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Visual perception of order-disorder
transition
Mikhail Katkov*, Hila Harris and Dov Sagi

Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel

Our experience with the natural world, as composed of ordered entities, implies that

perception captures relationships between image parts. For instance, regularities in

the visual scene are rapidly identified by our visual system. Defining the regularities

that govern perception is a basic, unresolved issue in neuroscience. Mathematically,

perfect regularities are represented by symmetry (perfect order). The transition from

ordered configurations to completely random ones has been extensively studied in

statistical physics, where the amount of order is characterized by a symmetry-specific

order parameter. Here we applied tools from statistical physics to study order detection

in humans. Different sets of visual textures, parameterized by the thermodynamic

temperature in the Boltzmann distribution, were designed. We investigated how much

order is required in a visual texture for it to be discriminated from random noise. The

performance of human observers was compared to Ideal and Order observers (based

on the order parameter). The results indicated a high consistency in performance across

human observers, much below that of the Ideal observer, but well-approximated by

the Order observer. Overall, we provide a novel quantitative paradigm to address order

perception. Our findings, based on this paradigm, suggest that the statistical physics

formalism of order captures regularities to which the human visual system is sensitive.

An additional analysis revealed that some order perception properties are captured by

traditional texture discrimination models according to which discrimination is based on

integrated energy within maps of oriented linear filters.

Keywords: phase transition, symmetry, order parameter, visual texture, perceptual organization

1. Introduction

The notion of the world as being ordered dates back to the earliest philosophical accounts. For
example, the ancient Greeks expressed this notion in the word “Cosmos,” whose original meaning
was “ordered world.” Our visual system perceives the external world as being well-organized.
Previous works related to perceptual organization were based on concepts rooted in information
theory, Gestalt psychology, and physiology (Attneave, 1954; Barlow, 1961; Julesz, 1965; Julesz et al.,
1978; Rubenstein and Sagi, 1990; Kubovy, 1994; Wagemans, 1997; Simoncelli and Olshausen, 2001;
Landy and Oruç, 2002; Treder, 2010; Wagemans et al., 2012; Giannouli, 2013; van der Helm, in
press). Nevertheless, the principles of perceptual organization are still largely unknown. Here we
considered this issue from a new perspective, by examining whether statistical physics formalism
can be used to describe human perception.

According to the Gestalt school of psychology, several basic laws govern image segmentation and
pattern formation, such as the law of proximity, similarity, and symmetry, which define symmetries
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within the input image. Moreover, when studying the symmetry
law, mirror symmetry is mostly considered experimentally
(Treder, 2010), whereas different symmetries are involved in
dot lattices (see relevant discussion in Kubovy, 1994; Kubovy
and Wagemans, 1995). Therefore, the results obtained in studies
of all the three Gestalt laws, mentioned above, are likely to
depend on symmetry perception. An analogy can be drawn to
theoretical physics, where each conserved physical measure has a
corresponding symmetry, as described by Noether’s first theorem
(Noether, 1918), for instance, the time invariance associated with
the energy conservation law.

The link established between Gestalt psychology and
information theory (Attneave, 1954) allows one to consider
the Gestalt laws in the framework of efficient coding. It has
been suggested that the human sensory system is sensitive to
statistical regularities in the external world. Previous research,
aimed at identifying the underlying statistics represented by
the visual system, frequently utilized visual textures (Julesz,
1965; Julesz et al., 1978; Fogel and Sagi, 1989; Rubenstein and
Sagi, 1990; Chubb et al., 1994; Kingdom et al., 2001; Landy
and Oruç, 2002; Victor and Conte, 2005; Balas, 2006; Maddess
et al., 2007; Morgan et al., 2008; Freeman et al., 2013; Westrick
and Landy, 2013). However, previous works mostly focused on
simple statistics that are typically limited to low-order moments
(Geisler, 2008). Therefore, a higher order formal account
of the visual texture is required to fully address perceptual
organization. Visual textures are useful stimuli for studying the
principles of perceptual organization for three main reasons:
(1) they can be constructed based on a formal model, (2)
they cover a broad range of structures, from highly repetitive
patterns with strong regularities, to completely independent
local intensities, such as 1/f noise, or white noise images, and (3)
visual textures involve integrating many elements over a large
spatial range.

In statistical mechanics, order is tightly linked to symmetry.
More specifically, a physical system is considered to be ordered
if it is symmetric, that is, it is invariant with respect to a
set of transformations. In contrast, a disordered system lacks
symmetry. In condensed matter physics, an ordered state is
observed at a range of low temperatures (an ordered phase),
whereas a disordered state is observed at a range of high
temperatures (a disordered phase), with a transition between
them (i.e., a phase transition) at a particular temperature.
Moreover, at this temperature the symmetry of the physical
system changes (Landau, 1937).

One of the notable models used to describe the phase
transition is the Ising model, which was originally used to
explain ferromagnetism (Brush, 1967). In short, it assumes
that discrete variables, representing magnetic dipoles, are
placed in a two-dimensional grid. Each variable can be in
one of two states (+1, −1), reflecting up and down local
magnetization, respectively. The adjacent dipoles interact, and
the preferred configuration is one in which they have the same
magnetization—this state corresponds to low potential energy.
Thermal fluctuations counteract this tendency. Therefore, at low
temperatures all dipoles are arranged in the same state (an
ordered state), whereas at very high temperatures the states

are almost independent (a disordered state) with transition
occurring at intermediate temperatures. Importantly, in this
framework the amount of order is objectively defined as the
mean conformance of local configurations to global symmetry
(Sethna, 2006). Technically, one need to define a symmetry-
specific local measure at each location—an order field—having
high values when local configuration is consistent with global
symmetry, and having low values when it is not. The mean
value of an order field represents the amount of order in a given
system. Visual textures can be created to conform to this model
by assuming a two-state variable placed on a square grid, with
the variable corresponding to some visual feature such as color
or luminance, or even a displacement of textural elements in dot
lattices.

Here we propose a novel framework for studying the
order sensitivity of the human visual system by applying
tools from statistical mechanics. Specifically, we first designed
interaction rules assuming three-state variables and the
corresponding visual textures, where each state represents a
specific amplitude of a Gaussian blob.We next simulated thermal
equilibrium configurations for the designed textures at different
temperatures. Human observers were able to discriminate
between the generated images (of varying levels of order)
from noise images. This framework allows one to compare the
sensitivity of the human visual system and model observers—an
Ideal observer, an Order observer, a Luminance observer, and a
Channel Energy observer.

2. Results

Little is known regarding whether human perception has any
correlates with the order of the stimuli defined using the
statistical physics framework. Therefore, we performed a series
of experiments. Experiment 1 was exploratory in nature, leading
to Experiment 2, which was constrained and elaborated based
on the results of Experiment 1. More specifically, the adaptive
measurement method was used in Experiment 1 in order to
find a range of parameter values where psychometric function
changes. In Experiment 2, the method of constant stimuli
was used in order to evaluate human performance with better
precision. Additionally, in Experiment 1 the observers were asked
to report “What quadrant of the display contained the most
ordered image.” In Experiment 2 the observers were asked “What
quadrant contained the exceptional image?” Thus, the observers
were not explicitly requested to judge the presence of order.
Finally, a control experiment (Experiment 3) was performed
in order to check whether marginal luminance statistics was
employed by human observers.

2.1. Design of Stimuli
A grid consisting of 32× 32 Gaussian blobs was used as the visual
textures. The amplitudes of the Gaussian blobs were limited
to 3 different levels. Ten texture sets of visual textures were
designed. Each texture set consisted of images with varying
degrees of order, characterized by a single parameter β = 1

T ,
which represents the inverse thermodynamic temperature in the
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Boltzmann distribution

P(I) =
1

Z
e−βU(I),

where I represents the 32 × 32 matrix of amplitude levels and
potential U(I) is set specific (see details in Methods). Parameter
β controls the amount of order in the image. Images generated
with small β-values represent random noise, and images with
large β-values represent ordered images, with a configuration of
amplitudes corresponding to a minimum value of U(I). In most
of the designed sets β = 1 corresponds to periodic ordered
images (Figure 1). At intermediate β-values the images have a
reduced order (Figure 2).

Each display consists of one target texture and 3 distractor
textures. The target texture was a synthesized image, with varying
levels of order, randomly placed in one of the four quadrants
of the stimulus display (see Methods). The amplitudes of
distracting textures were independent uniform random variables.
A spatial 4-alternative-forced-choice (4AFC) paradigm was used
to measure the performance level, which is the percentage of

FIGURE 1 | Examples of generated textures (β = 1) used in the

experiment. Texture sets 1–5 have a different appearance across realizations,

whereas Texture sets 6–10 have the same appearance (up to a shift) in

different realizations.

correct discriminations between distracting images and target
textures at different temperatures.

2.2. Sensitivity to Order
First, we measured the performance of human observers as
a function of β . Figure 3 shows the psychometric functions
obtained in Experiment 1 (Observers O1–O5, open symbols) and
Experiment 2 (observers O6–O9, filled symbols). For all texture
sets the psychometric functions were monotonic, up to noisy
estimates from the adaptive staircase method in Experiment
1. Good agreement in performance between observers was
obtained in Experiment 1, and precise agreement was obtained
in Experiment 2 (see Table 1).

The near match in performance between Experiments 1
and 2 is independent of the task, whether the observers were
requested to judge which quadrant of display was more ordered,
as in Experiment 1, or which quadrant was the “odd ball,” as
in Experiment 2. This emphasizes the abstract and intrinsic
notion of order. Furthermore, to eliminate any texture-set-
specific strategy that influences performance, in Experiment 2
the textures from all sets were randomly mixed across trials.
Moreover, in this experiment, in contrast to Experiment 1,
the textures in the stimulus display were attached to each
other to determine whether border processing plays a role in
task performance. Thus, the consistent performance shown in
Experiment 2 reveals the existence of a basic order perception
mechanism utilized by the human visual system. Moreover,
this mechanism integrates information over an extended spatial
region, not only regions around the texture border.

Unlike the performance corresponding to the other texture
sets, the performance corresponding to texture set 3 was never
perfect, even for the lowest temperature (the largest β-value).
In addition, different observers reached different performance
plateaus. Nevertheless, the informative range of β , where the
observer’s performance changes, is consistent across all observers.
Apparently, the order in this texture set is perhaps masked by
the embedded noise. In particular, images from texture set 3
generated at the largest β-value (see Figure 1) can be described
as a low contrast order embedded in high-contrast noise.

2.3. Order Perception is Independent of Marginal
Luminance Distribution
Here we tested the potential role of marginal luminance
distribution in order perception. In Experiment 3, distracting
images were constructed from the target image in each trial
by randomly permuting the location of the Gaussian blobs.
This operation leaves the luminance distribution unchanged, and
destroys any geometrical relationship between the amplitudes of
Gaussian blobs in the image. In all other respects, Experiments
2 and 3 were identical and were performed by the same
observers. Figure 4 shows the psychometric functions for each
observer (rows) and each texture set (columns) obtained in
Experiments 2 and 3. There are hardly any differences between
the pairs of psychometric functions (except texture sets 3 and
9), indicating that human observers did not use marginal
luminance distribution in detecting order. Texture set 9, in
its ordered state, is represented by a field of Gaussian blobs
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FIGURE 2 | Examples of generated textures from sets 2 and 10 for different values of β. In the image title the value of β and the average human performance

in Experiment 2 are shown.

with uniform amplitudes. A permutation of such a target, to
construct the distractors, results in the same field of Gaussian
blobs with uniform amplitudes. Therefore, the target is practically
indistinguishable from the distractors, and a chance–level
performance across a range of temperatures is expected. Some
deviations are possible around the order-disorder transition due
to correlation properties near a critical point (Wilson and Kogut,
1974; Wilson, 1979). As mentioned earlier, texture set 3 contains
high-contrast noise, masking low-contrast order. Thus, it carries
a temperature-dependent marginal luminance distribution that
seems to be used by human observers.

2.4. Theoretical Observers
Here we compared human performance to different theoretical
observers. The design of our visual textures allowed us to
construct 4 different models of texture perception: (1) the
Luminance observer considers only amplitude distributions,
while disregarding the structural properties of a visual texture;
(2) the Ideal observer has, by definition, access to all of the
statistical information present in the visual texture, practically
summarized in the sufficient statistics; (3) the Order observer is
symmetry specific—a separate order observer based on the order
parameter was constructed for each texture set (see Methods for
details); (4) an observer based on the integrated energy within
maps of oriented linear filters—the “Channel energy” observer
(see Methods for details).

Figure 5 shows the performance of Theoretical observers as a
function of the thermodynamic parameter β superimposed with
the mean performance of the human observers in Experiment
2. The Ideal observer was nearly perfect when human observers
were still at the chance level, indicating that human observers
cannot fully adapt to the statistics of the presented stimuli
within the time of the experiment. The Luminance observer
also outperformed the human observers in most texture sets.
This result, together with the results of Experiment 3, clearly
demonstrates that human observers did not utilize marginal

luminance information while performing this task, even when it
was available. Among the theoretical observers, the performance
of the Order observer was much closer to the performance
of the human observers in all texture sets. In some texture
sets (1, 6, and 7) the Order observer nearly matched the
human’s performance. It is interesting that usually the Channel
energy observer’s performance approached that of the Order
observer, sometimes outperforming it. This is also reflected
when comparing the thresholds of the human and theoretical
observers (62.5% correct discrimination, Figure 6). Note that
the linear filters used for the Channel energy observer were not
optimized, and, as in standard texture discrimination models,
information from different linear filters was not integrated.
Therefore, this observer could potentially perform better with
those modifications. These results suggest that the human visual
system may have mechanisms sensitive to order. This sensitivity
is not governed by basic visual cues such as marginal luminance
distribution or statistical cues represented by sufficient statistics.
Moreover, such mechanisms may be implemented by the
receptive field found in the visual cortex.

3. Discussion

Here we introduce a new paradigm to quantitatively study
order perception in humans based on tools borrowed from
statistical physics. We designed stimuli by defining the
interaction rules between image parts via the potential in
the Bolzmann distribution and varied the thermodynamic
temperature to sample a state at thermodynamic equilibrium. At
low temperatures, such a state follows the designed symmetry,
but at high temperatures the image parts are completely
independent. Following this route, we measured the sensitivity of
the human visual system and compared it to the amount of order
present in visual textures by controlling a single parameter—
the thermodynamic temperature. Humans’ performance in this
order detection task was found to be consistent across observers,
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FIGURE 3 | The results of Experiment 1 (open symbols) superimposed

on the results of Experiment 2 (filled symbols). Despite differences in

experimental procedures and slight differences in the appearance of the

stimulus, the performances of the human observers in both experiments are

in good agreement. Moreover, in Experiment 2 there is almost a perfect

match between the observers’ performances.

TABLE 1 | P-values of χ2- test (9 degrees of freedom) with the null hypothesis that the performance of a given observer is the same as the mean

performance of 3 other observers.

Observer Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10

O6 0.025 0.708 0.239 0.966 0.797 0.993 0.902 0.000 0.667 0.399

O7 0.751 0.927 0.000 0.631 0.266 0.767 0.578 0.695 0.041 0.446

O8 0.352 0.995 0.000 0.947 0.604 0.918 0.867 0.205 0.815 0.909

O9 0.116 0.976 0.036 0.147 0.966 0.882 0.006 0.448 0.163 0.869

Bold values represent P-values smaller than 5% rejecting a null hypothesis.
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FIGURE 4 | The performance of the human observers in

Experiment 2 (solid blue lines) and in Experiment 3 (dashed black

lines). The performance is shown for each observer (rows) and for

each texture set (columns) separately. In nearly all cases, except for

Texture sets 3 and 9, the performances in the two experiments are

almost identical. Note that the luminance distribution was identical for

target and distracting quadrants in Experiment 3, whereas in Experiment

2 the amplitudes of Gaussian blobs in distracting quadrants were drawn

from the uniform distribution of 3 values, and therefore, the luminance

information could potentially be used in the task. A star denotes

experimental conditions in which two curves are significantly different

(pval < 0.05) according to χ2 statistical test (9 degrees of freedom).

showing very small inter-observer variability. Apparently, human
observers do not utilize marginal luminance distributions or a
texture set-specific strategy (also, they do not rely on texture
border information). Furthermore, we compared the human
performance to four different theoretical observers based on
different statistics of the presented images—an Ideal observer, a
Luminance observer, an Order observer, and a Channel energy
observer (an observer based on integrated energy within maps
of oriented filters). Taken together, the performances of the

Order observers were consistently closer to those of the human
observers than were the Ideal and Luminance observers. Since
the Ideal observer (defined by sufficient statistics) outperformed
the human observers, apparently, the visual system does not
construct an exact representation of the statistical properties of
the presented images. Consequently, this result suggests that
our observers do not adapt to the statistical properties of our
synthetic stimuli, at least in the timescale of the experiment. In
the framework of Signal Detection Theory, this may mean that
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FIGURE 5 | The average performance of the human observers

obtained in Experiment 2 is superimposed on the performance

of the theoretical observers: Ideal, Order, Luminance, and

Channel energy. The Ideal observers were nearly perfect, whereas

the human observers were at a chance level. In all cases, except

one, the Luminance observer was better than the human observers.

The performance of the Order observer was much closer to that of

the human observers. In 3 cases (Texture sets 1, 6, and 7) there is a

close match between the human and the Order observers’

performances. χ2 statistics for Order (top) and Channel energy

(bottom) observers are presented in the inset. In all cases there are

9 degrees of freedom.

throughout evolution the internal noise was not reduced to a level
approaching the performance of an Ideal observer. In contrast,
the concept of order, borrowed from statistical physics, accounts
for human performance much better, without introducing a
large amount of internal noise. Interestingly, with some texture
sets, the performance of the channel energy observer resembled
the performance of the order observer. The channel energy
observer is based on integrating the energy within maps of
oriented filters, which is a model frequently utilized to describe

human performance in texture segregation (Landy and Graham,
2003). Together with the good across-observers agreement in
performance, this suggests that the human brain is endowed
with the ability to perceive order (as it is defined in statistical
mechanics), which may extend beyond the visual system.

It is important to note that the Order observer was
based on the order parameter—a symmetry-specific measure
describing the average consistency of local patches to global
symmetry in the ordered state. According to statistical physics,
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FIGURE 6 | The theoretical observers’ thresholds vs. the human

observers’ thresholds. The black line represents identity. All texture sets are

combined. It can be seen that the Order observers’ thresholds (red diamonds)

approach those of the human observers and the Channel energy observers

(brown circles) often approach those of the Order observers, whereas Ideal

(green left triangles) and Luminance (blue right triangles) outperform the

humans, except for the Luminance observer applied to Texture set 1.

the order parameter reflects changes in the symmetry of the
system. It has a small value in a disordered state (below a
critical temperature), but it gradually grows, starting from the
temperature corresponding to the phase transition. Therefore,
the agreement in performance between human and Order
observers indicates that the human visual system is sensitive
to changes in symmetry. The texture sets used in this study
do not allow us to specify explicitly the type of symmetry the
visual system is sensitive to, and this is a subject for further
research. Nevertheless, the agreement in performance between
the Order observers and the Channel energy observer may
indicate that previously identified mechanisms, such as those
found in the visual cortex, underlie symmetry detection. Notably,
the linear filters applied in the Channel energy observer are
roughly consistent with human psychophysics as well as with the
properties of simple cells in the early visual cortex (Gattass et al.,
1981, 1988; Watson, 2000).

What neural mechanisms can account for order detection?
In statistical physics, the value that represents the amount
of order in a system is technically quantified as the mean
conformance of local patches to the global symmetry (Sethna,
2006). This further suggests a mechanism in which the first
stage is more local and performs non-linear computations
(input-output transformations of a signal). Subsequently, those
computations are summed across a visual field. Suchmechanisms
have been previously suggested (Rubenstein and Sagi, 1990;
Landy andGraham, 2003;Westrick and Landy, 2013). The rivalry
effect (bi-stable percept of two conflicting presentations, Blake
and Logothetis, 2002) suggests that not only one, but many

FIGURE 7 | Display sequence used in the experiment. (A) Sequence

used in Experiment 1. (B) Sequence used in Experiments 2 and 3.

competing local symmetry detectors may be involved. Such a
bi-stability is probably determined by the largest consistency of
local symmetries across visual space, which changes with time
due to adaptation or internal noise. An alternative mechanism
is related to the properties of physical systems near the critical
point that is close to a phase transition point.

At the critical temperature, when the system is at a phase
transition point, from the ordered phase to the disordered phase,
correlations of all lengths are present (Wilson, 1979). Near this
point the system may employ autocorrelation measurements
(Klein and Tyler, 1986; Ben-Av and Sagi, 1995) to detect the
presence of order. How can such correlations be represented
in the human brain? Several physiological findings are linked
to this description. For instance, (1) cells in the early visual
area, V1, respond to local features (DeValois and DeValois,
1990) that are prevalent in the disordered phase; (2) preferential
activation in higher cortical areas, such as LO, is obtained in
response to line drawings and objects, which can be considered
as ordered because they are perceptually organized (Malach et al.,
1995; Grill-Spector et al., 2001). Since the receptive field sizes
increase when moving from early areas (V1) toward higher order
areas (V4) (Gattass et al., 1981, 1988; Freeman and Simoncelli,
2011), one can speculate that with increasing cortical layers along
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TABLE 2 | Parameters of Gabor filters used in the simulation of the Channel energy observer.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10

σ (◦) 0.085 0.085 0.085 0.123 0.123 0.085 0.085 0.085 0.085 0.085

λ (cycles/◦) 6.87 6.87 6.87 6.61 6.61 6.87 6.87 6.87 6.87 6.87

θ (◦) 22.5 45 45 45 45 45 45 22.5 45 45

the visual hierarchy, local correlations with increasing scales
are initially computed. Later, local correlations are pooled to
compute the amount of order present at different parts of the
scene. It is predicted that more brain areas would be activated in
response to observing images close to phase transition (relative to
ordered or noisy images).

Interestingly, both perceptual mechanisms proposed above
are similar to the ideas initially presented by Julesz (1962). The
autocorrelation mechanism proposed by Klein and Tyler (1986),
accounting for more than 2 luminance levels, directly extends
Julesz’s work. However, it did not consider any connection of
autocorrelation measurements to phase transition. The other
mechanism can be summarized as a first-order statistic of the
output of local symmetry detectors. This resembles Julesz’s notion
that the visual system computes the first-order statistic of local
feature detectors (Julesz, 1981). Here, instead of textons proposed
in Julesz’s work, we propose the involvement of non-linear local
symmetry detectors.

In a recent work, natural images were decomposed into
binary layers (Saremi and Sejnowski, 2013). Each layer represents
different bits in a digital representation of the original image.
Interestingly, it was demonstrated that layers composed of the
most significant bits appeared ordered, layers composed of
the least significant bits were “random,” and in between were
the critical layers (corresponding to phase transition). Saremi
and Sejnowski (2013) demonstrated that these critical layers
contained most of the information. Assuming that the efficient
coding hypothesis is true, this suggests that the representation
of the critical layers plays an important role in the perception of
natural images. This interpretation is supported by our findings
that human perception is sensitive to order (in its physical
sense—the change of symmetry).

There are three major approaches used to study perceptual
organization: Gestalt psychology, efficient coding, and pattern
recognition. Gestalt psychology provides a descriptive account in
which several perceptual grouping laws, including the symmetry
law, have been demonstrated (Kubovy, 1994; Wagemans, 1997;
Treder, 2010; Giannouli, 2013; van der Helm, in press). In the
framework of efficient coding, it has previously been suggested
that the sensory system is tuned to the statistical properties of
the environment (Attneave, 1954; Barlow, 1961; Simoncelli and
Olshausen, 2001). In pattern recognition it is assumed that the
human visual system consists of mechanisms sensitive to specific
patterns either processed in one stage—textons (Julesz et al.,
1978), or processed in two or more stages—filter-rectifier-filter
models, e.g., (Rubenstein and Sagi, 1990; Landy and Oruç, 2002).
It is possible that all three approaches can be unified using tools
from statistical physics.

Here we propose a new experimental paradigm that naturally
unifies concepts used in different fields: symmetry perception,
which is rooted in Gestalt psychology (Kubovy, 1994;Wagemans,
1997; Treder, 2010; Giannouli, 2013; van der Helm, in press);
texture synthesis techniques borrowed from efficient coding (Zhu
et al., 1998); and the design of local filters to implement the Order
observer, borrowed from physiology and psychophysics (Julesz,
1965; Julesz et al., 1978; Gattass et al., 1981, 1988; DeValois and
DeValois, 1990; Rubenstein and Sagi, 1990; Landy and Oruç,
2002; Freeman and Simoncelli, 2011). Our theoretical observers
were modeled using a framework of Signal Detection Theory
(Green and Swets, 1966), which is a special case of a Bayesian
observer with flat prior and the likelihood ratio as a decision
criterion (Kersten et al., 2004).

Our findings indicate that during the early processing stages
the human visual system is sensitive to order in accordance
with the statistical physics definition of order. Determining what
kind of order/symmetry or a combination of orders/symmetries
the human visual system can represent, and what specific
mechanisms are involved require further research.

4. Methods

4.1. Human Search and Animal Research
This study was approved by the Weizmann Institute of Science
Ethics Committee and the Helsinki Committee.

4.2. Human Observers
Nine human observers with normal or corrected-to-normal
vision participated in the experiment. All observers provided
their informed consent, under the approved Declaration of
Helsinki.

4.3. Stimuli
Stimuli were presented on a Philips Brilliance 109P4 CRT display.
The viewing distance was 130 cm. Stimuli consisted of 1 target
and 3 distracting images presented in four quadrants of the
visual field, equidistantly from the fixation point (a spatial four-
alternative-forced-choice paradigm). The rest of the display had
a uniform luminance (26 cd/m2 in Experiment 1, and 14 cd/m2

in Experiments 2 and 3). Both the target and distracting images
were composed of a 32 × 32 grid of circularly symmetrical
Gaussian blobs with σ = 1.5′. The amplitudes of Gaussian
blobs (Ap,q at location p and q) were selected across 3 different
values (a1 = 0.25 Lmax, a2 = 0.5 Lmax, a3 = 0.75 Lmax,
Lmax = 100 cd/m2 in Experiment 1 and a1 = 26 cd/m2, a2 =

56 cd/m2, a3 = 91 cd/m2 in Experiments 2 and 3). Amplitude
indexes for target textures were generated by sampling from a
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distribution defined by a set of interaction rules and a specified
temperature (see Supplementary Material). Amplitude indexes
for distracting images in Experiments 1 and 2 were independent
random variables with uniform distribution. The distracting
images in Experiment 3 were generated by randomly permuting
the location of the Gaussian blobs of each target image.

Amplitude indexes were generated using the parallel
Chromatic Gibbs sampling algorithm (Geman and Geman,
1984; Gonzalez et al., 2011). Sub-grids with (odd, odd), (odd,
even), (even, odd), and (even, even) coordinates were updated
in parallel. Each blob amplitude was updated according to the
conditional distribution

P(Aj,m|Ai,k) =
1

Z(i,k),(j,m)
e−βU(i,k),(j,m)(Ai,k,Aj,m),

where Z(i,k),(j,m) is a normalization factor,U(i,k),(j,m) is the texture
set-specific potential, and the parameter β controls the amount
of order in the image. Ai,k ∈ {0, 1, 2}. The potential was shift
invariant 3 × 3 matrix U(i,k),(j,m) = U(i+p,k+q),(j+p,m+q),∀p, q,
and the textures had cyclic boundary conditions. The specific set
of interacting pairs and the interaction potentials between them
are shown in Supplementary Material.

4.4. Display Sequence
A green fixation point on an otherwise uniform gray background
was presented until the space bar was pressed by the observer.
After 400ms in Experiment 1, and 300ms in Experiments 2
and 3, the stimulus display was shown for 8 consecutive frames
at an 85Hz refresh rate (94ms), followed by a blank screen
until the observer responded. Then, in Experiment 1 a visual
feedback, repeating the stimulus display with an additional green
arrow pointing at the correct response, was shown for 500ms
(observers could use saccades to glance at the correct image).
In Experiments 2 and 3 auditory feedback for an incorrect
response was provided. In Experiment 1, the centers of the
images were 4◦ from the fixation point such that there was
a gap of a uniform screen between textures. In experiments
2 and 3 the images (the target and three distractor textures,
each 4.84◦ in the vertical and horizontal dimensions) were
attached to each other without an overlap, forming a 64 ×

64 grid of Gaussian blobs with a fixation point in the middle
of the grid. The quadrant, where the target image appeared,
was randomly selected at each trial. In Experiment 1, blocks
of 50 trials containing textures from the same texture set
were used. In Experiment 2, textures from all sets were mixed
randomly; therefore, the observers could not use texture–set–
specific strategies. Graphically, the sequence of frames presented
is shown in Figure 7.

4.5. Theoretical Observers
The performance of the Luminance, Order, and Ideal observers
were computed in the Signal Detection Theory framework
(Green and Swets, 1966). The performance of the Luminance
and Ideal observers was based on the multidimensional
statistics described below. The probability densities were
estimated from an analysis of 1000 samples using the

kernel density estimation method (Simonoff, 1998). The
performance of the Order and Channel energy observers
was based on a one-dimensional value (the order parameter
and integrated energy in the channel, correspondingly).
The performance was estimated from 1000 simulated
trials (100 for the Channel energy observer) by means of
computing the fraction of correct responses. For each trial
it was determined whether the response having a maximum
estimated likelihood (based on the estimated densities) correctly
identified the target image (for details, see Supplementary
Material).

4.5.1. The luminance observer
The Luminance observer was defined as an observer having
access to only luminance information, disregarding the
geometrical structure of the image. More specifically, the statistic
consists of a 3–dimensional vector. Each dimension represents
the number of Gaussian blobs with amplitudes of given values
(a1, a2, a3).

4.5.2. The ideal observer
The Ideal observer, by definition, has access to all statistical
information regarding the texture. The performance of an
Ideal observer was estimated using statistics measured for
each interacting pair. For each pair, a 9-dimensional statistic
was measured. Each dimension represents the number of
pairs of Gaussian blobs with corresponding amplitudes (see
Supplementary Material). Therefore, the dimensionality of the
Ideal observer statistic was 9 times the number of the interacting
pairs.

4.5.3. The order Observer
The performance of an Order observer was based on the
value of the order parameter and its variability across different
samples obtained at the same temperature. The order parameter
represents to what extent local patches, on average, are consistent
with the overall symmetry of the image. Therefore, it is
set specific. Consequently, 10 different order observers were
defined. The specific details can be found in Supplementary
Material.

4.5.4. The channel energy observer
The performance of the Channel energy observer was based
on the output of a quadrature pair of odd and even Gabor
filters integrated across the quadrants of the visual field. More
specifically, the output map was computed as

M = (I ∗ Godd)
2 + (I ∗ Geven)

2 ,

where ∗ denotes convolution and I = I(x, y) is an image’s
intensity at coordinates (x, y),

Geven(x, y) = e
−

x2+y2

2σ2 cos
(

2πλ(x cos θ + y sin θ)
)

,

Godd(x, y) = e
−

x2+y2

2σ2 sin
(

2πλ(x cos θ + y sin θ)
)

,
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σ, θ , and λ are the width, orientation, and spatial
frequency of the Gabor filter. The parameters used in the
simulation are presented in Table 2. The decision variable
represents a sum of M-values over the corresponding
quadrant.
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