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Effects of question formats on causal
judgments and model evaluation
Yiyun Shou* and Michael Smithson

Research School of Psychology, The Australian National University, Canberra, ACT, Australia

Evaluation of causal reasoning models depends on how well the subjects’ causal beliefs
are assessed. Elicitation of causal beliefs is determined by the experimental questions
put to subjects. We examined the impact of question formats commonly used in causal
reasoning research on participant’s responses. The results of our experiment (Study 1)
demonstrate that both the mean and homogeneity of the responses can be substantially
influenced by the type of question (structure induction versus strength estimation versus
prediction). Study 2A demonstrates that subjects’ responses to a question requiring
them to predict the effect of a candidate cause can be significantly lower and more
heterogeneous than their responses to a question asking them to diagnose a cause
when given an effect. Study 2B suggests that diagnostic reasoning can strongly benefit
from cues relating to temporal precedence of the cause in the question. Finally, we
evaluated 16 variations of recent computational models and found the model fitting
was substantially influenced by the type of questions. Our results show that future
research in causal reasoning should place a high priority on disentangling the effects
of question formats from the effects of experimental manipulations, because that will
enable comparisons between models of causal reasoning uncontaminated by method
artifact.

Keywords: causal reasoning, judgment, measurement, question formats, causal models

Introduction

Historically, researchers in cognitive science have been interested in developing psychologi-
cal models of human causal reasoning. A number of quantitative models have been proposed
to explain how people reason causal relationships from covariance information (Hattori and
Oaksford, 2007). Several recent studies have compared the accuracies of different models in
predicting human causal judgments (e.g., Cheng, 1997; Hattori and Oaksford, 2007; Perales
and Shanks, 2007; Lu et al., 2008; Carroll et al., 2013). Results of these comparisons varied
across different studies using data from different experiments, with various question formats.
The inconsistent results in the model comparison studies may be contributed to by the vari-
ation in the responses across different experiments. One possible factor is the variation in the
experimental procedures, as people’s responses can be influenced by the methods of present-
ing stimuli (Vallée-Tourangeau et al., 2008) and the experimental instructions (Matute, 1996;
White, 2003). For example, subjects in experiments that presented the stimuli trial-by-trial (e.g.,
Hattori and Oaksford, 2007; Perales and Shanks, 2007) were less likely to retain all observed evi-
dence than subjects in the experiments that presented stimuli in a summary format (Buehner
et al., 2003; Lu et al., 2008). Likewise, the experimental instruction may influence how subjects
sample and evaluate the evidence. Matute (1996) found that subjects who were not provided
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information about an experimental hypothesis that there was no
causal relationship provided higher causal strength judgments
than those who were informed about this hypothesis.

Experimental factors also include the elicitation of assessments
of casual beliefs. Commonly, the causal judgment is assessed by a
single question after subjects observe the evidence. However, this
approach assumes that causal belief is a mono-faceted construct,
and can be perfectly elicited and expressed by a single numeri-
cal response. Recently, there has been increasing attention paid
to the potentially different constructs of causal reasoning. Several
constructs related to causal reasoning, such as causal induction
goals, causal reasoning directions and causal valence have been
distinguished. Discrepancies among model comparison results
may arise if different experimental questions elicit assessments
of different constructs. The purpose of this paper is to examine
how responses vary across various causal judgment questions,
and to test alternative explanations for the inconsistent results in
model comparison studies. We will begin with reviewing the cur-
rent theoretical explanations for the differences in the responses
assessed by different questions.

Causal Valences
A question with generative valence asks how likely the candidate
cause increases the occurrence of an outcome. A question with
preventive valence asks how likely the candidate cause decreases
the occurrence of the outcome. Although the majority of studies
in causal reasoning focused on reasoning with generative valence,
the distinction between these two valences has been examined in
a number of previous studies (Wu and Cheng, 1999; Dennis and
Ahn, 2001; Buehner et al., 2003; Catena et al., 2004; Lu et al., 2008;
Mandel and Vartanian, 2009; Baetu and Baker, 2012).

Several studies have shown that evidence confirming the gen-
erative valence may have stronger effects on subject’s causal rea-
soning than evidence confirming the preventive valence (Dennis
and Ahn, 2001; Baetu and Baker, 2012). Catena et al. (2004)
found that the frequency of the outcome was more positively
associated with subjects’ perceived causal strength of a genera-
tive link than a preventive link. Finally, Mandel and Vartanian
(2009) found that subjects who were presented with a hypothe-
sis with generative valence overestimated the occurrence of the
effect, which in turn increased the perceived causal strength.
These studies suggest that reasoning for the two causal valences
may have different underlying evidence processing mechanisms.
People may be more influenced by change in the causal evi-
dence when responding to a generative valence question than to
a preventive valence question.

Causal Induction Goals
The causal graphical model proposed by Waldmann et al. (1995)
distinguishes two goals of causal reasoning. First, causal structure
induction refers to the use of covariation information to decide
if there is a causal link between the cause and the effect. The
structure induction involves evaluating and comparing evidence
for multiple causal structures against one another (Griffiths and
Tenenbaum, 2005). A second goal is causal parameter estimation,
which concerns the strength of the causal links. The aim is to
answer the question, “What is the probability with which a cause

produces an effect, in the absence of other causes?” (Cheng and
Novick, 2005; Holyoak and Cheng, 2011).

The common measure of the causal structure judgment can
be a probability judgment question, such as “How likely is it
that a candidate cause did cause the effect” (e.g., Griffiths and
Tenenbaum, 2005, Experiments 1 and 2). On the other hand,
a strength judgment asks subjects to rate judge how strong the
relationship is between the candidate cause and the effect (e.g.,
Buehner et al., 2003, Experiment 3; Hattori and Oaksford, 2007,
Experiments 1 and 2; Lober and Shanks, 2000, Experiments 1–3;
White, 2009). The two types of questions can yield distinct model
fit results for various models (see Griffiths and Tenenbaum, 2005;
Hattori and Oaksford, 2007).

Cheng and Novick (2005, p. 700) defined a causal strength
question as “the probability that a candidate cause c produces
e when c occurs.” Lu et al. (2008) implemented causal strength
question in accordance with this definition. They found that a
structure-focused model fitted the responses of a causal structure
judgment better than a strength model, while a strength model
fitted the responses of a strength judgment better than a struc-
ture model. However, this type of question also differed from the
structure question in previous examples, in terms of the direction
of reasoning, which is discussed in the next section.

Reasoning Directions
A further two types of causal judgment questions can be dis-
tinguished in terms of the directions of reasoning. Predictive
reasoning goes from the cause to the effect. A predictive judg-
ment question asks “given the presence of the cause, how likely is
it that an effect would occur?” Diagnostic reasoning, on the other
hand, requires one to reason from the effect to the cause, asking
“given the observed effect, how likely was the effect caused by the
candidate cause?”

Some experimental questions used in previous studies asked
for a predictive judgment, while others asked for a diagnostic
judgment. Lu et al. (2008), Experiment 1 asked subjects to judge
“How many of the genes will be turned on (the effect) when
they are being exposed to the protein (the cause).” The question
focused on predictive reasoning, as it asked for a prediction of the
effect given the occurrence of the cause. On the other hand, the
question in Anderson and Sheu (1995), Experiment 1 was ’How
likely the drug [cause] used in that hospital is the cause of side
effects [effect] in patients?’ This question focused on diagnostic
reasoning, as it asked the subjects to judge the causal relationship
given that the effect has occurred.

There is evidence that the two causal reasoning directions
can be empirically differentiated (Tversky and Kahneman, 1980;
Cummins, 1995; Fernbach et al., 2011). Fernbach et al. (2011)
found a significant interaction between the judgment directions
and the strength of the background causes that were not explicitly
stated in the reasoning scenario. Subjects’ predictive judgments
were higher than their diagnostic judgments when the back-
ground cause was stronger than the candidate cause. Conversely,
their predictive judgments were lower than the diagnostic judg-
ments when the background cause was weak. Cummins (1995)
suggested that the consideration of alternative causes can pro-
mote doubt regarding the sufficiency of the candidate cause in
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producing the effect. Thus, the strong background cause could
lower people’s diagnostic judgment of how likely the effect is due
to the candidate cause. On the hand, Cummins (2014) suggested
that subjects are more likely to retrieve disablers of the effect
in predictive reasoning than in diagnostic reasoning. The lower
ratings in predictive judgments when the alternative cause was
weak could be due to the retrieval of the disablers in predictive
reasoning.

An alternative explanation regards the inputs and assumptions
implied by a diagnostic question versus a predictive question
(Cheng and Novick, 2005). These inputs may involve the role
of the background cause, and prior knowledge of the temporal
precedence of the candidate cause. The assumption of the tem-
poral precedence of the cause holds for a predictive question as it
provides the presence of the cause in the question. This assump-
tion may not hold for the diagnostic question. Thus a predictive
reasoning can be greater than the diagnostic reasoning if the
temporal precedence of the cause is not clear in the diagnostic
question.

The Current Studies
The accuracy of model prediction may depend on how well the
causal judgment question matched the proposed construct, as
variability in responses can rise when questions mixed that do
not measure the same construct. This implies that the inconsis-
tent results in model comparison studies may be due to artifacts
in assessing causal beliefs. It has been noticed in previous stud-
ies is that subjects may have different interpretations for the
same question (e.g., Cheng and Novick, 2005; Meder et al., 2014).
Some current treatments for unifying subjects’ interpretations
include using a post hoc question to filter out subjects, whose self-
reported interpretation did not match the one that the researcher
wanted (e.g., Meder et al., 2014). However, this practice would
seem to oppose the fundamental goals in scientific psychological
research on reasoning, namely to impartially observe, describe,
and understand human reasoning in all its variability, fallibil-
ity, and complexity. Capturing the impacts of questions formats
on the variability of the responses, may provide information
on how some cues can systematically influence the question
interpretation of people.

In the present paper, we accounted for the variability of the
responses and examined how question formats may affect the
responses of subjects. In Study 1, we investigated three questions
used in previous studies. These included a structure induction
question, a strength estimation question and predictive judgment
question. All the three questions were assessed for each of the two
causal valences. Study 2 extended the investigation based on the
results in Study 1, and specifically assessed the effects of reason-
ing direction in the questions. In addition, we presented a model
comparison study to examine how the question formats influence
the fit of various models.

Study 1

Study 1 was designed to assess the effects of judgment ques-
tions on subjects’ causal judgment. The experiment applied the

experimental paradigm of Lu et al. (2008). Evidence of the causal
relationship was presented to subjects in a summary format, to
reduce the memory demand. We selected three experimental
questions which may measure three different constructs: struc-
ture induction, strength estimation, and predictive judgment. We
elicited both a point estimate of each causal judgment, and an
interval estimate that assesses the degree of confidence of the sub-
jects. We aimed to explore how responses can differ among the
three types of questions.

Method
Participants and Design
Seventy-three adults (36 males and 37 females) in the United
States were recruited via a Qualtrics online survey panel, with
a mean age of 43.32 (SD = 15.09). The study had two causal
directions, three question types, and three levels of covariation
information in a mixed design. Subjects were randomly assigned
to the generative condition (N = 38) or the preventive condition
(N = 35). The within-subject conditions included the levels of
causal covariation and types of judgment questions.

Materials and Variable Manipulation
Subjects were instructed to pretend they were employees in a bio-
genetic company. Their task was to evaluate the effects of certain
types of proteins on the expression of genes. They observed the
results of a series of fictitious experiments. The cover story stated
that, for each of these experiments, DNA strands extracted from
human hair were tested by the testing protein. Subjects were pre-
sented one set of DNA strands that had not been exposed to the
testing protein, and one other set of DNA strands that had been
exposed to the protein. Each set contained 16 DNA strands, such
that the sample size was 32 in total across all conditions. The
status of genes (on or off) was displayed differentiated by their
colors. They answered the causal judgment questions regarding
the relationship between the states of the genes (being on or off)
and the presence or absence of the protein.

Covariance
We define P(E+| C−) as the probability of genes being on given
the absence of the protein, while P(E+| C+) is the probability
of genes being on given the presence of the protein. The P(E+|
C+) and P(E+| C−) information is reversed in the preventive
condition. Three covariation conditions in the generative con-
dition included (a) C1:P(E + |C−) = 0.25, P(E + |C+) = 0.5;
(b) C2:P(E + |C−) = 0.5, P(E + |C+) = 0.75; and (c) C3:P(E +
|C−) = 0.25, P(E + |C+) = 0.75. Table 1 displays the frequen-
cies of the covariance events in each covariance condition. We
chose the three conditions because the three covariance levels had
different causal strength or judgment values predicted by a num-
ber of different causal models such as the contingency and causal
power models. If the differences in the models in term of fitting
the experimental data are associated with the artifact produced by
differing question formats, we may observe a shift in variability of
the casual ratings across different types of judgment questions.

Causal valence (preventive versus generative)
Subjects in the generative condition were shown a higher fre-
quency of the effect in the presence of the cause (i.e., when genes
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TABLE 1 | Covariance information in Experiment 1.

Cause Present Absent

Effect Present Absent Present Absent

Generative

C1 8 8 12 4

C2 4 12 8 8

C3 4 12 12 4

Preventive

C1 12 4 8 8

C2 8 8 4 12

C3 12 4 4 12

were exposed to the protein) than subjects in the preventive con-
dition. They were asked to evaluate the relationship between the
protein and the turning on of the gene. Subjects in the preven-
tive condition were asked to evaluate the relationship between the
protein and the turning off of the gene.

Question types
The three causal judgment questions included a causal structure
induction question, a strength estimation question, and a predic-
tive judgment question. The structure question asked “How likely
do you think the turning on of the gene is due to being exposed
to the protein?” The structure question is also a diagnostic ques-
tion, because subjects are asked to reason from the effect to the
cause. The strength question asked “How strong is the relation-
ship between the turning on of the gene and being exposed to
the protein?” This question is commonly used in causal reason-
ing studies. Finally, the predictive question is as in Lu et al. (2008),
“Suppose that there is a sample of 100 DNA strands. The gene is
ON in all 100 strands. If all of them were exposed to Protein M,
how many of them will be turned OFF?”

Procedure
Each subject completed three judgment blocks, with different
covariation information in the evidence. The order of the blocks
was randomized. In each judgment block, the presentation of
the evidence was followed by the three judgment questions.
Subjects answered the structure judgment first, then the strength
judgment, and finally the predictive judgment.

For each judgment question, subjects provided a best estimate
by rating on a scale of 0–100% for the structure question, and 0–
100 for strength and predictive questions. They were also asked
to estimate an interval around their best estimate by providing
a minimum estimate and a maximum estimate, such that they
were 90% confident that the interval contained the true proba-
bility/strength of the causal relationship. The interval width (IW)
measures the level of confidence of subjects. This also allows for
assessing the precision of the subjective probability distribution
for the causal relationships.

Data Analysis
The ordinary linear models such as analysis of variance (ANOVA)
assume that the dependent variable is normally distributed, which
has unbounded support. The dependent variables in the major-
ity of causal reasoning studies are double bounded numerical or

probability ratings from, for example, 0 to 100 (or 0 to 100%).
When the causal strength in the experimental stimuli approaches
extreme values such as 0 or 100, the judgments provided by
subjects can be highly skewed. Moreover, there is likely to be het-
eroscedasticity in the data, as change in the mean also can change
the variance. Therefore, linear models such as ANOVA are inap-
propriate. Furthermore, ordinary linear models only focus on the
mean of the dependent variable, and so are unable to capture any
change in its dispersion. The dispersion is informative, as it can be
an indicator on how much subjects agree in perceiving the causal
relationships. Higher dispersion in the ratings suggests greater
discrepancy among causal ratings, which might be an indicator
of the discrepancies either in interpretations of the causal judg-
ment questions, or in the ways that people reason about causal
relationships.

In the current study, we apply generalized linear models
(GLMs) using the beta distribution to overcome these issues
and to provide more informative and robust analysis1. The beta
GLM utilizes two submodels that can deal simultaneously with
the predictors of location and the predictors of dispersion. A
location submodel links the linear combination of predictors
with the mean of the dependent variable via a logit link func-
tion. A positive coefficient in the location submodel indicates
a positive relationship between the predictor and the mean of
the dependent variable. A precision submodel links the pre-
dictors with the variance component of the dependent vari-
able, and indicates how the variance of the dependent vari-
able changes as function of the predictors. A positive coeffi-
cient in the precision submodel indicates greater precision, or
smaller variance of the data. The precision of the responses
variable can be a measure of the consensus among subjects.
A greater precision indicates a greater homogeneity in the
responses provided by subjects. For a more detailed introduction
to beta regression, readers may consult Smithson and Verkuilen
(2006).

We applied beta GLMs to model the best estimate, as well as
the interval estimates. In each model, effects coding was applied
to create dummy variables for each factor (see Table notes for
each model estimation results) such that the intercepts of the two
submodels represent the overall mean and overall precision of
the causal ratings. Effects coding also resolved the potential prob-
lem of muticollinearity in the interaction and their constituent
main-effects terms (Tabachnick and Fidell, 2007).

We used Bayesian Markov Chain Monte Carlo methods for
the model estimation and inference, using OpenBUGS (version
3.2.2). In all following analysis, we drew 8000 samples from the
posterior distributions, with an initial burn-in of 4000 iterations.
We used Deviance Information Criteria (DIC, Spiegelhalter et al.,
2002) for model comparison and selection. DIC is a combina-
tion of a measure of model fit (the mean difference between
the log-likelihood of the tested model and a saturated model)
and a penalty measure of model complexity. A smaller DIC
indicates a better model. In general, a difference of 3–7 units
in DIC indicates the evidence of a substantial difference in

1A more detailed introduction of our modeling approach is provided in the online
supplemental material at: http://goo.gl/E2dckt.
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model fit of the two models, while a change of over 10 units
is a definite indication that the model with smaller DIC is bet-
ter than the model with the higher DIC (Spiegelhalter et al.,
2002). We then report the estimation results for the best model,
including the estimated means, standard errors and 95% cred-
ibility interval (CI) of the coefficients of the two submodels.
The 95% CI includes the 95% interval of the posterior distri-
bution of the parameter, and can be interpreted in a similar
sense as a 95% confidence interval in traditional statistical analy-
sis.

Results
There were 657 responses for each type of estimate (best, mini-
mum, and maximum). Some subjects had the invalid minimum
and maximum estimates (i.e., provided a minimum estimate
greater than the maximum) for one or two questions. These
invalid responses were removed from the analysis, leaving 635
valid responses. Figure 1 summarizes the ratings of best estimates
and the IW of subjects in the two causal valence conditions.

Best Estimate
Table 2 summarizes the contribution of each factor to the
model by comparing the DIC value of a model with that
factor and a model without that factor. Covariance had most

FIGURE 1 | Best estimates (upper) and interval widths (lower) for
different judgment questions across the two causal valence
conditions. Error bars are standard errors.

substantial effects on subject’s causal ratings, both on the
mean (�DIC = 61.4) and precision of the causal ratings
(�DIC = 17.7). Removing causal valence from the precision
submodel decreases the model fit by 26.1 DIC units, suggesting
causal valence had a substantial main effect on the precision of the
judgment distribution. Finally, the �DIC values of 18.5 and 15
suggest that questions types had substantial main effects on both
the mean and the precision of the rating distributions. To evalu-
ate the interaction effects, a model with an interaction added was
compared with a model without that interaction. Only the inter-
action between causal valence and covariance had a substantial
contribution to the main effect model.

The results of parameter estimation for the final model are
summarized in Table 3. In the following analysis, we report the
results of the three factors – covariance, causal valence, and ques-
tion types in that order. For each factor, we will first report the
results of the location submodel, and then the results of the pre-
cision submodel. We then report the interaction effects between
different factors.

The causal estimates of the C2 condition were significantly
lower than the grand mean, while the ratings of C3 condition
were significantly higher than the grand mean (see Table 2). A
post hoc repeated comparison2 suggested that the mean of C2
estimates did not significantly differ from C1 (b = 0.01, 95%
CI = [−0.11, 0.14]), whereas the mean of the C3 condition was
significantly higher than both C1 (b = 0.32, 95% CI = [0.23,
0.40], odds ratio = 1.38) and C2 (b = 0.41, 95% CI = [0.24,
0.41], odds ratio = 1.51) condition. The odds ratio at 1.38 indi-
cates that subjects perceived the causal relationship between the
protein and the status of genes in C3 condition as having 1.38
times greater odds than in the C1 and C2 conditions). Regarding
the effects of covariance on the precision of rating distribution,
both C2 and C3 did not have significant different precision from

2The post hoc comparison applies dummy coding that allows for the direct com-
parisons between two individual factor levels. For example, to test the difference
between C1 and C2 conditions, the ratings in C1 was coded as 0 for the dummy
variable C2. The coefficient of the dummy variable C2 indicates the difference
between the C1 condition and C2 condition.

TABLE 2 | �DIC of effects of causal valence, question types, and
covariance on best estimates in Study 1.

Removed factor

Location submodel Precision submodel �DIC

Causal valence −1.4

Question type 18.5

Covariance 61.4

Causal valence 26.1

Question type 15

Covariance 17.7

Causal valence × Covariance 8.3

�DIC compares a full model with a model without a factor, and indicates the
contribution of the removed factor. A positive �DIC suggests that removing the
factor decreases the model fit. The Main-effect model included all three factors
(causal valence, question type, and covariance) in both the location submodel and
the precision submodel. No other interactions were found to be significant; those
interactions not included in the table.
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TABLE 3 | Random effect beta GLM of best estimates predicted by causal
valence, question types, and covariance in Study 1.

Variables Parameter Coefficient SE 2.5% 97.5%

Random
intercept

0.57 0.10 0.38 0.76

Location submodel

Intercept b0 0.26 0.07 0.12 0.40

Causal valence b1 −0.06 0.07 −0.19 0.10

Covar2 b2 −0.13 0.04 −0.20 −0.05

Covar3 b3 0.27 0.04 0.20 0.34

Structure b4 0.00 0.04 −0.08 0.07

Predictive b5 −0.06 0.04 −0.14 0.01

Covar2 × Causal
valence

b6 0.00 0.04 −0.07 0.08

Covar3 × Causal
valence

b7 −0.10 0.04 −0.17 −0.02

Precision submodel

Intercept d0 2.20 0.06 2.08 2.30

Causal valence d1 0.29 0.06 0.18 0.40

Covar2 d2 −0.17 0.09 −0.34 0.02

Covar3 d3 0.07 0.09 −0.10 0.24

Structure d4 −0.01 0.08 −0.18 0.15

Predictive d5 −0.18 0.09 −0.36 0.01

Causal valence is coded as −1 = generative condition and 1 = preventive con-
dition. The two dummy variables for covariation conditions: Covar2 is coded as
−1 = C1, 1 = C2, and 0 = C3 condition. Covar3 is coded as −1 = C1, 0 = C2,
and 1 = C3 condition. The coefficients of Covar2/Covar3 represent the difference
between the ratings in the C2/C3 condition and the overall mean/precision of the
causal ratings. The two dummy variables for question type conditions: Structure
is coded as −1 = strength judgment, 1 = structure judgment, and 0 = predictive
judgment; predictive is coded as −1 = strength judgment, 0 = structure judgment,
and 1 = predictive judgment. The coefficients of Structure/Predictive represent the
difference between the ratings in the Structure/Predictive question and the over-
all mean/precision of the causal ratings. 2.5 and 97.5% are the lower and upper
bounds of the 95% credibility interval.

the overall grand mean precision. The post hoc comparison sug-
gested that the effect of covariance on the precision was mainly
contributed to by the difference between C2 and C1 conditions,
where the responses of the C1 condition was significantly more
homogeneous than the C2 condition (d = 0.32, 95% CI = [0.07,
0.56]).

There was no significant difference in the mean ratings
between the two causal valence conditions. However, the rating
distribution of the preventive condition was significantly more
precise than the generative condition, suggesting that subjects
in the preventive condition provided more homogeneous ratings
than those in the generative condition (d1 = 0.29, 95%CI= [0.18,
0.40], see Table 2). In addition, there was a significant interac-
tion between covariance and causal valence, where the difference
between C3 and C1 was greater in the generative condition than
in the preventive condition.

Next, the post hoc comparison revealed that the effect of ques-
tion type on the mean of the ratings was mainly contributed to
by the higher and more precise ratings of the strength question
compared with the predictive question (b= 0.12, 95% CI= [0.02,
0.25], odds ratio = 1.14; d = 0.35, 95% CI = [0.02, 0.66]). The
structure induction question did not significantly differ from
either the strength question (b = 0.04, 95% CI = [−0.09, 0.20];

d = 0.16, 95% CI = [−0.10, 0.40]), or the predictive question
(b = 0.06, 95% CI = [−0.07, 0.18]; d = 0.16, 95% CI = [−0.15,
0.47]).

Confidence Interval Widths
Table 4 summarizes the contribution of each variable to explain-
ing the variation in the IWs, and Table 5 displays the estimation
results the final model. Covariance had substantial contribu-
tion to the location submodel. The post hoc comparison sug-
gested that the effect of covariance was contributed to by the
difference between C2 and C3, where the mean IWs of C2 con-
dition was significantly wider than C3 condition (b2 = 0.12,
95% CI = [0.04, 0.19], odds ratio = 1.13). The IWs of C1
were not significantly different from either C2 or C3 condition.
Covariance also had substantial contribution to the precision
submodel, and the effect of covariance was moderated by causal
valence.

The IWs did not significantly differ between the two causal
valences. Causal judgment questions, on the other hand, made
significant contributions to both submodels. The post hoc
repeated comparison revealed that strength judgment did not
significantly differ from structure judgment in terms of the
mean IWs, however, strength judgment had significantly less
homogeneity in IWs than structure judgment (d = −0.40, 95%
CI = [−0.72, −0.10]). Predictive judgment had significantly
larger and more heterogeneous intervals than both the structure
judgment (b = 0.38, 95% CI = [0.24, 0.52]; d = −1.28, 95%
CI = [−1.61, 0.97]) and the strength judgment (b = 0.47, 95%
CI = [0.30, 0.61]; d = −0.91, 95% CI = [−1.23, −0.60]).

Discussion
The results showed that question formats had significant effects
on both the mean and variability of the best estimates provided
by subjects. The effects were observed in both causal valences and
all three levels of covariance. It was also found that the difference
between the predictive question and the other two questions (i.e.,
strength question and structure induction question), were larger
than the difference between the other two questions.

One explanation is that the predictive question motivated pre-
dictive reasoning, while both the structure question and strength
question focus subjects’ attention on the current evidence, which

TABLE 4 | �DIC of effects of causal valence, question types, and
covariance on interval estimates in Study 1.

Removed factor

Location submodel Precision submodel �DIC

Causal valence 0.0

Questions 49.7

Covariance 25.5

Causal valence 4.0

Questions 61.4

Covariance 14.4

Causal valence × Covariance 7

The main-effect model included all three factors (causal valence, question type, and
covariance) in both the location submodel and the precision submodel.

Frontiers in Psychology | www.frontiersin.org 6 April 2015 | Volume 6 | Article 467

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Shou and Smithson Question formats and causal judgments

TABLE 5 | Random effect beta GLM of interval estimates predicted by
causal valence, question types, and covariance in Study 1.

Variables Parameter Coefficient SE 2.5% 97.5%

Random
intercept

0.57 0.10 0.38 0.76

Location submodel

Intercept b0 −1.06 0.13 −1.28 −0.80

Causal valence b1 −0.21 0.10 −0.40 0.00

Covar2 b2 0.12 0.04 0.04 0.19

Covar3 b3 −0.11 0.04 −0.18 −0.03

Structure b4 −0.10 0.04 −0.18 −0.02

Predictive b5 0.28 0.05 0.19 0.38

Precision submodel

Intercept d0 2.13 0.06 2.02 2.24

Causal valence d1 0.04 0.08 −0.12 0.19

Covar2 d2 0.05 0.09 −0.11 0.22

Covar3 d3 −0.08 0.08 −0.24 0.07

Structure d4 0.55 0.09 0.38 0.73

Predictive d5 −0.74 0.10 −0.92 −0.54

Covar2 × Causal
valence

d6 −0.15 0.06 −0.27 −0.03

Covar3 × Causal
valence

d7 0.18 0.08 0.03 0.33

Causal valence is coded as −1 = generative condition and 1 = preventive con-
dition. The two dummy variables for covariation conditions: Covar2 is coded as
−1 = C1, 1 = C2, and 0 = C3 condition. Covar3 is coded as −1 = C1, 0 = C2,
and 1 = C3 condition. The coefficients of Covar2/Covar3 represent the difference
between the ratings in the C2/C3 condition and the overall mean/precision of the
causal ratings. The two dummy variables for question type conditions: Structure
is coded as −1 = strength judgment, 1 = structure judgment, and 0 = predictive
judgment; Predictive is coded as −1 = strength judgment, 0 = structure judgment,
and 1 = predictive judgment. The coefficients of structure/predictive represent the
difference between the ratings in the structure/predictive question and the overall
mean/precision of the causal ratings.

may motivate diagnostic reasoning. The difference might be
due to subjects underestimating the effects of alternative causes
and being more likely to retrieve disablers (Cummins, 2014).
However, the number of alternative causes and disablers people
can retrieve is positively associated with their familiarity with the
reasoning context (Cummins, 1995). This implies that novel and
abstract scenarios, which may severely limit the number of alter-
native causes that can be imagined, should result in similar ratings
between diagnostic judgments and predictive reasoning.

An alternative explanation can be related to the differences
in the grammatical tense. Both the structure and the strength
question used the present tense and might direct subjects’ atten-
tion to the evidence that was presented to them. The predictive
question, on the other hand, was in future tense and may encour-
age subjects to judge to what extent the causal relationships in
the current observations can be generalized to future instances.
The distances between the current observations and the future
instances contribute to the difference between the predictive
question and the other two questions. Further discussion of the
effect of reasoning directions will be presented in Study 2A. In
addition, subjects in the present study responded to the predic-
tive question after the structure question. The fixed order of the
two questions might influence subjects’ responses. The problem
of order effects was also addressed in Study 2A by endorsing a

between-subject design to test the differences between these two
questions.

Furthermore, we also found question formats had signifi-
cant effects on the mean and variability of the in IWs. The
predictive question had significantly wider IWs than the other
two questions, suggesting that subjects had lower confidence
in predictive judgment than they did in the other two judg-
ments. All three questions had significant difference in the
variability of the IWs, suggesting that question formats can
influence the degree of individual differences in confidence inter-
val estimates. One possible explanation for this finding relates
to the difference in the response modes required in the three
questions. The structure induction question requires a prob-
ability judgment, the strength judgment requires a numeri-
cal judgment, and the predictive question required subjects to
make a frequency judgment. Extensive evidence from judg-
ment and decision making literature shows that the level of
self-reported confidence resulting from interval elicitation can
be sensitive to the response modes (Juslin et al., 1999; Moore
and Healy, 2008; Fellner and Krügel, 2012). People are more
resistant to overconfidence when making frequency judgments
than probability judgments as fewer computational steps may
be required in the natural frequency estimates (Gigerenzer
and Hoffrage, 1995). Thus, the wider interval estimates of the
predictive judgment, which suggests a lower confidence level,
might be an artifact of lower overconfidence in frequency
judgments.

Finally, we found the increase in the causal strength of the
evidence had greater positive influence on the estimates of the
subjects in the generative condition than those in the preventive
condition. This finding is in line with previous studies, suggesting
that causal valence can influence the evidence processing. Amore
interesting finding is the greater homogeneity of the ratings in the
preventive condition than the generative condition. According to
Cheng’s (1997) power model, humans have the prior assumption
that the background cause is always generating the effect. The
background cause and the candidate cause have the same causal
influence directions if the candidate cause is a generative cause;
while they are in opposite directions if the candidate cause is a
preventive cause.

The significantly higher variability of the ratings in the gen-
erative condition may suggest an interaction between the per-
ceived causal strength of the background cause and the esti-
mated causal strength of the candidate cause. In the generative
condition, the background cause and the candidate cause are
competing for the generative influence on the effect events.
Subjects’ causal estimates are influenced by their perceptions
of both the link between the candidate cause and effect, and
the link between the background cause(s) and the effect. On
the other hand, in the preventive condition subjects’ esti-
mates are only influenced by perceptions of the link between
the candidate cause and effect, as the background cause does
not compete for the preventive causal strength. Estimates that
have two influences are likely to vary more than estimates
that have just one influence, and thus may account for the
greater variability of the strength estimates in the generative
condition.
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Study 2A

Study 1 revealed that question formats can have substantial
impacts on the response distributions of subjects. We do not have
a clear explanation for the difference between the predictive judg-
ment question and the other two questions. One explanation for
the difference between the predictive question and the other two
questions regards the impact of reasoning directions elicited by
different questions. The structure induction question may elicit
diagnostic reasoning by subjects, while the strength question does
not impose any particular reasoning direction. The distinction
between diagnostic and predictive reasoning has not been directly
assessed in Study 1 due to two confounding factors including the
grammatical tenses and the response mode. In addition, subjects’
responses to the predictive question might be influenced by the
other two questions due to the order of the question presentations
Study 2Awas designed to explore the impacts of diagnostic versus
predictive judgments elicited by question formats by isolating the
factor of judgment directions. The question type was treated as a
between-subject condition to minimize the interference between
different types of questions. Subjects were presented either a diag-
nostic judgment question or a predictive judgment question. The
questions in both conditions had the same grammatical tense and
response format. If the difference between the predictive question
and the other two questions was due to the judgment directions
in the question, we expected to observe a significant difference
between two judgment direction conditions.

Method
A total of 100 subjects were recruited via an online crowd-
sourcing service CrowdFlower. Subjects were paid 50 cents
(USD) for their participation. The study had a 2 causal
valences × 2 judgment directions between-subject design. The
setting of the experiment was the same as in Study 1. Subjects
observed the status of a particular protein and the expression of
the gene, and then made the judgments about the effects of the
protein on the expression of the gene.

Subjects in the predictive condition were asked “Suppose a
randomly selected sample of DNA strands with the particular
gene being on is exposed to this protein, how likely do you think
this particular gene in that sample would be turned off?” Subjects
in diagnostic judgment conditions were asked “Suppose a ran-
dom selected sample of DNA strands has the particular gene
being off after being exposed to this protein. How likely do you
think the turning off of the gene will be due to exposure to this
protein?” It was noticed in Study 1 that the two causal valences
differed in their mean responses for the C1 and C2 condition,
but not for the C3 condition3. Because the covariance levels and
causal valences were not the main focus of the study, only the C3
covariance condition was selected.

Results and Discussion
Figure 2 summarizes the mean and standard error of subjects’
estimates. Tables 6 and 7 summarize the result of the beta GLM

3The pattern of difference matched the pattern predicted by the causal power
model.

FIGURE 2 | Best estimates for the two causal valence and reasoning
direction conditions. Error bars are standard errors.

TABLE 6 | �DIC of effects of reasoning directions and causal valences on
best estimates in Study 2.

Removed factor

Location submodel Precision submodel �DIC

Causal valence 1.4

Reason direction 4.3

Causal valence −2.02

Reason direction 5.38

Causal valence × Reason
direction

Causal valence × Reason
direction

−4

TABLE 7 | Beta GLM of best estimates predicted by reasoning directions
and causal valences in Study 2.

Variables Parameter Coefficient SE 2.5% 97.5%

Location submodel

Intercept b0 0.40 0.07 0.27 0.54

Reasoning direction b1 0.16 0.07 0.02 0.29

Causal valence b2 −0.1 0.07 −0.24 0.03

Precision submodel

Intercept d0 2.16 0.14 1.89 2.42

Reasoning direction d1 0.36 0.14 0.09 0.63

Causal valence d2 0.01 0.13 −0.25 0.28

Causal valence is coded as −1 = generative condition and 1 = preventive condi-
tion. Reasoning direction is coded as −1 = predictive reasoning and 1 = structure
reasoning.

for the mean ratings of causal relationship. The responses of
subjects who were asked a question with diagnostic reasoning
direction were significantly higher and more precise than those
who were asked a question with predictive reasoning direction
(b1 = 0.16, 95% CI = [0.02, 0.29], odds ratio = 1.17; d1 = 0.36,
95% CI = [0.09, 0.69]). Causal valence had no significant effects
on the mean or precision of subjects’ responses.

The results in Study 2 provide evidence for the difference
between the two reasoning directions by controlling the tenses
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and belief elicitation methods. Results replicated the finding in
Study 1, where the diagnostic judgments were higher than the
predictive judgments. Unlike the realistic and familiar scenar-
ios used in previous studies, the current study applied novel and
abstract scenarios, which may severely limit the number of alter-
native causes that can be imagined. While this explanation may
account for equality in diagnostic and predictive ratings, it does
not explain our finding that the mean in the diagnostic condition
was higher than the mean in the predictive condition.

Previous studies applied realistic reasoning scenarios that pro-
vide prior knowledge of the temporal precedence of the candidate
cause and possible alternative causes, which in turn facilitate
diagnostic reasoning. Prior knowledge of the temporal prece-
dence of the cause strengthens links between the cause and
the effect (Cobos et al., 2002). For example, one of the state-
ments in Fernbach et al. (2011) Experiment 1 asked “A newborn
baby is drug addicted. How likely is it that its mother is drug
addicted?” Belief in the temporal precedence of “mother is drug
addicted” over “a newborn baby is drug addicted” may con-
tribute to the strength of the judged causal link. Thus, when
there is no explicit statement in diagnostic reasoning, subjects
may vary their assumption about the precedence of the cause
depending on the scenario. This question was addressed in
Study 2B.

Study 2B

Study 2B aimed to investigate how an explicit cue regarding
the temporal precedence of the cause (TPC) could influence the
diagnostic judgment. In addition, it examined the variability in
assumptions about TPC among subjects who were presented a
question without the explicit cue, and how those assumptions
could affect the final responses.

Method
A total of 157 subjects (106 females; mean age at 38.54,
SD = 12.57) were recruited via the online crowd-sourcing plat-
form CrowdFlower, and were paid 10 cents (USD) for participa-
tion. Forty subjects completed the diagnostic question with a TPC
cue (identical to the Study 1A diagnostic condition). Responses
of those subjects and the 57 subjects in the diagnostic condition
in Study 2A were combined and served as the condition with
the TPC cue (48 in generative condition and 46 in preventive
condition).

The remaining 117 subjects (56 in the generative condition
and 61 in the preventive condition) were assigned into a condi-
tion without the TPC cue. The experimental setting was the same
as Study 2A. Subjects were shown the covariance information
at the C3 contingency level. The subsequent judgment question
was a diagnostic question without the explicit cue of the tempo-
ral precedence of the cause: “Suppose there is a new randomly
selected sample DNA, with the particular gene on (off for pre-
ventive condition). How likely do you think the turning on (off
for preventive condition) of this particular gene in that sample
DNA is due to the exposure to this chemical?” On a separate
page, subjects in the no TPC cue condition were asked to rate how

likely that the new sample DNA has been exposed to the testing
chemical.

Results
A beta GLM was first conducted to examine the impact of the
presence versus absence of the TCP cues on causal reasoning.
Results suggest that subjects who were provided the TCP cue had
generally higher ratings than those who were not provided the
TCP cue (b1 = 0.21, 95% CI = [0.00, 0.46]). Also, subjects who
were provided the TCP cue provided significantly more homoge-
nous responses than those were not provided the TCP cue
(d1 = 0.69, 95% CI = [0.34, 1.04]). Causal valence had no signifi-
cant effects on the mean or precision of subjects’ responses. There
were also no significant interactions between causal valence and
the presence of the TCP cue in either submodel.

We conduct a correlation analysis for the responses to the
diagnostic question without the TCP cue and the degree of the
belief in the temporal precedence of the cause. There was a sig-
nificant positive correlation between the causal judgments and
the degree of the belief in the temporal precedence of the cause
(r = 0.48, p < 0.001), for both the generative condition (r = 0.51,
p < 0.001) and preventive condition (r = 0.44, p < 0.001).
Beta regression analysis showed that the increase in the belief
of the precedence of the cause significantly contribute to the
higher mean and precision of causal judgments (b = 2.25, 95%
CI = [1.56, 3.00], odds ratio = 9.49; d = 2.52, 95% CI = [1.47,
3.56]). There was no significant interaction between the belief in
the cause precedence and causal valence.

Discussion
The results demonstrated that subjects varied in their pre-
sumption of the temporal precedence of the cause when they
were not provided the explicit information about the prece-
dence. The extent to which they believed in the precedence
correlated positively with their beliefs in the causal relation-
ship. In Studies 1 and 2A, the explicit cue of the cause prece-
dence in the diagnostic question, in addition to the limit in
the number of alternative causes, could contribute to the higher
ratings on a diagnostic question than a predictive reason-
ing question. This finding also provides an alternative expla-
nation for the conflicting experimental findings in Fernbach
et al. (2011). The results also suggested that the precedence
of the cause may not be a default assumption held by sub-
jects, and the reasoning scenario may influence the degree
to which subjects adopt this assumption. The absence of a
TCP cue may inflate the variation in causal ratings among
subjects.

Impact of Question Formats on Model
Fit

To demonstrate the effects of question formats on assess-
ing model fit, we fitted several computational models to the
data in Experiment 1. The models selected for the current
study include the causal power model (Cheng, 1997; Lu et al.,
2008), the causal attribution model (Cheng and Novick, 2005;
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Holyoak et al., 2010), and the structure induction model for
both diagnostic reasoning and predictive reasoning (Meder
et al., 2014). These models have been detailed in Meder et al.
(2014). We chose these models because they were the only
models that may distinguish different types of causal queries
(see the model introductions that follow). We aimed to exam-
ine the extent to which a model maps its proposed con-
struct. We emphasized how model fits varied across the differ-
ent questions rather than discussing which model is the best
model.

MLE versus Bayesian Extension
Early normative models of causal reasoning from covariation
information included �P (Jenkins and Ward, 1965) and power
PC model (Cheng, 1997). Both �P and power PC maximize the
likelihood of the observed data by regarding the model prob-
abilities as equivalent to the empirical probabilities (Griffiths
and Tenenbaum, 2005). Both models were criticized for ignor-
ing model uncertainty and the prior beliefs of the reasoner
(Griffiths and Tenenbaum, 2005; Meder et al., 2014). Griffiths
and Tenenbaum (2005) applied a Bayesian framework and intro-
duced the causal support model to account for model uncer-
tainty in causal reasoning. The causal support model com-
pares the posterior probability of a candidate causal struc-
ture against the posterior probability of a null causal structure
(see Griffiths and Tenenbaum, 2005 for details). The initial
Bayesian implementation uses a uniform prior probability dis-
tribution over the causal structures and over the parameters. Lu
et al. (2008) extended the Bayesian framework by introducing a
Strong-and-Sparse (SS) prior distribution for both the param-
eters and the causal structures. The rationale is that human
have strong preferences for the simple causal structure and
maximizing the strength of each individual cause. In the cur-
rent model fitting study, we tested the following causal models
with each of the three estimation methods: maximum likeli-
hood estimate (MLE), Bayesian estimation with uniform prior
distributions, and Bayesian estimation with SSprior distribu-
tions.

Conditional Probability and Structure
Induction Models
One way to model the diagnostic and predictive reasoning is
to use the conditional probabilities. The diagnostic probabil-
ity P(C| E) is the probability of observing the cause given that
the effect has been observed, while the predictive probability
P(E| C) is the probability of observing the effect given that
the cause has been observed. Meder et al. (2014) introduced
a Bayesian extension, namely the Structure Induction Model,
to account for model uncertainty and the prior beliefs of the
reasoner. The Structure Induction Model for a diagnostic judg-
ment averages the posterior probability of a diagnostic probability
given the posterior probability of the candidate causal struc-
ture, and the posterior probability of a diagnostic probability
given the posterior probability of the alternative causal struc-
ture. Similarly, the Structure Induction Model for a predictive
judgment averages the posterior probabilities for the predictive
probability.

Causal Attribution
Cheng and Novick (2005) proposed the concept of “causal attri-
bution” in contrast to “causal power.” A measure of causal
attribution differs from a measure of causal power in terms of
the input and assumption provided in the reasoning context.
One such difference between two concepts regards whether the
occurrence of the cause is observable. As we have explored in
Experiment 3, structure diagnostic reasoning can be sensitive to
the assumption of the observable status of the cause. Cheng and
Novick (2005) discussed several queries relating to causal attri-
bution. The one that may be closest to the structure question
in Experiment 1 is the causal attribution to the candidate cause
given that both the cause and effect have been observed, thus the
model corresponding to that query is tested in the current study
(see Eqs 6–7 in Cheng and Novick, 2005, p. 701).

Method, Results, and Discussion
Some previous model comparison studies (e.g., Lu et al., 2008)
evaluated models by correlates the model predictions with the
mean of human’s judgments. This approach directly ignores the
impacts of the variability of the ratings. In the current study,
we applied the mean square errors (MSEs) to capture the devi-
ation between the models’ predictions and each of the subjects’
ratings. In addition, MSEs were not calculated for the causal
attribution model and structure induction model to the causal
ratings in the preventive valence condition, because both of the
models currently only accounted for the generative causal rea-
soning. Chi-square statistics were calculated to test whether the
MSEs were significantly different between different question for-
mats. We compared the MSEs both across all models, and within
each model. A significant result of the chi-square test suggests
the fit of model(s) was significantly different between different
questions.

The MSE and bootstrapping results of MSE for each model
variation are available in the online supplemental materials.
First, all models fitted the strength question best, while fitting
the predictive question worst. MSEs of the predictive judg-
ments were significantly higher than the structure judgments
(χ2 = 19.69, p < 0.001)4, and the strength question (χ2 = 30.53,
p < 0.001). MSEs for the structure question were also higher
than the strength question (χ2 = 10.84, p = 0.001). There was
no evidence that the causal power model and structure induction
model for predictive reasoning fitted the predictive judgments
better than the diagnostic reasoning model. The patterns of the
MSEs across the three types of questions were similar among
different types of models and their variants. These results, in
fact, reflect the impact of variability of the ratings on model
fit. The predictive judgments had highest variability among all
three types of questions, while the variability of the ratings in
the generative condition was higher than the preventive condi-
tion. As none of the models account for the variability of the
ratings, the question formats, which had a significant impact
on the rating variability, in turns, had significant impact on the
model fits.

4The χ2 statistics was calculated by taking the difference between the summed
MSEs of one comparison level versus the other level.
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General Discussion

The three studies demonstrated that subjects’ responses to a
question about causality are influenced by how the question
is phrased. Study 1 examined three different questions used in
previous causal judgment studies. The question formats had
substantial effects on the mean and variability of both the best
estimates and interval estimates. Study 2A demonstrated the
impacts of the reasoning directions in the questions on causal
judgments. A question with a diagnostic reasoning direction pro-
duced significantly higher mean responses than a question with
a predictive reasoning direction. Study 2B revealed that subjects’
prior belief in the precedence of the cause, which can be influ-
enced by a cue in the question, can significantly influence their
ratings on a diagnostic question.

While the results in Study 2B could explain the higher rat-
ings in the diagnostic judgments than the predictive judgments,
the higher variability in predictive judgments than the diagnostic
judgments remains unexplained. One explanation is that there
were greater individual differences in confidence on evaluating
an event that has not occurred. Alternatively, it has been argued
that people may interpret a diagnostic query in different ways
depending on how they attribute the effects to the candidate
model in relation to the alternative or background cause (Cheng
and Novick, 2005; Meder et al., 2014). The higher variability in
predictive judgments implies that people may also interpret a
predictive question in different ways. For example, the predictive
question might be interpreted as “how likely the gene would be
turned on [by the chemical alone],” alternatively, it can also be
interpreted as “how likely the gene would be turned on [by both
the chemical or the unobservable cause].” The first interpreta-
tion can result in an evaluation of P(E| C), while the later one
can results in an evaluation of P(E| C, B). Nevertheless, further
research is required to understand the factors associated with the
individual differences in predictive judgments.

These variations in causal estimates revealed by the three
studies can partially explain the inconsistent model comparison
results in the previous causal judgment studies. In our final model
fitting study, the fitting statistics for different models were signif-
icantly influenced by the question types. Most models, regardless
their proposed constructs, fitted a strength question best while
fitted the predictive question worst. This may reflect the fact that
the predictive judgments had much larger variability than the
other two judgments.

Conclusion

The present paper explored how responses in causal rea-
soning can be influenced by the types of questions. If a

model yields good fit for responses to a particular question
type, it may imply that the model may map onto a par-
ticular aspect of the construct measured by that question.
However, we suggest that future research in causal reasoning
and judgment should place a high priority on disentangling
the effects of question formats from the effects of experimen-
tal manipulations, because that will enable comparisons between
models of causal reasoning uncontaminated by method arti-
fact.

The impacts of question formats have been largely neglected
in previous studies. One major reason is that the previous
studies paid little attention to the fact that people are not per-
fect in numeric and probability judgments when expressing
their beliefs. Therefore the question response modes can con-
tribute to apparently inconsistent causal ratings from human
subjects. None of the previous studies has paid attention
to the variability of the causal ratings, perhaps as a conse-
quence of not applying appropriate statistical analysis methods.
Ignoring the violation of statistical assumptions such as homo-
geneity of variance and normality risks, misleads researchers’
interpretation of the results, as well as neglecting important
information in the data. The current studies addressed these
issues, and the beta GLM provided more appropriate statistical
analyses.

We discussed our results from the perspective of the dif-
ferences in causal constructs and assumptions. Future stud-
ies may examine the impacts of other questions format
factors. For example, a frequency judgment, a probabil-
ity judgment and a likelihood odds judgment may differ-
ently modulate between-question variability. People may be
less familiar with odds than with relative frequencies, thus
using questions that assess the odds judgments may increase
response variability and decrease response validity (Price,
1998). Furthermore, applying 95% confidence intervals as a
measure of confidence level might be limited by the abil-
ity of the reasoners to understand and elicit the upper and
lower bound of the confidence interval. It has been sug-
gested that people may provide may not have sufficient adjust-
ment and provide narrow interval estimates (Juslin et al.,
1999; Soll and Klayman, 2004). The variability in interval
estimates may be resulted by individual difference in adjust-
ment, which depends on the formats of elicitation and the
judgment domain. Future studies may use alternative con-
fidence measures such as adaptive interval adjustment pro-
cedure or certainty equivalence to batter capture the confi-
dence levels. For example, the adaptive interval adjustment
procedure proposes a specific interval around subjects’ best
estimates and asks subject how they are confident that the
true probability falls into the given interval (Winman et al.,
2004).
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