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People have to sort numerous objects into a large number of meaningful categories
while operating in varying contexts. This requires identifying the visual features that best
predict the ‘essence’ of objects (e.g., edibility), rather than categorizing objects based
on the most salient features in a given context. To gain this capacity, visual category
learning (VCL) relies on multiple cognitive processes. These may include unsupervised
statistical learning, that requires observing multiple objects for learning the statistics
of their features. Other learning processes enable incorporating different sources of
supervisory information, alongside the visual features of the categorized objects, from
which the categorical relations between few objects can be deduced. These deductions
enable inferring that objects from the same category may differ from one another
in some high-saliency feature dimensions, whereas lower-saliency feature dimensions
can best differentiate objects from distinct categories. Here I illustrate how feature
saliency affects VCL, by also discussing kinds of supervisory information enabling
reflective categorization. Arguably, principles debated here are often being ignored in
categorization studies.

Keywords: category learning, feature saliency, supervised learning, visual attention, visual perception, visual
expertise, unsupervised learning

Starting at infancy, we skillfully categorize visually perceived objects in every conscious moment of
our lives. However, much is still unknown about the underlying cognitive mechanisms of visual
category learning (VCL). If asking a young child how she can tell apart dogs from cats, she
would probably say something like “dogs look like other dogs, but they do not look like cats,”
possibly being surprised at being asked such a question. Undeniably, when lacking any specific
knowledge, categorizing objects based on their overall perceived similarities seem to be reason-
able. However, most often categorizing based on overall similarities is maladaptive; and possibly
even at early development, categorization is affected by acquired attentional biases or by ‘inherent
core-knowledge’ (Spelke and Kinzler, 2007; Pereira and Smith, 2009).

Understanding the challenges in VCL requires characterizing the sensory input and the minimal
processes enabling production of a satisfactory categorization decision (output). VCL essentially
involves identifying perceived features (e.g., shape or color) that predict important characteris-
tic of an object (e.g., edibility). People act, develop, and evolve in a cluttered and ever-changing
environment, where often there is a mismatch between the environmental objective structure, and
the subjective interpretation of the environment required for adaptive behavior. Under such con-
ditions, irrelevant visible features may initially be perceived as most salient and thus they may
overshadow less salient and possibly more important features. Consequently, VCL requires resolv-
ing two primary challenges: (i) Learning to ignore salient irrelevant variability. (ii) Identifying and
becoming more sensitive to important between-categories differences, even if these are not salient.
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Hammer Impact of feature saliency

Ultimately, the acquired category representation has to be robust,
so as to be applicable in different contexts.

Here I exemplify how feature saliency affects categorization
in different scenarios, and what is required for categorization
not to be exclusively driven by feature saliency. While princi-
ples debated here were previously discussed, separately, currently
there is no coherent overview of the topic. Moreover, interactive
effects between feature saliency and supervisory information that
is made available to subjects in VCL studies are too often under-
estimated or overlooked. Evidently, properly accounting to such
effects is essential for dissociating experimental results reflecting
objective (contextual) characteristics of VCL tasks, from those
characterizing human cognition.

Impact of Respective Feature Saliency
on VCL

In some scenarios, categorization can be driven exclusively by
objects’ visual characteristics, and therefore it does not necessi-
tate learning and may seem ‘reflexive’ (Figure 1A), or it can be
resolved by learning the statistics of visual features by observ-
ing multiple objects (Figure 1B). In other scenarios, supervised
learning is essential for identifying which visual features are
important for categorization and which are not (Figures 1C,D).
Supervised learning can often be self-governing and accom-
plished without the guidance of an ‘expert tutor’; but in some
scenarios, VCL can be effective only if an effort is invested

FIGURE 1 | Examples of different visual category learning (VCL)
scenarios from the least dependent (A) to the most dependent (D) on
supervision. Each dot represents an exemplar, where exemplars may differ in
two visually perceived feature dimensions. Dashed lines represent the likely to
be deduced category decision boundaries. Row-1: The unlabeled data sets;
Row-2: The fully color-labeled data sets; Row-3: Filled dots represent the

observed exemplars available for unsupervised statistical learning (black-dots
represent a likely to be ‘too sparse’ observed sample in B3). Gray-circled empty
dots are the unobserved exemplars; Row-4: Filled dots represent color labeled
exemplars. Green lines (D4) represent some positive equivalence constraints or
‘must be related’ paired exemplars, whereas orange lines represent negative
equivalence constraints or ‘cannot be related’ paired exemplars.
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in structuring the learning environment. This later form of
learning is perhaps unique to humans, characterizing (but not
restricted to) educational settings and scientific explorations. The
four VCL scenarios illustrated in Figure 1 operationally differ
in the respective saliency of within-category differences versus
between-categories differences. Correct categorization in the sce-
nario illustrated in Figure 1A requires minimal supervision,
whereas the one illustrated in Figure 1D requires the most effort-
ful supervision. Being able to adapt to all these scenarios allows
us to become reflective decision makers, capable of altering the
environment according to our needs, instead of being ‘reflexive’
creatures, driven by few most salient perceptual characteristics of
the environment.

The simplest organisms capable of ‘acting’ based on visual
information have no capacity to learn. Some single-celled organ-
isms are capable of swimming toward (or away from) a light
source following the steepest light gradient (phototaxis), migrat-
ing to an environment that better fit their needs. Such appar-
ently simplistic yet adaptive ‘categorical decisions’ are also part
of human experience. For example, infants can differentiate
between dogs and cars (but not between dogs and rabbits) with-
out any prior guidance (Quinn and Johnson, 2000). This example
involves two homogeneous basic-level categories, each associated
with a distinct superordinate-level category (Rosch and Mervis,
1975). Here, each two exemplars from within a given basic-level
category differ, at most, in very few salient features, whereas
two exemplars from the contrasted superordinate categories dif-
fer in multiple salient features (Figure 1A), and thus ‘reflexive
categorization’ is feasible (Macé et al., 2005). In such scenar-
ios it may even seem as if people can ‘categorize’ objects as fast
as they can detect the presence of an object (Grill-Spector and
Kanwisher, 2005). However, in studies with categories composi-
tions as described in Figure 1A, actions such as gaze-duration,
eye-saccades, key-pressing, or category-specific neural activity,
do not necessarily reflect acquired knowledge or the capacity to
generalize from past experiences following VCL. Such studies
teach us little about neurocognitive mechanisms of knowledge-
based categorization (though they may teach us about lower-level
visual processing). These should not be confused with studies in
which participants perform VCL tasks where differences between
objects from a given category are as salient as differences between
objects from the contrasted categories, and where the lower-level
characteristics of stimuli in the contrasted categories are largely
matched (e.g., Folstein et al., 2013; Hammer et al., 2015).

Evidently, improper selection of stimuli may result in confu-
sion between bottom-up effects driven by feature saliency and
knowledge-based effects. For example, showing that the human
lateral occipital cortex (LOC) is most sensitive to differences
between dogs and flowers (or between airplanes and shoes)
does not indicate that the LOC is most sensitive to taxonomic
basic-level categories, or any other form of object-level acquired
knowledge, as suggested by Iordan et al. (2015). Basic-level is
considered as the categorization level that is most culturally
salient, implying an acquired organization of categories with sub-
jective importance, rather than organization formed solely by
objective feature saliency (Rosch and Mervis, 1975). Essentially,
contrasting dogs with flowers, or shoes with airplanes, is simply

contrasting between two relatively homogeneous sets of stim-
uli that differ from one another in multiple salient features
(and it is comparable, for example, to contrasting dogs with
airplanes). Properly testing sensitivity to basic-level categories
should involve, for example, testing sensitivity to differences
between rabbits and dogs, cars and trucks, or fruits and vegetables
(distinct, taxonomically-meaningful categories that share much
of their low-level perceptual properties). Given the categories
they contrasted, the findings reported by Iordan et al. (2015; see
also Cichy et al., 2014) may only reflect a generic LOC sensitiv-
ity to differences in intermediate-level features (e.g., prevalence
of curved edges or large monochromatic blobs), rather than sen-
sitivity to basic-level categories (Op de Beeck et al., 2008; Gilbert
and Li, 2012).

Unlike the scenario described in Figure 1A, where correct cat-
egorization can be accomplished by observing few exemplars,
unsupervised VCL often requires sampling a large number of
exemplars before correct generalization becomes possible (Fried
and Holyoak, 1984; Rosenthal et al., 2001; Kloos and Sloutsky,
2008; Turk-Browne et al., 2008). In the scenario illustrated in
Figure 1B, each exemplar has less salient differences from nearby
exemplars within its own category, as compared with the nearest
exemplars from the other category, enabling unsupervised VCL
(Jain, 2010). Nevertheless, here VCL requires sampling multi-
ple exemplars that correctly represent the distribution/densities
of objects’ features. For example, being introduced with all the
filled exemplars in Figure 1B3 (without knowing any category
labels) is sufficient for learning the densities and the categories’
boundaries. A too sparse sampling of exemplars (e.g., sampling
only the black filled exemplars) would result in more salient dif-
ferences within the sample of each category, an errorful learned
representation of categories, and a greater chance for later catego-
rization errors. This is likely to result in ineffective unsupervised
VCL, specifically when within-category differences are as salient
as between-categories differences (Ell and Ashby, 2012). On the
other hand, a preselected biased sample of exemplars that hints
about a between-categories boundary, such as multiple succes-
sive trials presenting exemplars from the same category, is likely
to facilitate ‘unsupervised’ VCL (Zeithamova and Maddox, 2009;
Gershman andNiv, 2013; Clapper, 2014). I suggest that VCL tasks
that do not involve the use of labels or feedback, yet involve a
biased selection of exemplars, should be considered as supervised
tasks – in effect, a biased sampling of exemplars provides par-
ticipants with implicit supervisory information by revealing part
of the experimenter knowledge of the categories structure (see
Palmeri and Mack, 2015 for a related discussion).

In scenarios such as those illustrated in Figures 1C,D, it is
impossible to infer the underlying categories structure from the
distributions of objects’ features. Specifically, while in Figure 1C
there is no structure that can be discovered by unsupervised
mapping of densities, in Figure 1D mapping the densities may
be misleading (see Figure 1D3 for the likely inferred deci-
sion boundary). Clearly, here additional information is required
in order to uncover underlying patterns with potential signifi-
cance. Such information may include labeled exemplars or an
intentionally biased sample of exemplars, selected by an ‘expert
tutor.’ For example, being introduced with the labeled (filled)
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exemplars in Figures 1C4,D4 is sufficient for learning the cat-
egories’ boundaries. Labeled exemplars are with little or no use
for VCL in a scenario such as illustrated in Figure 1A, but they
may facilitate VCL in a scenario such as illustrated in Figure 1B
(specifically when the sampled exemplars are too few and thus the
categories’ boundaries become fuzzy, e.g., as when observing only
the black filled exemplars in Figure 1B3).

Supervision Allows Categorization to
be Less Affected by Feature Saliency

Unsupervised VCL is likely to be effective if an objective cat-
egory structure is consistent with the subjective needs of the
learning organism. As much as this may satisfy the needs of
simple organisms acting in a largely fixed environment, unsu-
pervised VCL is unlikely to satisfy the needs of organisms acting
in different environments where multiple expertise are required
for survival. In supervised VCL, in addition to the visually per-
ceived features of the categorized objects (target sensory input),
supervisory information that enables inferring an important rela-
tion between objects, and sometimes also the essence of objects,
is also available. Supervisory information can become avail-
able to the learning organism following earlier categorization
decisions it has made, or independently of its actions. In real-
life scenarios, VCL is likely to be semi-supervised, where the
supervisory information for only a small sample of objects is
available.

Supervised VCL can be based on an operant conditioning pro-
cessing pipeline that includes perceiving a target object, followed
by executing a specific action that reflect the organism’s initial
hypothesis regarding the nature of the perceived object. This
action may trigger new sensory impressions (primarily a reward
or punishment), which can be used as feedback indicating the
correctness of the initial hypothesis. For example, operant condi-
tioning allows bees to learn that approaching a virtual blue flower
(regardless of its spatial location) results in receiving a reward
(sugar solution), whereas approaching blue–green flowers results
in an aversive experience (receiving quinine solution). This indi-
cates that attention control and motivational processes impact
supervised VCL, even in simple organisms such as bees (Giurfa,
2013). Supervisory information available in operant condition-
ing enables ‘deeper’ realizations (e.g., “blue flowers are good,”
whereas “blue–green flowers are bad”).

Supervised VCL can also be based on classical conditioning,
where exemplars that share visual features (conditioned stimuli)
are consistently associated with a specific rewarding or aversive
experience (unconditioned stimulus). Unlike operant condition-
ing, classical conditioning is more passive, where the learning
organism is introduced with the paired stimuli (unconditioned
and conditioned) regardless of its actions. For example, one can
autonomously learn that when dark-gray clouds are forming in
the sky (conditioned stimulus) soon it would rain heavily (a spe-
cific unconditioned aversive stimulus), whereas light-gray clouds
do not pose any threat. Similarly, a mother walking with here
child in the park while referring to several animals by pointing
at them and saying “look! a dog!” allows the childe to learn that

all these animals are of the same kind. This may allow the child
to learn to ignore irrelevant salient perceived differences between
dogs, such as fur texture and body size, and to acquire a gener-
alized representation of dogs. In this latter example, instead of
an inherently rewarding or aversive unconditioned stimulus, a
category-label (“dog”) was used. Here the toddler first has to learn
that a label is a proxy – it symbolizes a meaningful category of
objects or events. This requires an intermediate learning phase
where, as part of the process of language acquisition, the toddler
learns about the importance of labels (see Graham et al., 2012;
Robinson and Best, 2012; Sloutsky and Fisher, 2012, for a related
debate).

Essentially, all kinds of supervisory information allow iden-
tifying relevant features by imposing equivalence constraints –
informing the learning organism that few example objects are
likely to be from the same-category or from different-categories
(Hammer et al., 2008). Unlike unsupervised learning, if the com-
pared or contrasted objects are properly chosen, this may enable
effective VCL of a complex categorization rule by using very few
constrained training examples (see Figure 1D4 for the “must be
related” and “cannot be related” exemplars). Specifically, compar-
ing two objects while being cued that the two are from the same
category is most effective for identifying unimportant salient dif-
ferences between objects from the same category. As the number
of salient differences between the compared same-category exem-
plars is larger, more information is gained, since more is learned
about the permitted variability within a category. On the other
hand, contrasting two objects from two distinct categories is most
effective for detecting important low-saliency differences between
the two categories. This would be effective mostly when the con-
trasted exemplars differ in very few important features (Hammer
et al., 2009a,b, 2010).

Visual category learning that is based on directly being
informed about the categorical relation between few objects is
sufficient for learning which features are most relevant for cat-
egorization, for learning to overlook salient irrelevant within
category variability in a given feature dimension, or for becom-
ing sensitive to important low-saliency differences between-
categories. However, it may not be sufficient for learning the
essence of categories. For example, learning that brown spotted
mushrooms are of a distinct kind helps in correctly categoriz-
ingmushrooms; but it is insufficient for determiningmushrooms’
edibility. On the other hand, supervised VCL with feedback (eat-
ing mushrooms) or labels (being told “edible” or “poisonous”)
enables both inferring categorical relations between objects, and
associating categories with meaningful events such as a reward-
ing experience, an aversive experience, or a meaningful symbolic
representation.

Biases in Respective Feature Saliency
may Serve as ‘Implicit Supervision’

If lacking prior domain-specific knowledge, and if supervi-
sion is not available, categorization would rely on the most
salient differences between objects (test your initial impression
in Figure 1D1). However, this principle is often ignored in
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studies investigating children conceptual knowledge by using
visual stimuli or physical objects. For example, according to the
shape bias hypothesis, young children (but not adults) system-
atically generalize object names based on objects’ overall shape
(Landau et al., 1988; Hahn and Cantrell, 2012; Yee et al., 2012).
In contrast, others showed that some contextual factors elim-
inate children’s preference to shape (Cimpian and Markman,
2005; Tek et al., 2012; Perry et al., 2014). Most relevant to the
current discussion, Hammer and Diesendruck (2005; see also
Diesendruck et al., 2003) systematically tested how the respective
saliency of computer-animated objects’ shapes versus the saliency
of their animated functions, affects object naming in preschool
children and adults. In a higher-shape-saliency condition, differ-
ences in shapes were more salient than differences in functions.
In a higher-function-saliency condition, differences in functional
features were more salient than differences in shapes (stim-
uli examples: https://sites.google.com/site/rubihammer/other-
stuff/stimuliexamples). While adults consistently categorized
objects based on functional similarities, regardless of the respec-
tive saliency of features, children were likely to consider objects as
having the same name if they were similar in the feature in which
differences were most salient in a given context (either shape or
function). Moreover, children’s object naming in a later catego-
rization task, where the saliency of shapes and functions were
matched, was biased such that they extended names based on the
feature that was with a greater saliency in the earlier task. That is,
an early objective bias in feature saliency resulted in a learned bias
that affected later behavior.

The above shows that contextual biases in respective feature
saliency may act as ‘implicit supervision,’ guiding (or misguiding)
participants. Overlooking such experimental effects may hinder
the studying of intrinsic feature preferences. I do not claim that
early-developed attentional biases do not exist; but I do suggest
that in order to properly determine the soundness and robustness
of a hypothesized feature preference or an intrinsic attentional
bias, it is necessary to test subjects in several scenarios where
the respective saliency of within-category and between-categories
differences is systematically manipulated. This would reduce the
odds that experimental findings would be altered by an accidental
bias in respective feature saliency, and may enable to better study

human cognition. Although the impact of contextual factors on
shape bias in children was previously discussed (Samuelson and
Bloom, 2008), respective feature saliency is particularly important
since it may compromise the studying of top–down knowledge-
based processes in most experimental settings (yet it is relatively
straightforward administrating tasks in which feature saliency is
controlled).

Usability of Explicit Supervisory
Information Relies on Absolute Feature
Saliency

Due to initial poor representation in visual cortices, important
low-saliency differences between objects may be left undetected
even at the absence of higher-saliency distractors. While sensi-
tivity to low-saliency differences can be increased via perceptual
learning, for such an improvement to be effective a thought-
ful selection of the training examples is required. Specifically,
low-saliency scenarios require presenting the learner with exem-
plars from the two contrasted categories, which differ only in one
important feature dimension at a time. Thus, it is expected that
in VCL tasks, where categories differ in multiple low-saliency
features, learning would be significantly impaired if supervi-
sion does not involve an intentional selection of the training
examples. On the other hand, VCL in analogs tasks, where cat-
egories differ in higher-saliency features, may be less affected
by an arbitrary selection of the training examples (Hammer
et al., 2008, 2012, 2015). A VCL study, or real-life learning ses-
sion, administered without accounting for these facts, is likely
to yield different results from a VCL session in which an effort
was invested in the design and administration of the training
trials.
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