predicted
that there would be considerable individual variability in sensi-
tivity.

Utilizing participants’ IGT performance from Experiment 1,
we investigated whether individuals who persistently performed
poorly in the IGT (i.e., those who did not prefer one or both
good decks even after 200 trials) would exhibit measurable dif-
ferences in sensitivity in the ACT (e.g., hypersensitivity to reward
or hyposensitivity to punishment; Bechara et al., 2000) relative to
those who performed well on the IGT.

Method

Participants

Thirty of the 50 participants from Experiment 1 also completed
the ACT (Participants 21-50; 15 males)®, a more-than-adequate
sample size for the individual level analyses employed in human
operant research (Lie et al., 2009; Krageloh et al., 2010). The mean
age of this sub-sample was 21.07 years (SD = 3.89).

8The generalized matching law is an empirical model of behavior which, in con-
trast to cognitive models such as the expectancy-valence model (Busemeyer and
Stout, 2002), makes no assumptions regarding underlying cognitive processes.

9 Participants 1-20 completed a pilot version of the ACT, during which the contin-
gencies and instructions were adjusted to optimize reliability and validity. Because
of the variation in task factors during piloting, data from Participants 1-20 were
excluded from ACT analyses.
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Experimental Task

The ACT was developed in Presentation (Version 16.1, Neurobe-
havioral Systems Inc., Albany, CA, USA). Like the IGT, the ACT
required participants to choose between decks of cards contain-
ing both rewards and punishers. Aside from this superficial sim-
ilarity, the ACT differed considerably from the IGT. Only two
decks of cards were presented (Figure 5) and rewards/penalties
were delivered probabilistically (see Table 4) rather than accord-
ing to fixed schedules (e.g., the pre-ordered decks in the IGT).
Participants were told that each deck contained hundreds of play-
ing cards, and that some winning and losing cards had been
shuffled into both decks. Like the IGT, screen instructions (see
Supplemental Materials) included a hint as to strategy, which dif-
fered depending on the condition. For example, in Condition 1,
the hint was:

Winning cards can be found in both decks, but one deck has
MORE winning cards than the other. Both decks also contain an
equal number of losing cards. In each round, to maximize your
score in the time given, you'll first need to figure out which deck
has more winning cards in it, then choose more often from that

deck.

Participants made deck selections with their dominant hand
by pressing the left or right control keys (the spacing of the con-
trol keys discouraged rapid alternation between decks). Most of
the time, choosing a deck resulted in the brief display (200 ms) of
a random playing card (from a standard 52-card deck) on top
of the deck to simulate the top card being flipped over. How-
ever, occasionally (when determined by the dynamic schedul-
ing algorithm; see Supplement E) a winning or losing card
was displayed for 1000 ms and the bar graph was updated pro-
portionately. If the score dropped below zero, the bar turned
from green to red and extended to the left instead of to the
right. A smiley face was displayed on winning cards above the

Winnings:
=

FIGURE 5 | Screen shot of the Auckland Card Task (Condition 1). The
participant has just pressed the left control key and received a $50 reward.

amount won, and a “ding” sound was played. Losing cards fea-
tured a sad face and a “buzzer” sound. Both card decks were
the same color; however, the deck color varied between condi-
tions.

Although the instructions gave the impression that flipping
cards faster would help participants win more money, in real-
ity winning and losing cards were scheduled according to two
separate concurrent variable-interval (VI) schedules. That is,
a key press yielded a reward (or penalty) only when a vari-
able interval of time had elapsed since the previous reward or
penalty.

Experimental Conditions

Each participant completed four different conditions (Table 4).
Each condition allowed for behavioral estimates of sensitivity
to one of four independent variables (reward frequency, reward
magnitude, penalty frequency, and penalty magnitude) to be
obtained. In each condition three dimensions were held con-
stant and equal across the two decks, whilst the independent
variable of interest was systematically varied across four compo-
nents to provide data points for generalized matching law linear
regressions. For example, in Condition 1 sensitivity to reward
frequency was measured by varying the reward frequency ratio
over four components, whilst reward magnitude remained con-
stant and equal on both decks ($50), as did penalty frequency
(0.5) and penalty magnitude ($30). In the first component of
Condition 1, the reward frequency ratio was 1:3; that is, there
were three times more rewards available on Deck 2 (15 rewards)
than on Deck 1 (5 rewards). In the second component the ratio
was approximately 1:2 (13 rewards on Deck 2 vs. 7 rewards on
Deck 1). In the third and fourth components these ratios were
reversed.

Within each condition, the four components were presented
in random order, with a rest break between each compo-
nent, during which the hint was repeated. Participants pressed
the space bar when they wished to continue. Each compo-
nent continued until the participant had received all sched-
uled rewards and penalties, or until 8 min had elapsed since the
beginning of the component, whichever occurred first. The net
reward for each component was identical in every condition;
thus each participant was scheduled to win exactly the same
amount in each condition (provided the component did not
time out before they had received all the scheduled rewards and
penalties).

In each condition, the reward and penalty schedules ran inde-
pendently of one another (following Critchfield et al., 2003).
To ensure that participants received the proportions of rewards
and penalties that were arranged for each deck, dependent
scheduling (Stubbs and Pliskoff, 1969) was used. Further details
of the scheduling algorithms are provided in the supplemen-
tal materials (Supplement E). At the end of each condition
participants were informed of their total play money win-
nings. A random amount was added to or subtracted from this
total so participants wouldn’t realize that, despite their efforts,
they were winning exactly the same amount in each game
(this was because identical net rewards were arranged for each
condition).
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TABLE 4 | Summary of conditions in the Auckland Card Task.

Condition Comp. Rewards Penalties
(Probability/Amount) (Probability/Amount) Net reward
Deck 1 Deck 2 Deck 1 Deck 2 Deck 1 Deck 2
1. Reward frequency 1 0.25/$50 0.75/$50 0.50/$30 0.50/$30 $100 $600
2 0.35/$50 0.65/$50 0.50/$30 0.50/$30 $200 $500
3 0.65/$50 0.35/$50 0.50/$30 0.50/$30 $500 $200
4 0.75/$50 0.25/$50 0.50/$30 0.50/$30 $600 $100
2. Reward magnitude 1 0.50/$25 v 0.50/$75 v 0.50/$30 0.50/$30 $100 $600
2 0.50/$35 v 0.50/$65 v 0.50/$30 0.50/$30 $200 $500
3 0.50/$65 v 0.50/$35 v 0.50/$30 0.50/$30 $500 $200
4 0.50/$75 v 0.50/$25 v 0.50/$30 0.50/$30 $600 $100
3. Penalty frequency 1 0.50/$170 0.50/$170 0.75/$50 0.25/$50 $100 $600
2 0.50/$170 0.50/$170 0.65/$50 0.35/$50 $200 $500
3 0.50/$170 0.50/$170 0.35/$50 0.65/$50 $500 $200
4 0.50/$170 0.50/$170 0.25/$50 0.75/$50 $600 $100
4. Penalty magnitude 1 0.50/$170 0.50/$170 0.50/$75 v 0.50/$25 v $100 $600
2 0.50/$170 0.50/$170 0.50/$65 v 0.50/$35 v $200 $500
3 0.50/$170 0.50/$170 0.50/$35 v 0.50/$65 v $500 $200
4 0.50/$170 0.50/$170 0.50/$25 v 0.50/$75 v $600 $100

Comp., Component (presented in random order). All conditions were dependent concurrent VI VI schedules with variable-interval timing and 2-s changeover delays. Conditions 1 and
2 were VI 8-s rewards; VI 20-s penalties. Conditions 3 and 4 were VI 20-s rewards; VI 8-s penalties. Reward and penalty schedules ran conjointly and independently of one another
(see Critchfield et al., 2003). Conditions 2 and 4 imposed variable-magnitude rewards or penalties (indicated by “v”).

Procedure

The ACT was presented after the IGT, and the four conditions
(Table 4) were presented in counterbalanced order across
participants!?.

Results

Group Data

Figure 6 follows the standard approach to analysing learning
in Davison and Baum’s (2000) experimental paradigm, showing
mean sensitivity as a function of blocks of successive rewards or
penalties. The graphs in Figure 6 can be considered analogous to
Figure 3A for the IGT, but here the dependent variable is mean
sensitivity rather than mean net score. The sensitivity estimates
in Figure 6 are the averages of individual sensitivity estimates,
derived by fitting the generalized matching law (see Supplement
C) to the log response ratios and log reward/penalty ratios for
each block across all four components. The approach taken fol-
lows that of Lie et al. (2009). Specifically, the log response ratio
for each block was calculated based on all responses made dur-
ing the block (e.g., from the start of the component to the fourth
reward/penalty; from the fourth reward/penalty to the eighth
reward/penalty, etc.). The log reward/penalty ratio for each block
was based on all rewards/penalties received from the start of the
component to the end of the block (e.g., from the start of the

0Following Conditions 1-4 all participants also completed two additional con-
ditions (Conditions 5 and 6) in which reward and penalty magnitudes were fur-
ther manipulated; however, these conditions were irrelevant to the hypotheses
examined in the current study and were therefore excluded from analysis.

component to the fourth reward/penalty; from the start of the
component to the eighth reward/penalty, etc.).

Unfortunately, participants did not always receive all the
rewards and penalties scheduled by the task. At times, partici-
pants developed a strong or exclusive preference for one deck,
which caused the dependent-scheduling algorithm to suspend
further rewards or penalties on that deck, and eventually the
component terminated after reaching its maximum time limit
(8 min). Typically, it was not until the fourth or fifth block that
participants began to exhibit a strong or exclusive preference.
As a consequence, sensitivity estimates for some individuals in
later blocks were very high and in some cases could not be cal-
culated (i.e., where zero responses on one deck resulted in a zero
denominator in the generalized matching law), resulting in some
missing data (particularly in Condition 4). The missing data are
evidenced in Figure 6 by larger standard errors in some later
blocks.

Figure 6 shows that, as hypothesized, sensitivity estimates
tended to be very low at the beginning of a component, but
increased rapidly across blocks of rewards or penalties as par-
ticipants learned the contingencies, approximately leveling out
toward the last two blocks at the end of the component. To deter-
mine whether the increases in sensitivity apparent in Figure 6
were statistically significant, for each condition a repeated-
measures ANOVA was carried out, with block as the within-
subjects factor. In each condition, a significant main effect of
block was found (Condition 1, F = 9.54, p < 0.001, 7712, = 0.26;

Condition 2, F = 7.35,p < 0.001, nﬁ 0.25; Condition 3,
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FIGURE 6 | Generalized matching law sensitivity (averaged across
participants, N = 30) as a function of block for the four conditions of
the Auckland Card Task. (A) Condition 1, sensitivity to reward frequency;
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(B) Condition 2, sensitivity to reward magnitude; (C) Condition 3, sensitivity
to penalty frequency; (D) Condition 4, sensitivity to penalty magnitude. Error
bars show standard error of the mean.

F > 0.590, p < 0.001, r]f, > 0.25; Condition 4, F = 2.76,p <
0.05, n}% 0.15). In Condition 1, a significant linear trend
[Flinear(1, 27) = 20.81, p < 0.001, r]f, = 0.44] was apparent, while
Condition 2 showed significant linear [Fjipear(1, 22) = 13.79,p <
0.01, r)f, 0.39] and quadratic trends [Fquadratic(1, 22)
13.04,p < 0.01, 7712; 0.37], consistent with the concave-
downward shape of Figure 6B. Conditions 3 and 4 were affected
by missing data; nevertheless, significant linear trends were found
for both Condition 3 [Fjinear(1, 17)= 19.83, p < 0.001, r]f, = 0.54]
and Condition 4 [Fiinear(1, 16) = 548, p < 0.05, 1, = 0.26].

Individual Data

As expected, individual participants exhibited considerable vari-
ability in sensitivity, particularly in conditions in which reward
or penalty magnitude was varied—in the final block of each con-
dition, the lowest sensitivity estimate for an individual was -1.16
(obtained in Condition 2), whilst the highest sensitivity was 5.19
(in Condition 4)!!. In order to provide reliable individual sensi-
tivity values for the cross-task analysis (below), it was necessary
to compute a measure of sensitivity for each individual that rep-
resented stable behavior in the ACT (i.e., deck preference after
the contingencies have been learned). Piloting on 20 participants’
had already established that most participants developed a strong
preference for the good deck after receiving around 8-12 rewards
or penalties; therefore, no formal stability criterion was defined.
Rather, Figure 6 was visually inspected to determine approxi-
mately when sensitivity reached stable levels in the group data

In comparison, Lie et al. (2009) obtained individual sensitivity values ranging
from -0.02 to 2.17. Traditional animal operant studies of choice generally yield sen-
sitivity estimates between about 0.80 and 1.00 (Baum, 1979; Taylor and Davison,
1983).

(i.e., when minimal bounce and trend were apparent from block
to block; see Baron and Perone, 1998). Based on these observa-
tions, we averaged the sensitivity estimates for each individual
across the last two blocks in Condition 1, and across the last three
blocks in Conditions 2-4.

Cross-Task Analysis

To investigate whether non-learners in the IGT showed differ-
ences in sensitivity relative to those who mastered the IGT, we
compared ACT sensitivities of persistent poor decision makers
(participants who failed to meet the stability criterion in Exper-
iment 1 after 200 trials; n = 9) with those of good decision
makers (participants who learned to prefer Deck C and/or Deck
D within 200 trials in the IGT; n 19). Figure 7 shows mean
ACT sensitivity for the two IGT sub-groups plotted as a func-
tion of each of the four ACT conditions. In consideration of the
small and unequal sub-group sizes, two-tailed non-parametric
Mann-Whitney U-tests were run. Good decision makers in the
IGT exhibited significantly higher sensitivities to reward magni-
tude (U = 40.00, p = 0.035, r = —0.41) and penalty magnitude
(U = 19.00, p = 0.025, r —0.49) than poor decision mak-
ers. Thus, it appears that participants who developed no strong
preferences on the IGT (and hence achieved low net scores)
also exhibited lower sensitivity to the magnitude of both rewards
and penalties in the ACT. There were no significant differences
between the good and poor decision makers in their sensitivity to
the frequency of rewards (U = 72.00, p = 0.643, r = —0.09) or
penalties (U = 66.00, p = 0.595, r = —0.10).

Discussion
Group data showed that, as expected, participants gener-
ally exhibited strong increases in preference (indexed by
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sensitivity) for the deck yielding higher net rewards as each
component progressed, consistent with Kriageloh et al. (2010)
and Lie et al. (2009). On average, preference stabilized after par-
ticipants received approximately 8-12 rewards or penalties in
most conditions.

The hypothesis that poor decision makers in the IGT would
exhibit differences in sensitivity relative to good decision mak-
ers was also supported: Poor decision makers (i.e., those who
failed to develop strong preferences for the good decks in the
IGT after 200 trials) exhibited significantly lower sensitivity to the
magnitudes (but not the frequencies) of rewards and penalties in
the ACT. That is, while poor decision makers had little difficulty
determining whether rewards or penalties occurred more often
on one deck than the other in the ACT, they were poor at dis-
criminating the average dollar amounts of rewards and penalties
on each deck.

It is unlikely that low sensitivity to reward magnitude would
have influenced deck choice in the IGT, as it was presumably triv-
ial to discriminate which decks provided higher rewards (rewards
in each deck were invariant in both frequency and magnitude).
However, Dunn et al. (2006) noted that performance in the IGT
depends primarily on participants’ ability to avoid decks which
impose higher penalties on average; therefore a low sensitivity to
punishment magnitude may have influenced IGT performance.
That is, participants who had difficulty determining which deck
imposed larger penalties on average in the ACT would likely
have had similar difficulties in the IGT, in which penalties also
occurred relatively infrequently, irregularly, and (on two of the
decks) with variable magnitudes.

Previous researchers offer four different hypotheses to explain
poor performance on the IGT: Bechara et al. attribute poor
IGT performance to hypersensitivity to reward, hyposensitivity
to punishment, or myopia for the future (Bechara et al., 2000,
2002; Bechara and Damasio, 2002). Other authors have sug-
gested poor performance is due to a preference for the decks with

lower frequencies of losses (Decks B and D; Steingroever et al.,
2013). Reconciling these explanations of poor IGT performance
with the current findings presents a challenge—while IGT studies
(e.g., Bechara et al., 2000, 2002) have sometimes used physiolog-
ical instruments such as SCR to measure overall sensitivity to
reward (and punishment), the operant procedure used here has
allowed us to decompose sensitivity into the finer-grained levels
of frequency and magnitude.

In the ACT, the frequency-of-losses effect would presumably
be reflected in a higher sensitivity to the frequency of punishers in
poor IGT performers. However, we found no such pattern in the
ACT, and little evidence of a frequency-of-losses effect in the IGT.
Hypersensitivity to reward would likely manifest in the ACT as
higher sensitivity to reward frequency or magnitude in poor IGT
performers, which was not observed. We found some evidence of
hyposensitivity to punishment, as evidenced by lower sensitivity
to punishment magnitude in poor IGT performers, but notably
this did not extend to frequency. Our pattern of results is most
compatible with Bechara et al’s (1994) myopia for the future,
which can arguably be formalized as a low sensitivity to the mag-
nitudes of events (whether they are rewards or punishers) that
occur infrequently. In the ACT, poor IGT performers exhibited
lower sensitivity to the magnitudes of both rewards (Condition
2) and punishers (Condition 4). Both occurred infrequently due
to the variable-interval scheduling.

This interpretation is tentative given the small and unequal
sub-samples in the ACT-IGT cross-task analysis and the consid-
erable individual differences in sensitivity. The high variability
precludes employing the ACT in its current form as a clinical
diagnostic tool to identify poor decision makers. To compete
with the IGT, any new tool would have to be more effective than
the IGT at dissociating impaired and non-impaired participants,
and would require norming using large samples of healthy and
clinical participants. Nevertheless, with further development the
ACT may be useful in the experimental domain as it has enabled
us to disambiguate sensitivity to magnitude and frequency, and
demonstrate that lowered sensitivity to the magnitude of events,
be they rewarding or punishing, is associated with poor IGT
performance.

General Discussion

A coherent picture emerges from the two complementary exper-
iments presented in this study. When a replica of Bechara et al.’s
(1999) standard computer-based IGT (including the original
instructions) was administered to healthy participants for an
additional 100 trials, the majority (84%) achieved scores high
enough to distinguish them from VMPEC patients, based on
Bechara et al.’s (2001) criterion. When our stricter stability cri-
terion was applied, it became apparent that most participants
(68%) developed strong, stable preferences for good decks by
Trial 160. Nevertheless, nearly a third (28%) failed to meet the
stability criterion, and the choice behavior of these participants
was characterized by frequent switching between decks through-
out the task (rather than the strong preference for bad decks often
exhibited by clinical participants; e.g., Bechara et al., 1994). Sen-
sitivity measurements derived using the ACT suggested that the
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frequent switching shown by these participants may be related
to a difficulty determining which decks impose penalties that are
larger (on average), when those penalties vary in size and occur
at unpredictable intervals.

While the atypical sensitivities found in these participants
may represent a genuine decision-making deficit, it is also
possible that the low sensitivity estimates might be a result
either of very slow learning or some other confound; for exam-
ple, loss of engagement (i.e., poor attention and motivation;
Dunn et al., 2006) or inappropriate conscious strategy (e.g., risk
appetite/aversion or superstitious behaviors; Skinner, 1948; Dunn
et al,, 2006). Without normed data on how many trials are
required for IGT mastery (see Experiment 1 Discussion), we can-
not rule out the possibility that some or all of these participants
simply required more trials to reach stability.

Alternatively, the low sensitivity may have been due to loss
of engagement in the task. Poor attention to the contingencies
of reward and punishment is a documented problem in human
operant research (Kollins et al., 1997), perhaps because operant
tasks typically require large numbers of responses in order to
derive reliable estimates of sensitivity. In the present study, par-
ticipants may have found the ACT particularly tedious in com-
parison to the IGT, which provided rewards for every response.
Thus, poor attention may have led to the near-zero (reflecting
equal preference for both alternatives) sensitivity estimates in
some individuals in the ACT. Similarly in the IGT, poor deci-
sion makers may not have attended properly to the reward and
punishment contingencies. Nevertheless, from anecdotal obser-
vations, poor decision makers expressed apparently genuine dis-
appointment and frustration at their low (or negative) winnings
in the IGT, suggesting they were not inattentive. Additionally, in
the ACT the mean sensitivity to reward and punishment frequen-
cies in poor decision makers was not significantly different from
that of good decision makers, suggesting attention to task at least
in Conditions 1 and 3.

A second potential confound in concurrent-choice tasks such
as the ACT and IGT is the development of inappropriate strate-
gies or superstitious behavior. In the ACT this may be reflected in
negative sensitivity (reflecting a preference for the poorer alterna-
tive), while in the IGT it may manifest in a preference for “risky”
decks (Dunn et al,, 2006). This confound may be mitigated in
human participants with careful use of instructions; however, it
can be difficult to strike the appropriate balance between instruc-
tions that give away too much information about the contingen-
cies (leading to rapid learning and exclusive preference for the
better alternative); or too little information (leading to no strong
preference). The powerful influence of instructions on perfor-
mance highlights the importance of standardizing instructions in
the IGT, in which even healthy participants perform poorly unless
the instructions specifically urge them to “...stay away from bad
decks” (e.g., Balodis et al., 2006).

Notwithstanding the potential impact of confounding fac-
tors, the present study narrows the focus for future investigation

of poor IGT performance in healthy participants: What type
of deficit could give rise to difficulties in tracking the aver-
age size of punishers on each deck? Brand et al. (2007)
found that performance in later trials in the standard 100-
trial IGT was correlated with measures of executive perfor-
mance; could low sensitivity to reward and punisher mag-
nitudes reflect an executive deficit, rather than an affective
decision-making deficit? Future researchers may wish to con-
sider screening participants for issues such as dyscalculia (see
Butterworth et al., 2011), and carrying out on poor decision
makers additional post-study measures that probe numeracy
abilities.

In conclusion, while the IGT has firmly established itself
as the standard for studying decision making, and is widely
used in both experimental and clinical settings, we offer three
recommendations for its future application. First, to mitigate
inter-study variability it is important that the task is prop-
erly standardized; that is, researchers should only use Bechara
et al’s (1999) original experimental task and instructions, or
a close replica thereof. Second, to control for individual dif-
ferences in learning rate that contribute to inter-individual
variability, the task should be continued for a minimum
of 200 trials (though more work is needed to determine
the optimal limit), and only stable data should be analyzed
(early trials reflecting trial-and-error learning are unreliable).
Third, IGT analyses should not be limited to aggregated data
(i.e., participants, decks, and trials)—important insights may
potentially be gained from analysis at more detailed levels.
Finally, while the ACT task used here has limitations, a cross-
disciplinary approach, in which methods and models from
behavioral economics and operant psychology are leveraged,
may have potential in advancing the study of human decision-
making deficits—particularly in its ability to quantify sensitiv-
ity and break it down into dimensions such as frequency and
magnitude.
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