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Children’s estimation patterns in bounded number line estimation (NLE) reveal marked
developmental changes. Three different theoretical accounts were proposed to explain
these changes: a log-to-linear shift account, a proportion-judgment account and a
two-linear account considering familiarity with numbers or the understanding of the
place-value structure of the Arabic number system. However, only the first two accounts
are considered prominently in the ongoing scientific debate. Therefore, we first present
a reanalysis of NLE data of Austrian first-graders contrasting all three accounts. Results
indicate that the two-linear account is a reliable alternative to the log-to-linear shift as well
as the proportion-judgment account. However, we do not claim the two-liner account to
provide an exhaustive explanation for the observed developmental changes. We rather
introduce the idea that aspects of all three accounts may complement – instead of
exclude – each other. Jointly considering conceptual (i.e., familiarity, place-value) and
procedural (i.e., proportion-judgments) aspects will allow for a more comprehensive
understanding of children’s development in NLE.

Keywords: mental number line, number line estimation, model fitting, numerical development, spatial
representation of number magnitude

The mental number line (MNL) is a common metaphor to characterize the spatial representation
of number magnitude. Based on converging behavioral and neuropsychological evidence
(e.g., Fischer and Shaki, 2014 for a review), number magnitudes are assumed to be spatially
organized along a left-to-right oriented MNL (see Göbel et al., 2011 for cultural influences). The
bounded number line estimation (NLE) task is a task commonly used to draw inferences on
children’s MNL representation (e.g., Siegler and Opfer, 2003; Siegler and Booth, 2004; Booth and
Siegler, 2006; Moeller et al., 2009). The task requires participants to estimate the position of a
target number (e.g., 34) on an empty number line with labeled endpoints (e.g., 0–100). Children of
different ages were observed to perform differently on the same number range. Younger children
tend to overestimate small numbers and compress larger numbers toward the end of the scale (e.g.,
first-graders on the 0–100 scale), whereas older children’s estimates on the same number range
(e.g., third-graders) are spaced more accurately (e.g., Siegler and Booth, 2004).

Three distinct theoretical accounts were postulated to explain these developmental changes:
(1) the log-to-linear shift account (e.g., Siegler and Opfer, 2003; Siegler and Booth, 2004; Booth
and Siegler, 2006; Opfer and Siegler, 2007), (2) the proportion-judgment account (e.g., Barth and
Paladino, 2011; Slusser et al., 2013), and (3) a two-linear account arguing for the influence of
number familiarity (e.g., Ebersbach et al., 2008) or children’s understanding of the place-value
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structure (Moeller et al., 2009) to influence NLE performance.
However, there is currently no study contrasting all three
accounts. Yet, the latter seems particularly important for the
ongoing debate on these competing accounts (e.g., Opfer et al.,
2011; Slusser et al., 2013). In particular, contrasting all three
accounts would allow for a more general explanation, for
example, of inter-individual differences in estimation patterns
observed in children of the same age or the impaired estimation
performance of children with mathematical difficulties
(e.g., Geary et al., 2012; Landerl, 2013). In turn, a more
comprehensive understanding of the processes contributing
to NLE performance may also help to narrow down the origin of
the close association between NLE performance and numerical
as well as mathematical competencies (e.g., Booth and Siegler,
2006, 2008; Laski and Siegler, 2007; but see LeFevre et al., 2013).

Therefore, we first present a reanalysis of NLE data of Austrian
first-graders contrasting all three accounts before we discuss
the idea that none of the accounts may provide an exhaustive
explanation for the observed developmental aspects but that they
may complement – instead of exclude – each other.

Competing Accounts

Following the log-to-linear shift account (e.g., Siegler and
Opfer, 2003; Siegler and Booth, 2004) children’s estimation
patterns are supposed to directly reflect the spatial layout of the
MNL representation: An underlying logarithmic representation
was suggested to account for younger children’s tendency to
overestimate small numbers. In contrast, the more accurately
spaced estimation pattern of older children was interpreted to
reflect an equidistantly linear underlying MNL representation.
The respective log-to-linear shift was postulated to depend on age
and number range (Booth and Siegler, 2006, 2008).

Questioning the idea of a representational shift, Barth and
Paladino (2011; Slusser et al., 2013) argued that estimation
performance rather reflects strategies applied to solve the
bounded NLE task. They argued that the task always requires
processing of a target number in relation to the given whole
(i.e., the start- and endpoint of the scale). Corroborating their
claim, Barth and Paladino (2011) found that seemingly linear
estimation patterns were explained best by cyclic power models
which indicate the use of reference points for estimation and thus
proportion-based judgments (e.g., Hollands and Dyre, 2000). For
example, one- and two-cycle power models (indicating the use
of two or three reference points) were observed to provide the
best fit for 7-year-old’s estimates on a 0-to-100 scale (Barth and
Paladino, 2011). Following this proportion-judgment account,
developmental changes in estimation patterns are associated with
the increasing use of reference points (Barth and Paladino, 2011;
Slusser et al., 2013).

This argument led to a controversial debate on whether
there is indeed a representational shift or NLE performance
simply reflects the application of specific estimation strategies
(Barth and Paladino, 2011; Barth et al., 2011; Opfer et al.,
2011; see also Ashcraft and Moore, 2012; Hurst et al., 2014).
Importantly, however, there is a third account missing in this

discussion. Ebersbach et al. (2008) and Moeller et al. (2009)
suggested children’s NLE patterns to be accounted for best by
two-linear regression models reflecting children’s familiarity with
numbers or their place-value understanding, respectively (but
see Muldoon et al., 2013, for diverging results). Ebersbach et al.
(2008) found that estimation patterns of 5- to 9-year olds on
a 0-to-100 scale were explained best by assuming two linear
representations, one with a steeper slope for numbers familiar to
children (as indicated by children being able to count to these
numbers) and another one with a flatter slope for larger numbers
not yet familiar to them. Thus, the breakpoint of the two linear
segments reflects the upper end of the number range children
were familiar with (see also Chesney and Matthews, 2013; Stapel
et al., 2015).

Moeller et al. (2009; see also Helmreich et al., 2011; Moeller
and Nuerk, 2011) proposed a similar two-linear account but with
a fixed breakpoint at 10 considering children’s understanding
of the place-value structure of the Arabic number system.
Corroborating their claim, they observed that the two-linear
model fitted first-graders’ estimation patterns on a 0-to-100
scale better than a logarithmic and a linear model. The authors
argued that children’s overestimation of small numbers indicates
children’s still insufficient understanding of linearity. This means
that young children may not yet understand that the distance
from 10 to 60 is exactly 10 times larger than the distance from
1 to 6 (Moeller et al., 2009). When this linear base-10 relation
between single- and two-digit numbers may only be represented
as “somewhat” but not 10 times larger, the two linear segments for
single- and two-digit numbers differ in their slope with a steeper
slope for single-digit numbers. With increasing age Moeller et al.
(2009) propose children to become more proficient in integrating
tens and units into a joint place-value structure which in turn
leads the two segments to converge into a continuous linear one.

Taken together, each of the three theoretically differing
accounts proposed to explain developmental changes in NLE was
warranted by the better fit of the respective mathematical model.
Yet, there is currently no study contrasting all three accounts
while simultaneously considering critical aspects of model fittings
(see Moeller and Nuerk, 2011; Opfer et al., 2011 for discussions).

Mathematical Aspects of Model Fittings

To identify the best fitting model an important aspect regards
the selection criteria indicating the goodness of model fit.
Initially, R2 was used as indicator (Siegler and Opfer, 2003;
Barth and Paladino, 2011). Taking into account different numbers
of free parameters and, therefore, model complexity (e.g., two-
linear vs. logarithmic functions), adjusted R2 (Moeller et al.,
2009), the Akaike information criterion (AIC or AICc, corrected
for finite samples) and in recent studies also the Bayesian
information criterion (BIC; e.g., Cohen and Sarnecka, 2014)
served as indicators for goodness of fit. Additionally, Opfer et al.
(2011; see also Slusser et al., 2013) argued for also considering
generalizability of the models using cross validation. Cross
validation is a model validation technique, in which the data
are divided into a training and a test set. Models are fitted
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using the training set and their ability to generalize to new data
is then determined by calculating the mean absolute percent
error (MAPE) or the mean squared error (MSE) for the test set.
Different models are then ranked according to their MAPE or
MSE with smaller values indicating better model fits. A particular
type of cross validation is leave one out cross validation where
the test set consists of only one data point (LOOCV, see Browne,
2000, for more details; Opfer et al., 2011; Slusser et al., 2013, for
application).

However, even if only one criterion is used to indicate the
goodness of fit of the models tested, the most important question
remains. How does one select the best fitting model? Descriptive
analyses based on absolute values of model fitting parameters
do not seem appropriate since model criteria often only show
marginal differences (e.g., R2model 1 = 0.731; R2model 2 = 0.730;
see Ebersbach et al., 2013). Similarly, using t-tests comparing
adj.R2 values may not be adequate because it cannot be assumed
that the parameters are normally distributed (Opfer et al., 2011;
Ebersbach et al., 2013). Using a logit transformation might
solve this problem (Baum, 2008). Similarly, logit transformation
should work for other restricted values such as MAPEs. Because
AIC and BIC values are obtained following the information-
theoretic (Anderson, 2008) instead of the frequentist approach,
there is no inferential statistic method to compare these. Instead
of simply selecting the smallest AIC, Burnham and Anderson
(2002) proposed to evaluate model fits according to �i which
describes the difference in AIC value with regard to the best fitting
model (see Kass and Raftery, 1995, for a similar classification of
�BIC). Burnham and Anderson (2002, p. 446; see also Slusser
et al., 2013) proposed that “as a rough rule of thumb, models
having �i within 1–2 of the best model have substantial support
and should receive consideration in making inferences. Models
having �i within about 4–7 of the best model have considerably
less support, while models with �i > 10 have either essentially
no support and might be omitted from further consideration or
at least fail to explain some substantial structural variation in the
data.”

In sum, there are several criteria that seem appropriate to
identify (the) best fitting model(s). However, in case more than
one model fits well to the obtained data, it might be worthwhile
to stop asking which model fits best and start asking why no clear
‘winner’ can be made out. In line with the recent discussion on
log-to-linear shift vs. proportion-judgment, we will first evaluate
which one of the associated models fits the data best.

Which Model Fits Best?

We reanalyzed the data of Moeller et al. (2009) incorporating a
sample of 128 Austrian first-graders (63 girls, mean age: 7 years,
4 months, SD = 7 months). Children were assessed at the end of
first grade by 18 targets on the bounded NLE task on a 0-to-100
scale (i.e., 27, 2, 64, 35, 7, 13, 99, 75, 47, 3, 11, 82, 95, 9, 17, 6, 18,
and 53). Additionally, 50 served as a practice trial. Children did
not receive feedback about their performance.

Each mathematical model was fitted to the estimates of
each child individually (see Figure 1 for an illustration of the

respective model functions including mean parameter estimates
and breakpoints in case of the two-linear models). Linear and
logarithmic models were fitted using two free parameters (i.e.,
the intercept and the slope); one- and two-cycle models were
fitted with one free parameter (i.e., the exponent); the two-linear
model with a fixed breakpoint at 10 was fitted with three free
parameters (i.e., intercept and two different slopes for numbers
<10 and for numbers >10, cf. Moeller et al., 2009) whereas
the two-linear model with a flexible breakpoint was fitted with
four free parameters (i.e., two intercepts and slopes for numbers
smaller and larger than the breakpoint; cf. Ebersbach et al., 2008).
Two children were excluded from analyses as their estimates only
varied in the range between 47/49 and 55. MAPE andMSE values
were obtained applying LOOCV method.

Table 1 provides means of the different model selection
criteria. Based on a descriptive account, the two-linear model
with a fixed breakpoint at 10 seems to provide the best
fit. Repeated measures ANOVA were computed on n = 107
or n = 117 children’s logit transformed adj.R2 and MAPEs.
Adj.R2s for 19 children were negative and MAPEs for 9
children were >0.99 and could thus not be logit transformed.
Furthermore, fittings of the two-cycle model were rather poor
and adj.R2 mostly negative, which is why we excluded this
model from further analyses. The ANOVA comparing logit
transformed adj.R2 values revealed a significant effect of the
factor model, F(4,106) = 35.80, p < 0.01, η2

p = 0.25. Post
hoc Bonferroni-corrected pair-wise comparisons indicated a very
consistent result pattern: We observed no difference between
the two-linear models (p > 0.99) but both two-linear models
provided a bettermodel fit than did all other models (all p< 0.01).
Furthermore, logit transformed adj.R2s of the other models
also differed significantly (all p < 0.01). A similar pattern was
observed for transformed MAPE values: The ANOVA revealed
a significant main effect of the factor model, F(4,116) = 123.87,
p < 0.01, η2

p = 0.52. Post hoc Bonferroni-corrected pair-wise
comparisons indicated no significant difference between the
two two-linear models (p > 0.99) but a significantly better
fit of these two compared to all other models (p < 0.01).
Except for the MAPEs of the logarithmic and one-cycle
model (p = 0.08) all other MAPEs also differed significantly
(p < 0.01).

Regarding �AICc and also�BIC the logarithmic model is the
only model that might be considered in further interpretations
besides the two-linear models when applying the selection criteria
suggested by Kass and Raftery (1995) or Burnham and Anderson
(2002). According to both criteria, cyclic models and the simple
linear model showed the worst fit to the data.

The Two-Linear Account: A Plausible
Alternative

Despite critical aspects of model fittings discussed above, these
results highlight that the two-linear account, regardless of
higher model complexity, is a reasonable approach to explain
young children’s bounded NLEs. Both two-linear models fitted
children’s estimates better than the models referring to other
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FIGURE 1 | Illustration of the three different accounts and their underlying model functions. Lines depict model functions with mean parameter estimations
of the current sample. Free parameters are a, a1, a2, b, b1, and b2.

theoretical accounts. Interestingly, the breakpoints of the two
two-linear models hardly differed (10 vs. 11.78). As it is
implausible to assume that children are merely familiar with
numbers up to 12 by the end of grade 1, this suggests that for

the present data set both two-linear models represented place-
value integration (see alsoMoeller et al., 2009). Importantly, these
results corroborate findings of previous studies which argued
bounded NLE to not directly reflect the MNL representation
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TABLE 1 | Means (across participants) of model fitting parameters for
linear, logarithmic, one- and two-cycle functions as well as for two-linear
functions with a fixed and flexible (flex) breakpoint.

Adj.R2 AICc �AICc BIC �BIC MSE
(LOOCV)

MAPE
(LOOCV)

Log-to-linear account

Linear 0.59 96.53 10.97 97.51 10.99 261.67 0.55

Logarithmic 0.69 92.99 7.43 93.97 7.45 205.17 0.43

Proportion-judgment account

One-cycle 0.49 97.74 12.18 98.38 11.86 281.43 0.45

Two-cycle 0.04 108.58 23.02 109.22 22.70 554.19 0.50

Two-linear account

Two-linear 0.77 85.56 0.00 86.52 0.00 172.00 0.31

Two-linear
flex

0.77 89.90 4.34 90.39 3.87 172.94 0.31

Bold face indicates best fitting model. �AICc and �BIC refer to the difference of
AICc/BIC values in reference to the model with the lowest AICc/BIC; two-linear
flex, two-linear model with a flexible breakpoint (cf. Ebersbach et al., 2008); AICc,
Akaike information criterion corrected for finite samples; BIC, Bayesian information
criterion; MSE, mean squared error; LOOCV, leave one out cross validation; MAPE,
mean absolute percent error.

(e.g., Huber et al., 2014; Hurst et al., 2014). Thus, future debates
on changes in children’s NLE performance should consider the
two-linear account.

However, we do not claim the two-linear account to
represent an exhaustive explanation of changes in children’s NLE
performance. Instead, in the remainder of this article we discuss
in how far the theoretically differing accounts might eventually
complement each other to allow for a more comprehensive
understanding of the development of children’s NLEs.

A Comprehensive Approach on NLE

So far, investigating children’s spatial representation of number
magnitude using the bounded NLE task was primarily
characterized by trying to identify the best mathematical
function to fit children’s estimates (Ebersbach et al., 2013 for an
overview). Considering the diversity of methods across studies
with respect to, e.g., time point of assessment, choice of targets,
number line range, etc., we suggest an integration of the different
theoretical aspects associated with the different mathematical
models. In fact, the models may all capture specific aspects which
are important for the development of children’s NLEs – but not
necessarily at the same point in time. Following this rationale
the three accounts may complement – instead of exclude – each
other thereby providing a more comprehensive understanding
of NLE. Thus, we propose an integrative account suggesting
that children’s NLE patterns reflect different developmental
stages of their understanding of multi-digit numbers (i.e.,
familiarity and place-value structuring) and proportional
relations. Importantly, this integrative account is corroborated
by recent data.

In line with previous studies, we assume NLE patterns to
depend on the number range assessed and children’s age and
experience with this range (cf. Siegler and Booth, 2004; Booth

and Siegler, 2006). Initially, it seems that (young) children’s
uncertainty with large magnitudes influences their estimation
performance (Ebersbach et al., 2008; Stapel et al., 2015). By
the end of grade 1 understanding of the place-value structure
of the Arabic number system seems to influence estimation
patterns most dominantly – at least in the number 0-to-100
(Moeller et al., 2009). This suggestion is corroborated by
the current data indicating that children’s estimates assessed
at the end of first grade are best fitted by the two-linear
models both reflecting place-value integration. Nevertheless,
both aspects seem to lead young children to perform direct
estimates (as suggested by Siegler and Opfer, 2003; see also
Slusser et al., 2013) – but in a biased way leading to an over-
representation of the spatial extent of familiar and single-digit
numbers, respectively. This results in estimation patterns that
might look like a logarithmic layout but are theoretically and
mathematically best explained by a two-linear account. However,
the two-linear account has only been investigated within number
ranges of 0-to-100 (as regards place-value understanding and
familiarity) and 0-to-1000 (with respect to familiarity only;
Ebersbach et al., 2008). The generalization of the two-linear
account to other number ranges and the differentiation of
influences of familiarity and place-value integration are still
pending.

On the other hand, it seems reasonable to assume that with
increasing age other aspects may become more prominent:
Only after children are familiar with the respective number
range and master the place-value structure of Arabic numbers,
proportion-based estimation strategies are most beneficial. Thus,
the proportion-judgment account of Barth et al. (2011) seems
more appropriate for (older) children who are already confident
with the respective number ranges and can thus start to use
reference points for deriving their estimates. Application of such
strategies then results in an estimation pattern best described by
a one- or two-cycle model although estimates seem to follow
a linear layout (cf. Barth and Paladino, 2011). In sum, we
suggest that familiarity with a given number range as well as
understanding the place-value structure allow for the application
of solution strategies other than numerical estimation, such as
proportion-judgments, in NLE.

This idea of the differing accounts complementing –
instead of excluding – each other may also be relevant for
the question about the origin of the association between NLE
performance and basic numerical and arithmetic abilities.
Recently, Link et al. (2014) provided evidence suggesting that
it is highly unlikely that an underlying MNL representation
causes this association. The authors investigated estimation
performance in a similar, but unbounded NLE task (with
only the start point and a unit, but no endpoint given)
and found no correlation between estimation performance
and either basic numerical or arithmetic competencies.
Furthermore, Link et al. (2014) did not observe evidence for the
application of proportion-based strategies in unbounded
NLE (see also Cohen and Sarnecka, 2014). From this
the authors concluded that basic numerical as well as
arithmetic processes are needed to apply proportion-based
strategies (such as calculating reference points, deciding
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whether the target number is smaller or larger than a chosen
reference point, computing the difference from the reference
point and the target, etc.). In turn, this drives the association
of bounded NLE and basic numerical as well as arithmetic
competencies. Importantly, these subordinate processes require
familiarity with the given number range and an understanding of
the place-value structure of the Arabic number system – and thus
an integration of the processes suggested by the different accounts
to explain for changes in children’s NLEs.

Taken together, we argue that estimation performance
in the bounded NLE task is explained best by jointly

considering children’s conceptual (i.e., familiarity, place-value
understanding) and procedural (i.e., proportion-judgment)
numerical knowledge and to a lesser extent by the nature of
spatial-numerical representations per se. In turn, focusing on
individual procedural and conceptual knowledge might allow
for a better understanding what drives the reliable association
of NLE performance and other numerical competencies. In
this vein, it seems desirable for future studies to consider all
available models (e.g., in terms of parameter estimates) and not
only undifferentiated performance measures (such as estimation
errors).
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