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Two studies addressed student metacognition in math, measuring confidence accuracy
about math performance. Underconfidence would be expected in light of pervasive math
anxiety. However, one might alternatively expect overconfidence based on previous
results showing overconfidence in other subject domains. Metacognitive judgments
and performance were assessed for biology, literature, and mathematics tests. In
Study 1, high school students took three different tests and provided estimates of
their performance both before and after taking each test. In Study 2, undergraduates
similarly took three shortened SAT II Subject Tests. Students were overconfident
in predicting math performance, indeed showing greater overconfidence compared
to other academic subjects. It appears that both overconfidence and anxiety can
adversely affect metacognitive ability and can lead to math avoidance. The results have
implications for educational practice and other environments that require extensive use
of math.
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Introduction

Two components of metacognition are particularly relevant for successful learning: self-
monitoring, e.g., assessing performance, and self-regulation, e.g., choosing what and how to study
(Nelson and Dunlosky, 1991; Thiede et al., 2003; Metcalfe, 2009). Metacognition has been found
to be crucial for calibration of self-knowledge of ability (Schunk and Ertmer, 2000; Sperling
et al., 2004), in domains and tasks such as mathematics (Pugalee, 2001), science (Schraw et al.,
2006), reading (Pressley, 2002), and writing (Pugalee, 2001). If people are unable to assess their
performance accurately, then it is unlikely that they will be able to learn optimally (see Townsend
and Heit, 2011, for a related argument). Any improvements in metacognition would allow learners
to better judge what they know and how well they will be able to learn information and recall it
later.

Our focus in the present research is self-monitoring in math. In addressing the topic of
metacognition and math, it is important to consider whether metacognition is domain-general or
domain-specific. In other words, to what extent are there general points to be made about people’s
metacognitive abilities, potential for error, and underlying mechanisms across subject domains,
and to what extent are there distinctive points to bemade for particular domains? Do the difficulties
that learners face with math reflect general issues with metacognition, or something special about
math?

Though there is ongoing debate on whether metacognition is domain-specific or
domain-general, there is no debate on the importance of metacognition in any learning

Frontiers in Psychology | www.frontiersin.org 1 June 2015 | Volume 6 | Article 742

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2015.00742
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpsyg.2015.00742
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00742/abstract
http://community.frontiersin.org/people/u/209483
http://community.frontiersin.org/people/u/97936
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Erickson and Heit Metacognition and confidence in math

process. In this paper we will focus primarily on possible
differences between metacognition in mathematics learning
when compared to other domains, asmath anxiety can affect both
domain performance and metacognitive performance.

Based on past research, it remains unclear whether
metacognitive performance is similar across domains.
Metacognition research typically addresses a single subject
domain in isolation, and those few studies comparing
metacognition across domains have shown mixed results
(e.g., Veenman et al., 2006). Though these past studies have
used varying methodologies and assessments for measuring
metacognition, results still bear on this issue of domain
generality versus specificity and provide two views which we
must consider.

Domain-General Views of Metacognition
Some studies support domain generality of metacognition,
treating it as a skill that can be applied across different
content areas (e.g., Schraw, 1996; Halpern, 1998; Veenman and
Verheij, 2001). In these cases, domain-general metacognitive
skills are distinguished from domain-specific knowledge. This
framework assumes that cognitive skills can be domain-
specific whereas metacognitive skills can be applied across
even unrelated domains. Interestingly, metacognitive ability
appears unrelated to IQ (Alexander et al., 1995). Rather,
metacognitive skills are assumed to improve along with domain
knowledge.

Metacognitive skills are further related to domain knowledge
in that metacognitive skill can aid learners those with low
ability or knowledge. For instance, Swanson (1990) showed
that metacognitive ability compensated for IQ in a comparison
between fifth and sixth grade student problem solving ability.
Ability to solve problems was unrelated to IQ, while those with
higher metacognitive ability were better able to solve problems
than those with lower metacognitive ability. This result suggests
that metacognition can be applied flexibly across tasks and thus
is a domain-general skill.

This domain-general view of metacognition is consistent
with the unskilled and unaware phenomenon, in which people
show domain-general overconfidence in their abilities, with
low performers showing greater overconfidence than higher
performers (Kruger and Dunning, 1999; Dunning et al., 2003).
This phenomenon has been shown for students predicting
performance on laboratory tests ranging from logical reasoning
to grammatical knowledge and sense of humor. Studies with
academic content in classroom settings also exhibit this
phenomenon (Maki and Berry, 1984; Miller and Geraci, 2011).
Miller and Geraci (2011) also demonstrated that the lowest
performers were overconfident in exam score predictions, but
they were also less confident in these predictions than were the
highest performers. Thus, although the unskilled might be more
aware than once thought, they still demonstrate overconfidence
nonetheless. Furthermore, while people with high performance
might demonstrate slight underconfidence, people with lower
performance have even more exaggerated overconfidence. From
this, one might predict that students who are struggling in math
are particularly overconfident.

Domain-Specific Views of Metacognition
In contrast, some investigations of individual differences in
metacognition point toward domain specificity. For example,
Kelemen et al. (2000) found that metamemory accuracy was
task specific for university students. They tested memory
monitoring performance across four metacognitive tasks: ease
of learning judgments for Swahili-English word pairs, feeling
of knowing judgments for general knowledge questions,
judgments of learning for unrelated English word pairs, and
text comprehension monitoring for narrative texts. While
they found individual differences in memory and confidence
that remained constant across tasks, individual differences in
metacognitive accuracy changed for each task. Glaser et al. (1992)
provided evidence that metacognition can differ based on task.
They found that metacognitive strategies of university students
varied across discovery learning tasks. In their comparison
of several reasoning tasks, they further found variability in
metacognitive performance for components of problem solving.
There are a variety of alternative but equally successful problem
solving strategies and a variety of metacognitive approaches
for these problems. In general, successful problem solvers use
metacognitive strategies more often than less successful problem
solvers, but there is no one set of metacognitive strategies that
led to successful problem solving. They also found that domain
content and context led to variation in use of metacognitive
strategies, and that particular metacognitive skills were associated
with specific learning success or failure within particular domains
and contexts.

Still others have suggested that metacognition might be
domain-specific early in development, beginning as reflective
self-analysis of cognition. For example, Paris and Byrnes
(1989) suggest that such self-directed reflection develops in
children as self-corrections, and this behavior becomes more
prominent as children get older. As children develop self-
regulation for individual tasks, then gradually learn to apply
general self-correction skills across a variety of tasks. Similarly,
Karmiloff-Smith (1992) suggested that this reflection results in
the restructuring of self-knowledge that increases theoretical
understanding of one’s cognition. This restructuring starts
to differentiate and separate various domains of knowledge.
Both these views support a theory of first domain-specificity
of metacognition that eventually extends to be a domain-
general skill. Then as metacognitive skill improves, this skill
can be applied across a variety of domains. Veenman and
Spaans (2005) provided evidence for this in their findings of
first domain-specificity in metacognitive skill in the first year
of high school then domain generality later for third year
high school students. First-year and third-year students solved
math problems while thinking aloud and also performed an
inductive learning biology task. Metacognitive skillfulness was
measured based on enactment of metacognitive behaviors (e.g.,
entirely reading a problem statement, selection of relevant
information needed to solve the problem, monitoring the on-
going problem-solving process, checking the answer, reflecting
on the answer). A difference in metacognitive skillfulness
was observed when comparing the two groups of students
in that metacognitive skills are at first domain-specific for
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first-year students, while they are domain-general for third-year
students.

Previous research shows connections between metacognition
and math anxiety. Math anxiety (or math phobia) is a fear of
math that leads to math avoidance or lower math performance
(Ashcraft, 2002; Ashcraft and Krause, 2007). This sometimes
extreme anxiety is harmful in both educational and workplace
settings (Meece et al., 1990; Furner and Berman, 2003).
Performing math tasks in stressful situations, such as during
tests, only compounds math anxiety (Beilock and Carr, 2005;
Beilock, 2008). This anxiety can start early in children’s education,
with elementary school students already showing harmful effects
of math anxiety on their math achievement (Ramirez et al.,
2013). Math anxiety interrupts cognitive processing through
its interference with working memory, and this is what can
cause people to show lower performance under pressure (Beilock
and Carr, 2005). While math anxiety does not appear to affect
simple math tasks such as single digit addition, it does affect
decision-making processes for number sense and any task
that required procedural aspects of arithmetic (Dehaene, 1997;
Ashcraft, 2002). The tasks requiring use of working memory
are adversely affected by math anxiety. Students who are highly
math anxious tend to make more errors in timed problems
than did those with low math anxiety. This is also consistent
with Eysenck and Calvo’s (1992) model of general anxiety
effects, in which general anxiety disrupts working memory
through preoccupation with thoughts and attention given to
worry instead of to the current task. This preoccupation is a
second task that places a heavier load on working memory,
a component of cognition that is used in metacognition
(Shimamura, 2000).

The widespread evidence for math anxiety suggests the view
that math may be uniquely problematic compared to other
academic subjects. There does not seem to be a corresponding
body of evidence for, say, literature anxiety or even biology
anxiety. Generalizing this point, we would expect that if students
fear math, then they should generally have low confidence in
math compared to other subjects and a corresponding difference
in metacognitive ability. Indeed, Ashcraft (2002) found evidence
for this point in terms of strong negative correlations between
math anxiety and self-confidence in math.

Overview of Experiments
Accounts of domain specificity are consistent with the idea that
math is uniquely problematic. Contrasting this view that math is
unique are accounts of domain generality, including the unskilled
and unaware phenomenon. So are students underconfident in
math, as would be expected from the math is unique view, or
are students overconfident in math, as would be predicted by
the unskilled and unaware view? Note that we present these
as opposing views, but the predictions from these views were
derived by ourselves.

Our purpose is not to examine whether math-phobic students
are less confident than non-math-phobic students or whether
students are less confident in math than in other subjects. Rather,
we focus on calibration of metacognitive judgments, that is,
whether students are under- or over-confident relative to their

performance. In addition to general measures of calibration,
we also compared calibration across academic subjects. We
assessed both absolute calibration, in which we simply measure
how well subjective scores matched objective scores, as well as
relative calibration, assessing whether participants with higher
subjective scores had correspondingly higher objective scores.
Other than looking at confidence for students with lower
versus higher scores, it was not our aim to examine individual
differences.

In two studies, we assessed confidence in math as well as
other academic subjects (biology, literature). These studies were
conducted based on approval by the Institutional Review Board
(IRB) for our institution (University of California, Merced). High
school (Study 1) and college (Study 2) students took standardized
tests and estimated their performance. Following the view that
math is unique, we would expect underconfidence in math
relative to the other subjects and likely worse metacognitive
calibration. In contrast, following the unskilled and unaware
view, we would expect similar overconfidence in math compared
to other subjects. In Study 2, we included a standard measure
of math anxiety. We note again that it was not our purpose
to examine individual differences in anxiety but rather to
look at students who were most likely math anxious overall,
and in general our findings are limited to the groups we
studied.

Study 1

Method
Participants in this study attended a summer program at a diverse
public high school in California. They made two estimates:
predictions (before each test) of their performance as well as
postdictions (after each test). Mutiple choice tests were adapted
from teachers’ materials used at that grade level in this school,
giving students a basis for making predictions, with even more
information when making postdictions.

Our main focus was to compare calibration of estimates about
math to the other two subjects. We also compared predictions
to postdictions, allowing us to determine if metacognitive
judgments improved after completing a test, as would be expected
from previous research (Kruger and Dunning, 1999; Dunning
et al., 2003).

Participants
There were 40 participants (25 female, 15male). All were students
(mean age = 15.27, SD = 0.55) at Central Valley High School
in Ceres, California, who took the study for extra credit in their
summer school class (Algebra 1). A majority of these students
had failed math the previous academic year. Ceres Unified School
District is located in a rural area; its student population is
72% Hispanic-Latino, 21% White-Caucasian, 3% Asian-Pacific
Islander, 1% African American, and 3% of other ethnicity.

Materials and Procedure
Each participant took three computer-based tests (biology,
literature, mathematics, in randomized order), each test
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consisting of 15 questions with 15 min allowed per test.
Questions were normed so that the overall level of difficulty
across tests was comparable, to avoid ceiling and floor effects
and to assure variance in scores. Questions left unfinished within
the allotted time were scored as incorrect. Participants were told
that these tests were similar to those from their current classes.
Question style was multiple choice with five answer choices.
Before each test, participants provided a predicted score (number
of questions correct) for how well they would do. After each
test, participants provided a postdicted score for how well they
thought they had performed. They were not told their actual
scores.

Results and Discussion
Key descriptive results are in Figure 1. The leftmost bar
for each category represents average predicted score, the
middle bar represents average actual test score, and the
rightmost bar represents average postdicted score. The
general pattern is that predictions are substantially greater
than actually performance, and postdictions are somewhat
greater than actually performance. This overconfidence is
particularly striking for predictions about math performance.
We do not show breakdown by gender, however, predicted,
actual, and postdicted scores averaged about 10% higher for
males.

First, we examined predictions in a three-way, predicted
versus actual score × academic subject × gender, ANOVA.
There was a significant main effect of predicted (mean = 61.7)
versus actual (mean = 43.0) score, F(1,38) = 54.45, MSE = 6.00,
η2 = 0.59, p < 0.0001, indicating overconfidence in predictions.
The academic subject variable did not reach statistical
significance, F(2,152) = 4.14, MSE = 4.11, η2 = 0.05. However,
there was a significant predicted versus actual score × academic
subject interaction, F(2,152) = 10.31, MSE = 4.11, η2 = 0.11,
p < 0.0001, implying that overconfidence differed by academic
subject. Notably, participants showed the highest degree
of overconfidence in mathematics (predicted score = 62.0,
actual score = 38.9). There was also a main effect of gender,

FIGURE 1 | Predicted, actual, and postdicted scores by domain.
Leftmost bars represent predicted scores, middle bars domain performance,
and rightmost bars postdicted scores, each with SE.

F(1,38) = 5.88,MSE = 17.41, η2 = 0.13, p < 0.05, but remaining
interaction terms were not statistically significant, F < 1. Hence,
degree of overconfidence did not depend on gender, although it
may be that the sample size did not yield enough power to fully
address this point.

We also conducted a comparable analysis on postdicted scores
(mean = 47.5). In this three-way ANOVA, there was a significant
effect of academic subject, F(2,152) = 21.00, MSE = 4.06,
η2 = 0.21, p < 0.0001. Note that biology had the highest
values overall and mathematics had the lowest. There was also
a significant main effect of gender, F(1,38) = 5.10, MSE = 19.74,
η2 = 0.12, p < 0.05. The remaining main effect and interaction
terms were not statistically significant, F < 1. Hence, we
did not see significant overall overconfidence on postdictions,
and overconfidence did not depend on academic subject or
gender.

The preceding analyses focused on absolute calibration,
namely how well subjective scores matched objective scores, on
average. We next examined relative calibration, namely whether
participants with higher subjective scores had correspondingly
higher objective scores, measuring relative calibration in terms of
correlation coefficient, r, across all participants (Table 1). Relative
calibration is particularly strong for math, and particularly weak
for literature, with biology falling between.

Correlations of estimates of performance were not significant
across domains, suggesting that student metacognition was
not domain-general. We also tested differences in correlations
both across domain and within domain. Steiger z-tests of
independent correlations showed that the prediction versus
actual score correlations are significantly different between math
and literature (z = 2.28, p < 0.02). Similarly, postdiction versus
actual score correlations are significantly different between math
and literature (z = 2.36, p < 0.02). Williams t-tests of dependent
correlations reveal that differences between prediction versus
actual score and postdiction versus actual score are significant
for all of biology (t = −3.19, p < 0.0029), literature (t = −3.13,
p < 0.0034), and math (t = −2.28, p < 0.028). Thus calibration
significantly improved in postdictions on all tests when compared
to calibration of predictions.

Linear regression calibration curves also illustrate this point
(Figure 2). Regression lines that more closely follow the main
dashed line (perfect calibration) indicate better metacognitive
calibration for that academic subject. Regression lines for
biology and literature are shallow, showing little sensitivity
to actual performance. These lines show the usual unskilled
and unaware pattern of overconfidence at the lowest level of
performance and underconfidence at the highest level (Kruger
and Dunning, 1999; Dunning et al., 2003). Calibration for math
in this case seems to take unskilled and unaware one step

TABLE 1 | Correlations between participant-produced estimates and
performance by domain.

Biology Literature Math

Prediction versus actual score 0.32∗ 0.10 0.56∗∗∗

Postdiction versus actual score 0.39∗ 0.21 0.64∗∗∗

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 (as compared to 0).
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FIGURE 2 | Regression lines for actual versus predicted scores by
academic subject. Regression lines that more closely follow the main
dashed line (perfect calibration) indicate better metacognitive calibration for
that academic subject.

further, in that even the high performers over-estimated their
ability.

In general, results more closely supported the unskilled and
unaware view rather than the math is unique view. Students were
generally overconfident in all three academic subjects, at least
on predictions if not postdictions. The only evidence we found
suggesting a difference for math is that relative calibration for
math was actually the best and overconfidence was the greatest.
Overall performance was somewhat lower for female students
than for males, but so were predictions and postdictions, so their
overconfidence was no different.

Study 2

We turn to another study, attempting to replicate and extend
key findings from Study 1, which might have been due
to idiosyncrasies of the particular student sample or test
instruments used. In Study 2, we conducted a similar study
on college students, using sample SAT test questions. We
would have expected high school students in Study 1 to
be math anxious, because most high school students show
some math anxiety (Hembree, 1990; Ma, 1999; Maloney and
Beilock, 2012), and most of the students in our study had
previously failed math classes. In Study 2, we included a
standard measure of math anxiety adapted from a shortened
Math Anxiety Ratings Scale (MARS, Alexander and Martray,
1989). Although we did not directly measure math anxiety
for students in Study 1, we replicated this study within
the same school population the following summer, and the
average shortened MARS score was 77. This study also
included additional measures but otherwise replicated findings
from the high school study presented here. For comparison,
Ashcraft and Moore (2009) found an average shortened MARS
score of 61 across several college samples identified as math
anxious.

Method
Participants
There were 46 participants (28 female, 18 male) in this study. All
were UC Merced undergraduates (mean age = 19.96, SD = 1.75)
who received extra credit in their introductory psychology or
cognitive science classes for their participation. The UC Merced
undergraduate population is 40% Hispanic-Latino, 29% Asian-
Pacific Islander, 17% White-Caucasian, 7% African American,
and 7% other ethnicity.

Materials and Procedure
Participants took three tests (biology, literature, mathematics),
each with 15 questions. Again, questions left unfinished within
the allotted time were scored as incorrect. Participants were
told that these were based on SAT II Subject Tests (which
most students have taken). Students completed three assessments
derived from past questions released by the College Board,
making predictions and postdictions as in Study 1. Test questions
were normed to avoid ceiling and floor effects. Then, participants
answered 23 questions about math anxiety from a variant of the
shortened MARS (Alexander and Martray, 1989), using a rating
scale ranging from 1 – “no anxiety” to 5 – “very high anxiety,”
with possible scores from 23 to 115. (We dropped two of three
questions from the standardized shortened MARS with nearly
identical wording).

In pilot studies, in an effort to design tests of equal
difficulty, items of comparable difficulty for each test were
selected using individual question ratings (easy, medium,
difficult) provided by College Board. However, performance
floor effects on the pilot math tests were so pronounced that
easier questions were substituted in an effort to bring average
performance closer to the level as the literature and biology
tests.

Results and Discussion
The results largely replicated Study 1 (see Figure 3), most notably
in terms of general over-confidence of predictions compared to
actual scores, most notably for math.

FIGURE 3 | Predicted, actual, and postdicted scores by domain.
Leftmost bars represent predicted scores, middle bars domain performance,
and rightmost bars postdicted scores, each with SE.
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In a three-way, predicted versus actual score × academic
subject × gender ANOVA, there was a significant main effect
of predicted (mean = 51.3) versus actual (mean = 40.4) score,
F(1,44) = 19.70, MSE = 9.31, η2 = 0.31, p < 0.0001, indicating
overconfidence in predictions. There was also a significant
main effect of academic subject, F(2,176) = 7.19, MSE = 4.18,
η2 = 0.09, p < 0.0001; scores were lowest overall in math.
There was a significant interaction between these two variables,
F(2,176) = 29.58, MSE = 4.18, η2 = 0.22, p < 0.0001,
indicating that degree of overconfidence depended on academic
subject. Overconfidence was greatest in mathematics (predicted
score = 52.8, actual score = 28.3), however, we are careful
not to over-interpret the interaction because actual scores also
differed by academic subject. The remaining main effect (gender)
and interaction terms were not statistically significant, F < 1.
Hence, the finding of overconfidence, particularly in math, did
not depend on gender.

We also conducted a comparable analysis on postdicted scores
(mean = 36.0) and actual scores. This ANOVA revealed a
main effect of postdicted versus actual score, F(1,44) = 4.48,
MSE = 6.85, η2 = 0.09, p < 0.05, indicating that participants
were slightly yet significantly underconfident overall. With that
said, given the overall drop from predictions to postdictions,
we see this as reflecting that participants were better calibrated
after taking the test, as in Study 1. (A third ANOVA comparing
predicted and postdicted scores showed amain effect of predicted
versus postdicted.) There was a main effect of academic subject,
F(2,176) = 37.52, MSE = 3.70, η2 = 0.41, p < 0.0001.
There was also a significant interaction between academic
subject and postdicted versus actual score, F(2,176) = 3.12,
MSE = 3.70, η2 = 0.02, p < 0.05, indicating a difference
in overconfidence by academic domain. Though all medium
and difficult questions were removed and replaced with easy
ones (based on College Board question ratings), performance
remained lower for the math test compared to the other two
subjects. The remaining main effect (gender) and interaction
terms were not statistically significant, F < 4. Even after replacing
all questions with those rated as easy by the College Board, and
thus creating a minimally difficult assessment that incorporated
actual SAT questions, math test scores were consistently lower
than biology or literature test scores. Analyses were also
conducted using a sample of these math questions by selecting
seven questions that participants scored best on. However, this
did not change our findings. Again as in Study 1, the finding
of overconfidence, particularly in math, did not depend on
gender.

Analyses of relative calibration (Table 2, Figure 4) yielded
results similar to Study 1. Correlations between predicted and

TABLE 2 | Correlations between participant-produced estimates and
performance by domain.

Biology Literature Math

Prediction versus actual score 0.01 0.12 0.47∗∗∗

Postdiction versus actual score 0.41∗∗ 0.38∗∗ 0.35∗

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 (as compared to 0).

FIGURE 4 | Regression lines for actual versus predicted scores by
academic subject. Regression lines that more closely follow the main
dashed line (perfect calibration) indicate better metacognitive calibration for
that academic subject.

actual scores were highest for math, although, based on a Steiger
z-test of independent correlations, there was only a significant
difference in correlations between predicted and actual score for
biology and predicted versus actual score for math (z = 2.32,
p < 0.02). Correlations for postdicted scores were approximately
the same for all three academic subjects, and there were no
significant differences among these correlations. Williams t-tests
of dependent correlations reveal that there were significant
differences in predicted versus actual and postdicted versus
actual correlations for both literature (t = −3.21, p < 0.0025)
and biology (t = –3.82, p < 0.00042). Thus calibration was
significantly different before and after the test for both literature
and biology. However, this pair of correlations for math showed
no significant difference, hence there was a lack of evidence
for improved calibration in math. Again, the regression lines
for biology and literature showed overconfidence at the lowest
level of performance and underconfidence at the highest level,
revealing again the general unskilled and unaware pattern. In
contrast, students were simply overconfident in general for
math.

Students were clearly math anxious overall, with an average
adapted shortened MARS score of 73/115 (SD = 16.8).
Comparatively, Ashcraft and Moore (2009) found an average
MARS score of 61/125 using a test instrument with two
more questions, across several college samples identified as
math anxious. Further analyses suggested that more anxious
participants had lower performance and lower levels of
overconfidence; however, inferential tests did not reach statistical
significance. Therefore we simply conclude that students
generally experienced math anxiety. We measured a Cronbach’s
alpha of 0.94 for the version of the shortenedMARSmath anxiety
that we used, indicating very good internal consistency. This
is comparable to the Cronbach alphas Plake and Parker (1982)
found for the original full-length 98-question MARS instrument
(α = 0.97) as well as the shortened 24-question version MARS-R
(α = 0.98).
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Overall, the results were consistent with the unskilled and
unaware view, in that there was global overconfidence in
predictions across subject domains. The finding that even the
students who performed best in math were overconfident (see
Figure 4) is not consistent with unskilled and unaware, however.
Instead of observing underconfidence in the best performers,
as has typically been displayed by the unskilled and aware
phenomenon, we see persisting overconfidence even in the
highest performing participants. In terms of math being unique,
it was unique here in the sense that overconfidence was the
greatest and metacognitive calibration was the best. Neither of
these results would be predicted from the idea that anxiety is
particularly high for math.

General Discussion

Our basic conclusion is that students aligned in some ways
to both the unskilled and unaware phenomenon and the idea
that math is unique. In both studies, students over-estimated
their performance in their predicted scores for all domains,
though their calibration did improve for postdictions. This
provides support for the domain generality of metacognition
under the unskilled and unaware view. Interestingly, the most
exaggerated over-confidence was observed for math, which
supports the view that math is unique and that metacognition
is domain-specific. What is novel about these results is that
students appear to be math anxious yet also overconfident
in math. In addition, relative calibration of metacognition
for math was generally better than other academic subjects.
This overconfidence and greater metacognitive calibration
replicated in both studies in this paper, and has also been
consistent across our earlier studies (Erickson and Heit,
2013). We have reliably documented over past studies that
both high school and college students have over-predicted
their scores on math tests, along with biology and literature
tests.

Math is indeed unique in some respects and this manifests
in an interesting way. Rather than showing lower confidence
in math compared to other subjects and poorer metacognition,
as would be expected based on the original view that math
is unique, students generally showed the highest level of
overconfidence in math compared other academic subjects.
Students, rather than displaying differing metacognition in the
form of lower confidence stemming from math anxiety, instead
showed differing metacognition in the form of even more
exaggerated overconfidence despite the presence of math anxiety.
In Study 1, students were retaking only their Algebra 1 class, not a
literature or a biology class. Whereas we did not directly measure
math anxiety in this study, it is plausible that these students were
math anxious overall.

Another relatively novel feature of these two studies is
the consideration of both predictions and postdictions of
performance, rather than just postdictions or individual test
item evaluations. Math was unique in that students displayed
higher over-confidence when compared to other subjects, and
this persisted in both predictions and postdictions. Students also

displayed elements of being unskilled and unaware both before
and after the test, though their calibration did improve after
taking a test. It seems an obvious result that metacognition would
improve after students take a test, and it is tempting to treat
postdictions as the more relevant measure to be considered when
evaluating actual studentmetacognition. After all, doing so would
help in comparing metacognition across students once they have
equal footing in knowing exactly what is on the test. However,
we would argue that predictions, not postdictions, provide a
more realistic and practical measure of student metacognition.
Students typically cannot view actual questions before they take
a test in an academic setting. Rather, they must use predictions
to guide their self-regulation activities, including studying as well
as choices such as how to take notes in class (or even whether
to attend class). Students’ metacognitive skill in postdicting
performance after a test might be more accurate, but this
cannot help them to improve test performance and academic
success.

As noted earlier, our findings are focused on the math-
anxious student groups studied here, comparing academic
subjects. We would see a comparison to non-math-anxious
students as a fascinating but challenging potential topic for
future research. Just assembling two groups of students who
differ in terms of math anxiety but are equal on other
variables would present considerable difficulty. Students who
differ in math anxiety likely have other attributes (e.g.,
demographics, math ability) that also differ. These variables
would have to be carefully teased apart in order to make
any comparisons of math-anxious and non-math-anxious
students.

Possible Mechanisms
It was not the purpose of these studies to find the exact
mechanisms that underlie metacognitive function for math.
In general, finding a similar pattern of results for two
different tasks does not necessarily indicate that they are
the same mechanistically. However, theories in the math
anxiety literature help explain why metacognition for math is
unique when compared to other academic domains. Notably,
Beilock (2008) along with others (Ramirez et al., 2013)
has shown that working memory is compromised by math
anxiety and also by stressful situations, providing a possible
explanation for the reduced metacognitive ability we observed
for math. Ashcraft and Krause (2007) further showed that
math anxiety and peoples’ preoccupation with this fear function
as secondary mental tasks that draw on working memory
resources necessary for problem solving. Any math problem
solving that requires more than simple retrieval of information
depends on working memory, so a reduction in working
memory capacity can lead to a reduction in math performance.
This lower performance then results in a disconnect between
typical academic performance and math performance and
a corresponding miscalibration in metacognition. People’s
metacognitive evaluation of math ability may ordinarily be
more accurate when they are engaging in tasks in a less
stressful environment but becomes less accurate when put under
pressure.
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So far, we have demonstrated overconfidence as a flaw
in self-monitoring about math and other domains. Self-
monitoring strategies such as self-testing give learners specific
and measureable feedback about how much they know. Without
accurate feedback, learners are unable to select appropriate self-
regulation strategies to further their learning process (Dunlosky
et al., 2005). Rather, they choose study strategies based on
feelings of knowing and judgments of learning, both of which
have been shown to be inaccurate self-measures of knowledge
(Metcalfe and Finn, 2008). These inaccurate measures lead to
student flaws in identifying problem areas of knowledge. Without
knowing what they do not understand, learners are unable to
make plans to fill in gaps in their knowledge. Students can
benefit from using effortful self-monitoring by enacting practice
tests at home, where they might not suffer as much detraction
from working memory stores. With less stress from a testing
environment, they will be able to perform closer to their actual
knowledge level. This enables learners to highlight gaps in their
knowledge and use this to organize their study time more
effectively.

Possible Limitations
We do not know to what extent these findings generalize
to other populations. Both UC Merced and Central Valley
High School are both in the same rural area of California
and are not necessarily representative of all learners. Ideally,
additional studies will be conducted in other learning settings
and with more widely differing populations. For instance,
populations representing a full spectrum of math anxiety
would provide a more complete picture for the relationship
between math anxiety and metacognition, though such research
would also need to be take account of general anxiety,
math ability, and other variables related to math anxiety and
metacognition.

Students in Study 2 were math anxious, and although we
did not directly measure math anxiety in Study 1, a later study
identified another sample of the same high school population
as math anxious using the same MARs measure. From this, we
might assume that the students in Study 1 had a similar level
of math anxiety. Although we did not include a measure of
general anxiety, it is also possible that the populations here had
general anxiety and not just math anxiety. Presence of generally
high anxiety would further compromise working memory and,
consequently, metacognitive ability.

Although performance was not exactly the same across
academic subjects, it does not appear that the exaggerated
overconfidence in math was simply result of choosing
intrinsically more difficult test items compared to biology
and literature. Questions in both studies were normed for
difficulty, and the math test in Study 2 was in fact less
difficult than either biology or literature, based on test item
difficulty ratings provided by the College Board, creators of
the standardized test. Furthermore, analyses that included
only those questions that participants performed best on still
displayed this finding of exaggerated overconfidence. In an
effort to improve the realism of this study, a later version of this
study was performed in math classes at UC Merced. Students

provided predictions and postdictions for class midterms, thus
utilizing a much more realistic assessment than an SAT II
test taken in a lab setting. Findings generally replicated those
from the studies in this paper, so results in this paper were
not an artifact of lab setting or the particular assessments
used.

Final Remarks
We do not doubt that math anxiety exists. However, it
is important to differentiate metacognitive judgments of
performance from feelings of anxiety, which may have a
more emotional or physical, rather than cognitive, basis. That
students can be anxious yet overconfident has pernicious
implications for struggling math learners. Overconfidence
and anxiety provide students with two reasons to avoid
studying math or attending math classes. According to models
of metacognition, learners stop studying when believe they
have reached mastery (Son and Sethi, 2010). Furthermore,
extensive evidence shows that anxiety leads to avoidance
(Ashcraft, 2002), implying that anxious students would avoid
attending math classes. Other examples of math avoidant
behaviors include avoiding lectures, avoiding homework,
avoiding study time, or avoiding test preparation. Globally, the
2012 Programme for International Student Assessment (PISA)
study, which assessed 15–16 year olds in 65 countries, found
that students with higher math anxiety were more likely to
have lower math self-concept. Trends in this comprehensive
study point toward increases in math anxiety over the past
decade.

Metacognition can also further impact other abilities such
as attention, memory, perception, comprehension, reasoning,
and problem solving (Kitchener, 1983; Metcalfe and Shimamura,
1994) and also affect social behavior (Jaccard et al., 2005) and
decision making (Cohen et al., 1998). We have not yet examined
the effects of math confidence onmath anxiety on self-regulation.
Which is a better predictor of study behavior, math confidence
or math anxiety? Would pointing out the contradiction between
being overconfident about math and being anxious about it have
beneficial consequences for struggling students? We see these
questions as important for future research.

We finish with a cautionary note. Some educational
interventions aim to boost students’ math self-confidence,
because math self-concept is strongly related to math grades
(Marsh et al., 2006). It is important to keep in mind that students’
confidence in their math performance is probably already high,
likely contributing to math avoidance. Aiming to further increase
self-confidence in math may have unintended consequences for
learning.
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