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Delusions are defined as fixed erroneous beliefs that are based on misinterpretation
of events or perception, and cannot be corrected by argumentation to the opposite.
Cognitive theories of delusions regard this symptom as resulting from specific distorted
thinking styles that lead to biased integration and interpretation of perceived stimuli (i.e.,
reasoning biases). In previous studies, we were able to show that one of these reasoning
biases, overconfidence in errors, can be modulated by drugs that act on the dopamine
system, a major neurotransmitter system implicated in the pathogenesis of delusions
and other psychotic symptoms. Another processing domain suggested to involve the
dopamine system and to be abnormal in psychotic disorders is sensory perception.
The present study aimed to investigate whether (lower-order) sensory perception and
(higher-order) overconfidence in errors are similarly affected by dopaminergic modulation
in healthy subjects. Thirty-four healthy individuals were assessed upon administration of
L-dopa, placebo, or haloperidol within a randomized, double-blind, cross-over design.
Variables of interest were hits and false alarms in an illusory perception paradigm
requiring speeded detection of pictures over a noisy background, and subjective
confidence ratings for correct and incorrect responses. There was a significant linear
increase of false alarm rates from haloperidol to placebo to L-dopa, whereas hit
rates were not affected by dopaminergic manipulation. As hypothesized, confidence
in error responses was significantly higher with L-dopa compared to placebo. Moreover,
confidence in erroneous responses significantly correlated with false alarm rates. These
findings suggest that overconfidence in errors and aberrant sensory processing might be
both interdependent and related to dopaminergic transmission abnormalities in patients
with psychosis.

Keywords: dopamine, haloperidol, drug-challenge, reasoning biases, sensory perception

Introduction

It has long been proposed that conscious perception is not the mere result of sensory stimula-
tion, but reflects an interaction between sensation and previous experience (Von Helmholtz, 1867).
More recent accounts regard perception as a process of Bayesian inference, whereby bottom–up
processing of sensory signals is combined with the top–down influence of internally generated
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predictions; the latter are based on models (acquired through
previous experience) of how sensations occur (Friston, 2005).
Dopaminergic neurotransmission plays an important role across
several steps of this process: At the lowest processing level, it
is thought to promote salient stimulus detection by regulating
thalamo-cortical interactions (Happel et al., 2014). Moreover,
it plays a major role in integrating endogenous predictions
with sensory input by encoding prediction errors (Kapur, 2003)
with regard to the reward value or expectedness of a stimulus
(Bromberg-Martin et al., 2010).

The above are relevant in the context of neurobiological the-
ories of psychosis. The most prominent and enduring account
for the emergence of psychotic symptoms such as delusions
and hallucinations postulates that these result from a hyper-
dopaminergic state in the brain (Meltzer and Stahl, 1976).
Although the dopamine hypothesis has undergone several refine-
ments over the years, its major premise has remained unchanged
(Howes and Kapur, 2009). In fact, all currently licensed antipsy-
chotic drugs have as a common denominator their ability to
block dopamine D2 receptors (Howes and Kapur, 2009). Based
on the role of dopaminergic transmission in perceptual pro-
cesses, it has been suggested that an excess of dopamine leads
to aberrant stimulus salience by affecting (a) the signal-to-
noise ratio of sensory processing, such that noise is perceived
as a meaningful signal (Corlett et al., 2010); and/or (b) the
prediction error signal, such that neutral or innocuous stim-
uli are perceived as bearing significance (Kapur, 2003). The
attempt of the cognitive system to make sense of such aberrant
experiences leads to the emergence of delusions (Kapur, 2003;
Fletcher and Frith, 2009).

However, the aberrant salience model does not explain the
incorrigibility and high conviction, with which delusional ideas
are adopted; it has been pointed out (Lincoln, 2007; Langdon
et al., 2010) that abnormal phenomena such as depersonaliza-
tion, ‘deja-vu’ or telepathy are experienced by healthy individuals
as well, but are not uncritically accepted as being true. Cognitive
theories of delusions approach thus the symptom from this per-
spective. In this framework, delusions are regarded as resulting
from specific disruptions in the normal processes for belief gener-
ation and evaluation (Langdon et al., 2010). Such ‘metacognitive’
disruptions, subsumed under the term ‘reasoning biases,’ corre-
spond to thinking styles that lead to a distorted integration and
interpretation of perceived stimuli (Bell et al., 2006; Freeman,
2007). Several such biases have been consistently shown to be
associated with delusions, such as jumping-to-conclusions (i.e.,
a tendency to draw inferences based on limited evidence; Garety
and Freeman, 2013), increased confidence in false judgments
(Moritz et al., 2008), and a bias against disconfirmatory evidence
(Woodward et al., 2006). Importantly, these biases have been
confirmed for non-delusional material, precluding tautological
inferences.

It is not yet clear how reasoning biases relate to aberrant
salience. One account postulates that the two abnormalities
represent distinct steps in delusion formation (Langdon et al.,
2010), whereas others argue that reasoning biases might directly
result from aberrant stimulus salience (Fletcher and Frith, 2009;
Corlett et al., 2010). However, there is little empirical support in

favor of either assumption. To our knowledge, only one recent
study (Schmack et al., 2013) investigated the association between
lower-order perceptual processing, higher-level predictions and
delusion proneness. The authors reported that higher delusional
conviction was associated with more unstable (low-level) visual
perception, but also with a stronger top–down influence of beliefs
on perception. The latter was accompanied by increased func-
tional connectivity between frontal and primary sensory areas,
confirming that aberrant lower-level sensory processing might
lead to an enhanced top–down influence of beliefs on perception
(Schmack et al., 2013).

Previous studies by our group have approached the issue from
a different point of view. As delusions are thought to result
from abnormally increased dopaminergic activity, we investi-
gated the effect of dopaminergic manipulation on delusion-
associated reasoning biases. We observed that dopamine antag-
onists (i.e., antipsychotics) reduced overconfidence in errors in
healthy participants (Andreou et al., 2014a), and increased sub-
jective doubt in patients with psychotic and other psychiatric
disorders (Moritz et al., 2013). Thus, the same neurochemical
abnormality, aberrant dopamine activity, might be responsible
for abnormalities in both lower-level (sensory perception and
salience) and higher-level processing (overconfidence in errors).
The present study aimed to investigate this issue, by assessing
the effects of dopamine agonists and antagonists on both accu-
racy and subjective confidence during a visual detection task.
Given the postulated effects of dopamine on sensory percep-
tion, it was expected that administration of a dopamine ago-
nist would lead to (a) increased stimulus detection salience,
reflected in an increased rate of successful detections (hits) but
also an increased rate of false alarms, and (b) increased con-
fidence in error responses. It was further expected that detec-
tion performance would be significantly correlated with error
overconfidence.

Materials and Methods

The present study was part of a larger project investigating the
effects of dopaminergic agonists and antagonists on cognitive
functions associated with psychotic symptoms, such as semantic
priming and reasoning biases.

Participants and Design
Participants were 34 healthy individuals aged 18–40 years (18
male, mean age 26.4 ± 4.65) recruited through postings on uni-
versity recruitment sites. The sample size was calculated based
on effect sizes regarding dopaminergic manipulation of reason-
ing biases observed in a previous study by our group (Andreou
et al., 2014a), with which there was no participant overlap.
Exclusion criteria were any past or current psychiatric or neu-
rological disorder (including substance use disorders), a history
of schizophrenia or bipolar disorder in a first-degree relative, a
history of cranio-cerebral trauma, arterial hypertension, cardio-
logic or serious medical conditions, pregnancy, or treatment with
any psychotropic or other drugs. Eligibility for the study was
confirmed by means of an interview. The study was approved
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by the Ethics Committee of the Medical Association Hamburg
(Germany), and was performed in accordance with the ethical
standards described in the Declaration of Helsinki. All partici-
pants provided written informed consent before participating in
the study.

In order to assess the effects of dopaminergic agents on rea-
soning biases, a randomized, double-blind, three-way cross-over
design was used (Andreou et al., 2014a,b). In three successive
visits, participants were administered either 100 mg L-Dopa and
25 mg benserazide (Madopar R©), 2 mg haloperidol (Haldol R©), or
placebo, in randomized order and under double-blind condi-
tions (see Andreou et al., 2014a for the dose selection rationale).
The three visits were separated by at least 7 days, in order to
allow a complete wash-out of the drug with the longer half-
time (haloperidol Hardman et al., 2001). In order to compensate
for the different Tmax (time to reach maximal serum concen-
tration) of haloperidol and L-dopa (Hardman et al., 2001), a
double-dummy design was implemented (see Andreou et al.,
2014a). The testing session began thus at the time of maximal
serum concentration of each drug, and lasted 60 min at the max-
imum. Subjective psychological, somatic and motor (adverse)
effects of the drugs were assessed through ratings on a 42-item
Likert scale at baseline, at the time of ingestion of the sec-
ond capsule and after the end of the testing session; moreover,
blood pressure, and pulse were measured at 30-min intervals.
In order to assess the success of the blinding procedure, partic-
ipants were asked to guess which substance they had received
at the end of each session. The d2-test, a letter-cancelation task
with well documented validity and excellent test–retest reliabil-
ity (Brickenkamp, 1981), was also administered at each session to
rule out performance differences due to non-specific effects of the
drugs on attention.

Psychotic experiences were assessed with the Community
Assessment of Psychic Experiences-42 (CAPEs-42) Scale, a 42-
item self-report questionnaire that yields scores for positive,
negative, and depressive symptoms (Konings et al., 2006). The
scale was completed at the end of each testing session; small
adjustments to item wording were made, such that the reference
time period corresponded to the duration of the session.

Perceptual Confidence Task
A computerized variant of the Snowy Pictures Task (Whitson
and Galinsky, 2008) was used to assess visual perception accuracy
and confidence. The experiment was presented using E-Prime R©

2.0 (Schneider et al., 2002). Participants were presented “snowy”
(noisy) pictures, some of which contained a hidden object (see
Figure 1 for stimulus examples). The task was administered as
a speeded response task: after a fixation of 500 ms, each pic-
ture was shown for 1 s on a computer screen, and participants
were instructed to press a key within a time window of 2 s from
stimulus onset, if they thought that an object was hidden in the
picture. Participants were instructed to respond as quickly and as
accurately as possible. After responding, participants rated their
subjective confidence in their response on a scale from 0–100%
(in steps of 12.5%). For the present study, three parallel versions
were developed using stimuli constructed in a similar manner
as those of the original task (Whitson and Galinsky, 2008). The

three versions werematched for stimulus difficulty (established in
a pretest) and luminance (p > 0.75). Each parallel version com-
prised 37 pictures, of which 16 contained an object and 21 did
not. Variables of interest were hit and false alarm rate, as well as
mean subjective confidence for correct and incorrect responses.

Statistical Analyses
Prior to analysis, we removed all misses and false alarm trials with
a confidence rating of zero (indicating certainty to have made
an error), assuming that they, respectively, reflected failed (too
slow) and accidental key presses. This resulted in exclusion of
1.2% of trials (4.2% of errors). Moreover, sessions with hit and/or
false alarm rates exceeding 2 SDs from the group mean (corre-
sponding to a hit rate<50% and/or a false alarm rate of >70%)
were regarded as outliers and excluded from analysis (n = 9
sessions from eight participants). Finally, eight further sessions
were removed from error confidence analyses only – five sessions
(from four participants) because confidence means were based on
less than five errors, an a priori determined criterion set to avoid
unrepresentative means; and all three sessions of one participant
who indicated a level of 100% confidence in all trials.

As the above procedure resulted in missing data, statistical
analyses were conducted using linear mixed models. In contrast
to repeated-measures ANOVAs, linear mixed models can be suc-
cessfully estimated even in the case of missing data (Field, 2013,
p. 818); additionally, they are better suited to model interindi-
vidual variability, as they can accommodate departures from
the assumptions of homogeneity of regression slopes and inde-
pendence (Gueorguieva and Krystal, 2004; Field, 2013, p. 818).
Separate linear mixed models were estimated for each of the
following dependent variables: hit rate, false alarm rate, subjec-
tive confidence in correct responses, subjective confidence for
incorrect responses, and reaction time for key presses. In all
cases, ingested substance (haloperidol, L-dopa, or placebo) was
included as the only fixed-effects, repeated-measures predictor,
while participant ID was modeled as a random-effects predictor.
Session (first, second, or third) and its interaction with substance
were initially also included in these models in order to check for
practice effects, but these predictors were removed again as they
were not significant for any of the above dependent variables (all
p > 0.35). The optimal covariance structure for each linear mixed
model was determined using goodness-of-fit criteria (Akaike’s
Information Criterion; AIC). Significant substance effects were
followed-up with post hoc pairwise comparisons (least significant
difference method), and additionally with polynomial contrasts
to investigate linear and quadratic trends in performance.

Similar analyses were conducted for the positive, negative, and
depression subscale of the CAPE. However, the effect of session
was significant in all cases, such that the linear mixed mod-
els included both session and ingested substance as fixed-effects
predictors.

Results

There were no significant differences among the three sub-
stances in d2-scores, nor in adverse effects (no missing data;
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FIGURE 1 | Example of stimuli used in the visual perception task: the picture on the left contains an embedded image (a photographic camera); the
picture on the right consists only of noise.

repeated-measures ANOVAs, all p > 0.14). There were no drop-
outs and no premature session terminations due to adverse
effects. There was also no association between ingested and
guessed substance [χ2 = 8.14, p = 0.23]. Participant scores on all
variables of interest are presented in Table 1. For descriptive pur-
poses, reaction times and confidence ratings per substance and
response type (hits, misses, correct rejections, false alarms) are
presented on Table 2.

Hit rate did not significantly differ between substances
[F(2,32.48) = 1.022, p = 0.37], but there was a significant
main effect of substance with respect to the false alarm rate
[F(2,29.67) = 3.688, p = 0.04]. Polynomial contrasts revealed
a significant linear trend (t = 2.419, p = 0.02) indicating an
increase in false alarm rates from haloperidol to placebo to
L-dopa, while the quadratic trend was not significant. Post hoc
pairwise comparisons were significant for the comparison of false
alarm rate under haloperidol compared to placebo (p = 0.01)
and to L-dopa (p = 0.02), while placebo and L-dopa did not
significantly differ from each other (p = 0.71).

With regard to subjective confidence for incorrect responses,
there was a trend toward an effect of substance [F(2,

TABLE 1 | Mean and SD of detection performance, subjective confidence
and subjective psychotic experiences after administration of haloperidol,
L-dopa, and placebo.

Haloperidol Placebo L-dopa

Mean SD Mean SD Mean SD

Hit rate (%) 78.26 10.2 80.36 12.4 80.31 14.0

False alarm rate (%) 22.75 14.2 29.64 17.6 30.94 20.5

Confidence rating –
correct responses

80.81 12.0 78.29 11.2 79.84 12.1

Confidence rating –
incorrect responses

67.51 17.7 66.49 12.4 71.70 13.6

CAPE positive score 21.73 3.4 21.91 3.6 22.44 4.6

CAPE negative score 18.48 4.1 18.97 6.5 18.92 6.3

CAPE depression score 9.53 2.5 10.03 3.4 10.00 2.7

22.66)= 3.013, p= 0.07]. Both linear and quadratic effects missed
significance. Pairwise comparisons indicated that confidence for
error responses was higher with L-dopa compared to placebo
(p = 0.03), whereas there were no differences between haloperi-
dol and either placebo (p = 0.54) or L-dopa (p = 0.15). Subjective
confidence for correct responses did not significantly differ across
substances [F(2,24.54) = 1.684, p = 0.21].

The ingested substance had a significant effect of CAPE posi-
tive symptoms [F(2,26.83) = 3.546, p = 0.04], with participants
scoring trend-wise higher with L-dopa compared to placebo
(p = 0.06) and haloperidol (p = 0.08), which did not differ from
each other (p = 0.82).

Subsidiary Analyses
In accordance with our hypothesis, both false alarm rate and
(to a lesser extent) subjective confidence in error responses were
influenced by dopaminergic modulation. Therefore, we investi-
gated the associations between variables. In order to account for
multiple values obtained with different substances in each par-
ticipant, we again conducted a linear mixed model, in which
substance was modeled as a repeated effect, and participant ID
as a random effects variable. False alarm rate was the depen-
dent variable, while confidence for incorrect responses was
entered as a continuous predictor in the model. The result
was significant [F(1,78.87) = 4.11, p < 0.05], with a positive
b = 0.0027 (β = 0.224) indicating that increased confidence for
incorrect responses was associated with increased false alarm
rates.

Discussion

The present study aimed to investigate how single-dose admin-
istration of dopaminergic agonists and antagonists affects
brain functions associated with delusions across two differ-
ent processing levels – perceptual (lower-order) and metacog-
nitive (higher-order). Dopaminergic manipulation significantly
affected false-alarm rate on a visual perception task, with a
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TABLE 2 | Mean and SD for reaction times and confidence ratings per substance and response type.

Haloperidol Placebo L-dopa

Reaction time Confidence Reaction time Confidence Reaction time Confidence

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

False alarms 732.06 97.5 69.27 22.6 728.22 129.5 69.60 14.4 734.96 181.4 73.67 14.8

Hits 681.47 89.0 87.47 10.2 681.28 103.3 85.03 9.2 677.46 112.2 86.72 9.0

Correct rejections∗ – – 75.67 16.0 – – 71.66 15.3 – – 72.54 18.0

Misses∗ – – 65.88 19.9 – – 63.34 18.4 – – 62.57 22.6

∗Participants withheld responses, therefore reaction times are not available.

linear trend indicating a gradual increase of false alarms from
haloperidol to placebo to L-dopa. An effect of dopaminergic
agents was also evident, although to a lesser extent, for over-
confidence in errors. Critically, perceptual and metacognitive
performance were significantly correlated with each other, sug-
gesting that the two levels of processing might be interdepen-
dent.

It has been suggested that conscious perception is based on
internal representations of the statistical behavior of the own
sensory/perceptual systems; based on these representations, a
‘response criterion’ is set that determines the signal-to-noise ratio
threshold, at which the stimulus is perceived as a meaningful
signal (Lau, 2008). In this framework, increased dopaminergic
activity would be expected to lead to a more liberal response
criterion by affecting these internal representations – in other
words, by affecting endogenous predictions and the prediction
error signal (Fletcher and Frith, 2009; Corlett et al., 2010). In
turn, this should result in an increased rate of both successful
stimulus detections (hits) and false alarms. For example, a recent
study on speeded visual word recognition reporting higher accu-
racy rates with a dopaminergic agonist compared to placebo (Lou
et al., 2011). In clinical populations, individuals that experience
psychotic symptoms demonstrate increased false alarm rates in
various perceptual paradigms (summarized in Tsakanikos and
Reed, 2005), while dopaminergic hypoactivity in Parkinson’s dis-
ease has been associated with reduced stimulus detection rates
(Horowitz et al., 2006).

In the present study, our hypothesis regarding stimulus detec-
tion accuracy was only partially confirmed: dopaminergic manip-
ulation had an effect only on false-alarm rate, while hit rate
remained unaffected. This finding can be interpreted in terms
of signal detection theory. According to the latter, the decision
whether a stimulus is present or not is based on the strength of
an internal decision signal, which is assumed to have a Gaussian
distribution and to have a higher mean when a stimulus is present
than when it is absent. As explained above, the cut-off value
for discriminating a stimulus from noise (response criterion) is
based on internal representations their respective signal distribu-
tions, derived from previous experience (Lau, 2008). According
to this framework, an increase in false alarms that is not accom-
panied by increased hit rates would suggest that the distribution
of the noise signal is shifted toward higher values, i.e., closer to
the “stimulus present” distribution, while the response criterion

remains unaffected. However, there are also other explanations
for the dissociation of results regarding false alarms and hits in
the present study. For example, this finding may have been due
to ceiling effects, as overall hit rates in the placebo condition were
quite high in the present sample. In support of this interpreta-
tion are findings of a recent study (Lou et al., 2011), in which
differences in accuracy rates between placebo and the dopamin-
ergic agonist pergolide were apparent only in the more difficult
versions of the administered task. An alternative explanation
for the negative finding regarding hit rates is that the effects of
dopaminergic agents on perceptual detection performance might
be dependent on additional factors that were not captured by
our study design: for example, a previous study (Krummenacher
et al., 2010) reported a complex pattern of L-dopa effects on sig-
nal detection performance depending on the presence or absence
of schizotypal traits in participants.

With respect to our second hypothesis, our results are largely
in line with a previous study by our group, in which single-
dose administration of dopaminergic agonists and antagonists
significantly affected confidence in memory errors in healthy
subjects (Andreou et al., 2014a). Moreover, the observed increase
in error confidence under L-dopa parallels previous findings by
our group in patients with schizophrenia (Moritz et al., 2014b)
and individuals scoring high on schizotypy (Moritz et al., 2014a)
using a similar visual perception task. Our findings are also
consistent with early observations (Moritz et al., 2003, 2008) of a
negative correlation between antipsychotic medication dose and
overconfidence in errors in patients with schizophrenia. More
importantly, confidence in errors was correlated with false alarm
rate in the present study, confirming that deficient processing
at the sensory/perceptual level may lead to increased reliance
on higher-level predictions, i.e. top–down processing (Corlett
et al., 2010; Schmack et al., 2013). This suggests that one single
disturbance, aberrant stimulus salience, suffices to account both
for the emergence of delusions and their tenacity. However,
it should be kept in mind that different reasoning biases are
independent from each other (Moritz et al., 2010), and that an
association with dopamine could not be confirmed for another
prominent delusion-related bias, jumping-to-conclusions
(Andreou et al., 2014a; Ermakova et al., 2014). Therefore, it
remains to be tested in future studies whether the observed
associations between stimulus salience and overconfidence
extend to jumping-to-conclusions or other reasoning biases.
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A strength of the present study lies in the inclusion of
assessments of subjective psychotic experiences; the finding that
single-dose administration of haloperidol and L-dopa led to the
expected changes in a self-rated scale of psychotic experiences
lends credibility to the postulated association between perception,
confidence, and delusions. However, it should be noted as a lim-
itation that changes in the dopaminergic system brought about
by the psychotic state and its treatment are multiple and com-
plex (Kim et al., 2011; Howes et al., 2012), and are unlikely to
be fully approximated by single-dose administration of dopamin-
ergic agents in healthy subjects. Thus, caution is advised when
extrapolating findings to patients with schizophrenia, especially
since these additionally present complex deficits in perceptual
organization, which are associated with disorganized rather than

delusional symptoms and are dependent on the glutamate system
(Silverstein and Keane, 2011).

In summary, dopaminergic manipulations led to parallel
changes in two delusion-associated brain functions, visual stimu-
lus detection and subjective confidence in errors. These findings
suggest that overconfidence in errors and aberrant sensory pro-
cessing might be both interdependent and related to dopaminer-
gic transmission abnormalities in patients with psychosis.
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