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Stress induces several temporally guided “waves” of psychobiological responses that
differentially influence learning and memory. One way to understand how the temporal
dynamics of stress influence these cognitive processes is to consider stress, itself, as
a learning experience that influences additional learning and memory. Indeed, research
has shown that stress results in electrophysiological and biochemical activity that is
remarkably similar to the activity observed as a result of learning. In this review, we
will present the idea that when a stressful episode immediately precedes or follows
learning, such learning is enhanced because the learned information becomes a part of
the stress context and is tagged by the emotional memory being formed. In contrast,
when a stressful episode is temporally separated from learning or is experienced prior
to retrieval, such learning or memory is impaired because the learning or memory is
experienced outside the context of the stress episode or subsequent to a saturation of
synaptic plasticity, which renders the retrieval of information improbable. The temporal
dynamics of emotional memory formation, along with the neurobiological correlates of
the stress response, are discussed to support these hypotheses.
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What is Stress?

Stress is experienced during situations that pose a threat to an organism and leads to the activation
of two major physiological systems, the sympathetic nervous system (SNS) and the hypothalamus-
pituitary-adrenal (HPA) axis. SNS activation allows for the immediate fight-or-flight response
through rapid release of epinephrine (EPI) and norepinephrine (NE) from the adrenal medulla
(Gunnar and Quevedo, 2007). Activation of the HPA axis, on the other hand, leads to a slower
response, eventually resulting in the release of corticosteroids from the adrenal cortex (de Kloet
et al., 1999; Joels, 2001).

Stress response neurochemicals exert a profound effect on learning and memory by influencing
cognitive brain areas, such as the hippocampus, prefrontal cortex (PFC), and amygdala. Both the
hippocampus, which is crucial for the formation of declarative and spatial memories (Moser and
Moser, 1998; Kaut and Bunsey, 2001; Broadbent et al., 2004; Eichenbaum, 2004; Squire et al., 2004;
Broadbent et al., 2006), and the PFC, which is responsible for working memory and higher-order
cognitive function (Rowe et al., 2001; Bechara, 2005; Nebel et al., 2005; Muller and Knight, 2006),
have a high density of corticosteroid receptors (McEwen et al., 1968, 1969; Mcewen et al., 1970;
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Diorio et al., 1993; McGaugh, 2004), making them highly
susceptible to the effects of stress. The amygdala is primarily
responsible for the processing of emotional information and
serves to exacerbate the stress response by enhancing HPA
axis activity (McGaugh, 2004; Roozendaal et al., 2009). Stress
differentially impacts learning that is dependent on these brain
areas, and when considering the different forms of stress-memory
interactions, the most complex appears to be that of stress effects
on hippocampus-dependent memory (Zoladz et al., 2014a),
which will be the focus of this review.

Type of stress

Stress effects on learning and memory depend on the type of
stressor that is employed. Intrinsic stress is a stressor that is
intrinsic to, or a part of, the learning experience, and extrinsic
stress is a stressor that is extrinsic to, or outside, the learning
experience. In general, intrinsic stress (e.g., emotionally arousing
words in a word list, colder water temperature in a Morris water
maze) facilitates learning and memory (Sandi et al., 1997; Cahill
and McGaugh, 1998). Extrinsic stress (e.g., exposing participants
to a stressor and then having them learn a word list, shocking rats
and subsequently testing their ability to navigate a maze) effects
on learning and memory, on the other hand, are much more
complex and can involve enhancement, impairment or no effects
on cognition (Joels et al., 2006; Zoladz et al., 2011b, 2014a). In the
present review, we will focus on the influence of extrinsic stress on
learning andmemory. During a stressful, or even traumatic, event
(e.g., wartime combat, witnessing a crime), learning that occurs
often results in a powerful memory for the stressor, although this
may depend on what aspects (i.e., central or peripheral details)
about the stressor are tested (see section below). Here, it is our
goal to discuss how the physiological changes that occur during
the stress impact learning and memory for events that occur
subsequent to/prior to stress exposure.

Stress Effects on Learning and Memory
Depend on Stage

Learning and memory can generally be divided into three
major stages: encoding, consolidation and retrieval. Encoding
involves the acquisition phase, during which information is
initially learned. Consolidation is when the learned information
is stored in order to be successfully retrieved (the third stage)
at a later point in time. Most research, in both humans
and rodents, has reported facilitative effects of post-learning
stress or corticosteroid administration on long-term memory
consolidation (Cahill et al., 2003; Beckner et al., 2006; Hui
et al., 2006; Smeets et al., 2008; Preuss and Wolf, 2009) and
deleterious effects of stress or corticosteroid administration
on long-term memory retrieval (de Quervain et al., 1998;
Buss et al., 2004; Kuhlmann et al., 2005a,b; Buchanan et al.,
2006; Diamond et al., 2006; Buchanan and Tranel, 2008; Park
et al., 2008; Smeets et al., 2008; Tollenaar et al., 2008). The
effects of pre-learning stress or corticosteroid administration on

encoding have been more inconsistent, with studies revealing
long-term memory enhancements, impairments or no effects
at all (Kim et al., 2001, 2005; Jelicic et al., 2004; Elzinga
et al., 2005; Diamond et al., 2006; Payne et al., 2006, 2007;
Nater et al., 2007; Park et al., 2008; Schwabe et al., 2008;
Duncko et al., 2009; Zoladz et al., 2011a, 2013, 2014b).
Importantly, because it is administered prior to encoding, pre-
learning stress can affect both the acquisition and storage
of information; thus, researchers often assess short-term
memory in such studies to infer what stage of information
processing is being affected. A representative summary of
the research studies that have examined stress effects on
hippocampus-dependent learning and memory is illustrated in
Table 1.

The effects of stress on different stages of learning andmemory
appear to depend on an interaction between corticosteroid and
noradrenergic mechanisms in the amygdala and hippocampus.
Inactivation or lesions of the basolateral amygdala (BLA), as well
as systemic or intra-BLA/intra-hippocampus administration of
β-adrenergic receptor antagonists, have been shown to prevent
stress and corticosteroid effects on learning and memory (Kim
et al., 2001; Roozendaal et al., 2003, 2004; Kim et al., 2005;
Zoladz et al., 2011b). Additionally, the effects of stress are
frequently selective for emotionally arousing (i.e., amygdala-
activating) information (Kuhlmann et al., 2005b; Buchanan et al.,
2006; Smeets et al., 2008), emphasizing amygdala involvement
in the effects. Another contributing factor to stress-memory
interactions is the type of information affected. That is to say,
stress often exerts differential effects on learning and memory for
central and peripheral details. During stress or arousal, attention
is narrowed (Easterbrook, 1959), which can hinder one’s ability
to subsequently learn or remember peripheral aspects of an
event or scene. Thus, in some instances, stress can enhance
one’s memory for the gist, or central aspects, while impairing
an individual’s ability to recollect finer details (Kensinger, 2004).
These findings resonate with additional work showing that stress
sometimes facilitates memory for emotional, potentially more
important, information, at the cost of memory for neutral,
potentially less important, information (Payne et al., 2006,
2007).

Theoretical Approaches to Stress Effects
on Cognition

Over the past several decades, numerous theories have been
proposed to account for stress effects on learning and
memory. Initially, researchers emphasized the deleterious effects
of elevated corticosteroid levels on synaptic plasticity and
related them to the effects of stress on learning (Joels and
Vreugdenhil, 1998; Conrad et al., 1999). Glucocorticoid receptors
(GRs), which have a lower affinity for corticosteroids than
mineralocorticoid receptors (MRs), generally only become
occupied when corticosteroid levels rise, such as during times
of stress. The idea put forth was that moderate GR activity is
optimal for cognitive processes, but too much GR activity, such as
that which occurs following stress, has negative repercussions for
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TABLE 1 | Summary of the findings from studies examining acute stress effects on hippocampus-dependent learning and memory.

Study Stress Stress Timing Stress
Duration

Task Effects Caveats

Beckner et al. (2006) Post-learning TSST
Pre-retrieval TSST

30-min delay 10–15 min Film ↑ LTM
---- LTM

Buchanan and Tranel
(2008)

Pre-retrieval TSST 10-min delay 20 min Picture learning ↓ LTM Impairment in cortisol
responders

Buchanan et al. (2006) Post-learning/pre-
retrieval
CPT

1-h post-learning,
10-min pre-retrieval

∼3 min Word learning ↓ LTM Impairment in cortisol
responders

Cahill et al. (2003) Post-learning CPT Immediately ∼3 min Picture learning ↑ LTM

Campbell et al. (2008)∗ Pre-retrieval cat
exposure

Immediately or 60-min
delay

∼20–30 min Water maze ↓ STM

Conboy et al. (2009)∗ Pre-retrieval/post-
learning cat
exposure

Immediately 30 min Water maze ↓ STM

Conrad et al. (2004)∗ Pre-learning restraint
stress

1-h delay 1 h Y-maze ↓ STM Only males impaired

de Quervain et al. (1998)∗ Pre-retrieval foot shock 30-min delay ∼1 min Water maze ↓ LTM

Diamond et al. (1996)∗ Pre-retrieval/post-
learning novelty
stress

Immediately 4 h Radial arm
maze

↓ STM Reference memory
unaffected

Diamond et al. (1999)∗ Pre-retrieval/post-
learning cat
exposure

Immediately 30 min Water maze ↓ STM Easy task unaffected

Diamond et al. (2006)∗ Pre-learning and
pre-retrieval cat
exposure

Immediately 30 min Water maze ↓ LTM

Diamond et al. (2007)∗ Pre-learning cat
exposure

Immediately
30 min delay

2 min Water maze ↑ LTM
---- LTM

Elzinga et al. (2005) Pre-learning cognitive
stress

10–15-min delay 20 min Word list,
paragraph,
spatial

↓ LTM

Felmingham et al. (2012) Post-learning CPT Immediately 3 min Picture learning ↑ LTM Only for emotional info
in females

Jelicic et al. (2004) Pre-learning TSST Immediately 20 min Word learning ↓ STM
↑ STM

Impaired neutral,
enhanced emotional

Kim et al. (2005)∗ Pre-learning
restraint + tailshock

Delayed 60 min Water maze ↓ LTM

Kim et al. (2001)∗ Pre-learning
restraint + tailshock

30–60 min delay 60 min Water maze ↓ LTM

Kuhlmann et al. (2005b) Pre-retrieval TSST 10-min delay ∼10 min Word learning ↓ LTM Only emotional words
impaired

Li et al. (2013) Post-learning/pre-
retrieval
TSST

1-h post-learning,
immediately
pre-retrieval

∼15 min Face learning ↓ STM

Mccullough and Yonelinas
(2013)

Post-learning CPT 20-min delay 3 min Picture learning ↑ STM

Nater et al. (2007) Pre-learning TSST Immediately 15–20 min Word learning ↑ STM Only enhanced cortisol
responders

Park et al. (2006)∗ Pre-retrieval/post-
learning cat
exposure

Immediately 30 min Water maze ↓ LTM

Park et al. (2008)∗ Pre-learning and
pre-retrieval cat
exposure

Immediately 30 min Water maze ↓ LTM

Payne et al. (2007) Pre-learning TSST Immediately 20 min Picture learning ↑ LTM
↓ LTM

Enhanced emotional,
impaired neutral

Payne et al. (2006) Pre-learning TSST A few minutes delay 20 min Picture learning ↓ LTM Only impaired neutral

Payne et al. (2002) Pre-learning TSST Immediately 10–15 min False memory
production

↑ false
memory

(Continued)

Frontiers in Psychology | www.frontiersin.org 3 June 2015 | Volume 6 | Article 910

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Cadle and Zoladz Time-dependent effects of stress

TABLE 1 | Continued

Study Stress Stress Timing Stress
Duration

Task Effects Caveats

Preuss and Wolf (2009) Post-learning TSST 5-min delay 15 min Word learning ↑ LTM Only enhanced neutral

Quaedflieg et al. (2013) Pre-learning MAST Immediately
30-min delay

∼10 min Picture learning ↓ LTM In immediate, cortisol
positively associated
w/recall; in delay,
cortisol negatively
associated w/recall

Sandi et al. (2005)∗ Post-learning/pre-
retrieval cat
exposure

Immediately 30 min Water maze ↑ LTM

Schoofs and Wolf (2009) Pre-retrieval TSST 10-min delay 15 min Word learning ---- LTM Only tested women in
luteal phase

Schwabe and Wolf (2014) Pre-retrieval CPT Immediately
25-min delay
90-min delay

3 min Word learning ---- LTM
↓ LTM
↓ LTM

Schwabe et al. (2009) Pre-retrieval CPT 30-min delay 3 min Word learning ↑ LTM Only enhanced
emotional

Schwabe et al. (2008) Pre-learning CPT 10-min delay 3 min Word learning ↑ LTM Only enhanced neutral

Smeets (2011) Pre-retrieval CPT 15-min delay 3 min Word learning ↓ LTM

Smeets et al. (2008) Pre-learning CPT
Post-learning CPT
Pre-retrieval CPT

5-min delay
5-min delay
8-min delay

3 min Word learning ---- LTM
↑ LTM
↓ LTM

Smeets et al. (2009) Pre-learning TSST
Pre-learning TSST
Post-learning TSST

5 min delay
2 h delay
1 h delay

20 min Stressor-related
and stress-
unrelated
words

↑ LTM
↑ LTM
---- LTM

Only stress-related
words affected

Woodson et al. (2003)∗ Post-learning/pre-
retrieval cat
exposure

Immediately 30–45 min Water maze ↓ STM

Zoladz et al. (2014a) Pre-retrieval CPT Immediately 3 min Word learning ↑ LTM
↓ LTM

Enhanced male cortisol
responders; impaired
male cortisol
non-responders

Zoladz et al. (2014b) Pre-learning CPT Immediately 3 min False memory
production

↑ True
memory
↓ False
memory

Enhanced true memory
in females only

Zoladz et al. (2014c) Pre-learning CPT Immediately 3 min Word list
learning

↑ LTM Enhanced HR
responders only

Zoladz et al. (2011a) Pre-learning CPT Immediately
30-min delay

3 min Word list
learning

↑ LTM
↓ LTM

Only emotional words
affected

Zoladz et al. (2013) Pre-learning CPT 30-min delay 3 min Word list
learning

↓ LTM Only impaired in male
cortisol responders

Zoladz et al. (2010)∗ Post-learning/pre-
retrieval IA training or IA
retrieval

Immediately 30 min Water maze ↓ STM

CPT, cold pressor test; HR, heart rate; IA, inhibitory avoidance; LTM, long-term memory (≥24 h); MAST, Maastricht Acute Stress Test; STM, short-term memory (<24 h);
TSST, Trier Social Stress Test. In some cases, the CPT was the socially evaluated version (SECPT); rat studies are marked with an asterisk (∗).

synaptic plasticity and, therefore, learning. Support for this idea
came from studies reporting a curvilinear, U-shaped relationship
between corticosteroids and hippocampal synaptic plasticity and
learning (Diamond et al., 1992; Andreano and Cahill, 2006),
as well as from research showing that extensive GR activity
results in excessive calcium influx and negative gene-dependent
effects on cellular function (Joels et al., 2003). Combined
with work on chronic stress and corticosteroid-hippocampal
volume relationships observed in humans with psychological

disorders (Campbell et al., 2004; Zoladz and Diamond, 2013), a
majority of the research led investigators to conclude that stress
generally exerts deleterious effects on hippocampal structure and
function.

Over time, a greater appreciation for the complexity of
stress-memory interactions arose, as evidence accumulated
suggesting that stress could enhance, impair or have no effect
on hippocampus-dependent learning and synaptic plasticity.
Researchers began showing that corticosteroids not only have
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delayed, gene-dependent, negative consequences on cellular
activity, but can also exert rapid, non-genomic, facilitative effects
(Orchinik et al., 1991; Karst et al., 2005). This led to much
different theoretical approaches to how stress affects cognition,
including an appreciation for the timing of the stress relative to
learning or memory, the sex of the organism being investigated,
and the type of learning and memory being assessed, to name
a few (Joels et al., 2006; Diamond et al., 2007; Wolf, 2009; Joels
et al., 2011; Schwabe et al., 2012). Diamond and colleagues,
echoing prior theoretical views (Diamond et al., 1990; Shors and
Thompson, 1992), put forth another idea – that stress might
impair memory by producing a memory of its own (Diamond
et al., 2004, 2005). Here, we have extended this view to consider
how stress, as a memory formation process, time-dependently
affects encoding, consolidation, and retrieval.

Stress as a Learning Event

For the past several decades, long-term potentiation (LTP) has
been studied as a putative physiological mechanism underlying
memory formation (Shors and Matzel, 1997; Kim and Yoon,
1998; Diamond et al., 2007; Joels and Krugers, 2007). LTP is a
long-lasting enhancement of synaptic efficacy that results from
high-frequency stimulation (HFS) of afferent fibers (Hebb, 1949;
Marr, 1971; Lomo, 2003) and can be performed in vitro (in brain
slices), in awake and behaving animals, or in anesthetized animals
(Lynch, 2004). In vitro setups keep brain tissue functional via
artificial cerebrospinal fluid and allow investigators to stimulate
and record from populations of neurons. Setups in awake
or anesthetized animals involve intracerebral implantation of
stimulating and recording electrodes via stereotaxic surgery;
these electrodes can subsequently be used to examine LTP
induction. Successful memory formation for a learning event
is believed to coincide with the strengthening of neural
connections and a lasting pattern of altered synaptic weights.
However, if multiple LTP-inducing events occur in close
proximity, the limited number of available neurons may result
in a “ruthless competition” for access to synaptic plasticity
production and successful memory formation (Diamond et al.,
2004, 2005). In other words, with limited resources, the
brain would be forced to prioritize information that is more
important.

In an effort to understand the dynamic nature of
hippocampus-dependent memory formation, researchers
have examined the influence of LTP induction on subsequent
hippocampal synaptic plasticity and learning. Application of
HFS to afferent fibers has been shown to produce widespread
saturation of hippocampal synapses, and the long-lasting
alteration of synaptic weights produced by this HFS can lead to
an inhibition of subsequent LTP and hippocampus-dependent
learning (Huang et al., 1992; Barnes et al., 1994; Moser and
Moser, 1998, 1999; Otnaess et al., 1999). This activity-dependent
modification of synaptic efficacy has been termed metaplasticity,
corresponding to the notion that a prior change in synaptic
plasticity can influence the direction and degree of subsequent
changes in synaptic plasticity (Abraham and Bear, 1996).

Because we know that prior LTP induction can influence
subsequent LTP induction, it stands to reason that the formation
of one memory could influence subsequent memory formation.
However, research has shown that this tends to occur only
when a learning task produces widespread synaptic saturation
(extensively reviewed in Diamond et al., 2004). Learning events
that produce such a strong memory or change in synaptic
plasticity are those that have a strong emotional component
and elicit a significant stress response. Accordingly, research has
revealed very similar molecular mechanisms underlying stress-
and LTP-induced changes in hippocampal function (see Huang
et al., 2005 for a review). Some of these commonalities include
increased early gene induction (Cole et al., 1989; Schreiber
et al., 1991; Platenik et al., 2000), increased NMDA and AMPA
receptor activity (Tocco et al., 1991, 1992; Kim et al., 1996;
Brun et al., 2001), increased levels of neurotrophins [e.g.,
brain-derived neurotropic factor (BDNF; Gooney and Lynch,
2001; Marmigere et al., 2003)] and increased glutamate and
intracellular calcium levels (Sapolsky, 1996; Abraham et al.,
1998; Hossmann, 1999; Venero and Borrell, 1999; Joels, 2001;
Takahashi et al., 2002; Joels et al., 2003; McEwen and Chattarji,
2004). Additional evidence for shared mechanisms between
artificially induced LTP and stress-induced neuroplasticity is
research indicating that NMDA receptor antagonists, which
impair LTP induction, prevent the effects of stress on subsequent
hippocampus-dependent learning and LTP (Kim et al., 1996;
Park et al., 2004). In theory, the NMDA receptor antagonists
block the stress-memory formation, which allows subsequent
hippocampus-dependent learning and LTP to occur. Research
has also shown that despite stress impairing subsequent learning
and LTP induction, the memory for the stress-inducing event
remains intact (Diamond et al., 2004; Zoladz et al., 2010).
Together, these findings have provided support for the idea that
stress induces an endogenous form of LTP that allows a memory
of the stress experience to be formed. Although this is adaptive,
because it allows an organism to remember the stress experience,
in some cases it can also serve to impair subsequent cognitive
processing.

Stress Effects on Learning and Memory
and the Important Role of Timing

Knowing that stress exposure results in the activation of
molecular mechanisms that are remarkably similar to those
observed as a result of artificially induced synaptic plasticity,
we might consider stress, itself, as a memory-producing event.
Viewed in this light, stress, and the waves of psychobiological
responses that result from such a learning event, can be expected
to strongly influence the successful encoding, consolidation, and
retrieval of unrelated information (i.e., information not related to
the stressor).

Stress effects on the retrieval of previously learned information
could be understood as the formation of one memory (i.e.,
the stress-memory) interfering with the retrieval of another
memory. Similar to this line of reasoning, studies have shown
that LTP can produce retrograde amnesia for previously learned
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information (McNaughton et al., 1986; Brun et al., 2001). In
theory, the initial learning task (spatial learning in this case) leads
to the potentiation of a small subset of synapses, and the pre-
retrieval LTP leads to a complete saturation of synaptic nodes.
The all-encompassing wave of plasticity that results from the
LTP induction alters the pattern of synaptic weights throughout
the hippocampus, resulting in an impaired ability to retrieve
the previously formed memory. Consistent with these findings,
and as described above, studies examining stress effects on
retrieval have found that acute stress exposure that occurs before
a memory test leads to impaired memory performance, while
preserving the memory that has formed as a result of stress
exposure (Diamond et al., 2004; Zoladz et al., 2010). In the
referenced studies, rats trained in an inhibitory avoidance task
that involved foot shock as an unconditioned stimulus (i.e., a
stressor) exhibited impaired spatial memory retrieval, despite
retaining the shock-induced fear memory that was formed in
the inhibitory avoidance task. This effect was observed when
the spatial learning and memory occurred on the same day or
when they were separated by 24 h. Importantly, the memory
impairment may not result from complete elimination of the
original memory. Instead, the stress-induced neuroplasticity may
cause an impaired ability to activate the synapses required to
retrieve the previously formed memory (Diamond et al., 2004).

As described above, post-learning stress almost always
enhances long-term memory, but pre-learning stress effects
on long-term memory have resulted in inconsistent findings.
The timing of stress relative to learning has been shown to
influence both types of effects. Studies in which learning or
HFS of afferent fibers occurred immediately before or after
stress exposure revealed a significant enhancement of long-
term memory or an increase in the duration of hippocampal
LTP (reviewed in Diamond et al., 2007). In the same
way that stress exposure immediately after a learning event
leads to a strong memory formation for both the stress
event and unrelated learning event, acute stress exposure
occurring immediately before an unrelated learning event
typically facilitates memory formation for both events (note
that the facilitation can be selective for emotional/neutral or
central/peripheral information). Alternatively, when acute stress
exposure is temporally separated from a prior or subsequent
unrelated learning event, memory formation for that learning
event is often impaired (pre-learning stress) or unaffected (post-
learning stress).

Based on the seemingly time-dependent effects of stress on
hippocampal function, Diamond et al. (2007) developed the
temporal dynamics model of emotional memory processing.
This model illustrates the biphasic modulation of hippocampal
function by stress-induced amygdala activity and is described
in Figure 1. The first phase encompasses a rapid enhancement
of hippocampal plasticity resulting from stress-induced
neurochemical interactions in the amygdala and hippocampus.
Support for this phase comes from electrophysiological work
showing that stimulation of the amygdala immediately prior
to HFS in the hippocampus results in strengthened synaptic
connections in the hippocampus (Akirav and Richter-Levin,
1999, 2002). Importantly, this amygdala-induced enhancement

of hippocampal plasticity depends on both noradrenergic and
corticosteroid mechanisms. During this phase, corticosteroids
released as a result of stress would be expected to exert rapid,
excitatory effects on hippocampal function as a result of non-
genomic activity (Karst et al., 2005; Karst and Joels, 2005). The
stress-induced facilitation of hippocampal function, however, is
short lived and may last only minutes after onset of the stress
experience. The second phase of the model represents a refractory
period during which the acquisition of new information or LTP
induction would be improbable. This refractory period is caused
by the desensitization of glutamatergic receptors, which have
been over-stimulated by stress-induced glutamate release, and
delayed, gene-dependent activity of corticosteroids. Accordingly,
in electrophysiological work, when amygdala stimulation and
hippocampal HFS are separated in time, the resulting synaptic
change is a suppression of hippocampal LTP. Thus, application
of tetanic stimulation during the refractory period would
likely fail to overcome the newly elevated threshold for LTP
induction.

Consistent with the temporal dynamics model, Schwabe
et al. (2012) proposed that the rapid stress-induced increase
of catecholamine and non-genomic corticosteroid activity puts
an organism in a ‘memory formation mode,’ which results
in enhanced memory production for a stressful event and
information that is temporally proximal to such an event.
However, as the stress continues and/or upon the initiation
of gene-dependent corticosteroid activity, a ‘memory storage
mode’ is induced, which impairs cognitive processes that could
compete or interfere with the storage of information about the
stress event. Both Diamond and Schwabe would likely agree
that the temporal dynamics of memory processing subsequent
to stress exposure is adaptive, despite the fact that it can
result in enhancing or deleterious effects on learning and
memory. When a stressful experience occurs, it is beneficial
to survival for an organism to form a strong memory of
that event. Moreover, the suppression of subsequent cognitive
processing or memory formation would also be advantageous
because it allows the brain to focus on storing the stress-
related memory, without interference from competing cognitive
processes.

The temporal dynamics model addresses the functionality of
the hippocampus from stress onset to hours after stress exposure.
This information can be extended to understand how stress, as
a learning experience, influences additional unrelated learning
experiences. We have summarized the research studies that have
examined the effects of acute stress, administered at different
time points, on hippocampus-dependent learning and memory
in Table 1. Stress-induced facilitation or impairment of unrelated
information will be largely determined by the convergence of
information from the stress and learning experiences in “time”
and “space” (Joels et al., 2006). Convergence of the experiences
in “time” relates to the idea of stress and learning occurring in
close temporal proximity, whereas the convergence in “space”
refers to the two events sharing mutual brain circuits that
overlap during the memory formation process. As such, stress
will enhance memory when a learning event occurs in the
same context as the stress event, or when the two events occur
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FIGURE 1 | Temporal dynamics of acute stress effects on
hippocampus-dependent learning and memory. Shortly following
onset, stress induces a rapid increase in norepinephrine (NE),
glutamate (Glu) and several other neurochemical substances (e.g., CRH,
acetylcholine, dopamine, etc.). Within a few minutes, corticosteroids
(CORT) are also released and can exert rapid, non-genomic effects on
cellular activity. Combined, this rapid stress-induced neurochemical
activity results in an enhancement of hippocampal function, and
learning that occurs around this time frame would be enhanced (A).

However, as time and/or the stressor continues, desensitization of
glutamatergic NMDA receptors and delayed, gene-dependent
corticosteroid activity results in an inhibition of hippocampal function,
and learning that occurs around this time frame would be impaired.
The bottom figure (B) illustrates these principles. When stress
(indicated by the red lightning bolts) occurs in close temporal proximity
to learning, long-term memory retrieval will be enhanced. When the
stressor is temporally separated from the learning or occurs prior to
retrieval, long-term memory will be impaired.

closely in time. This enhancement results from shared neural
circuits simultaneously forming memories for the learning event
and stress event. As memory formation for a stress event is
characterized by rapid psychobiological responses that allow for
strong memory development, the resulting alteration of synaptic
plasticity encodes information for both learning experiences. This
enhanced consolidation for arousing experiences and learning
events that occur in close proximity is adaptive in nature, allotting
the highest priority of memory formation to events that code for
information relevant to survival.

Alternatively, if a learning event occurs outside of a
stress event context, or the events are temporally separated,
encoding for this unrelated information would be significantly
impaired as the neural circuits necessary for memory
formation had already been previously saturated. As
discussed, the hippocampus descends into a refractory
period shortly following stress onset due to stress-induced
synaptic saturation. Although the hippocampus does not

display complete suppression, memory formation will
be severely impaired. Much like the rapid facilitation of
hippocampal LTP serves adaptive purposes, the refractory
period also offers the organism benefits. The first benefit
is a protection against increased glutamate exposure,
which would eventually lead to neurotoxicity; second, the
refractory period offers a short window in time in which
the emotional memory experience can reduce corruption by
subsequent learning; third, it allows for the consolidation of
emotional information acquired in phase one (Diamond et al.,
2007).

Conclusion and Caveats

Initial support for the temporal dynamics model of emotional
memory processing came from preclinical work showing that a
brief stressor applied immediately before learning could enhance

Frontiers in Psychology | www.frontiersin.org 7 June 2015 | Volume 6 | Article 910

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Cadle and Zoladz Time-dependent effects of stress

long-term spatial memory in rats (Diamond et al., 2007). If
the stressor was separated from the learning by a period of
30 min, however, no memory enhancement was observed. More
recently, investigators have extended the work to humans. This
research has, for the most part, provided much needed support
for the temporal dynamics model in people (Zoladz et al., 2011a,
2013, 2014b,c; Quaedflieg et al., 2013). However, some issues
have arisen. One is that the sex of the organism appears to be
influential in the types of effects that stressor timing has on
learning and memory. Indeed, the temporal dynamics model
was originally based on research performed in male, but not
female, rodents. Thus, it is perhaps not surprising that work in
humans has shown that females can respond very differently to
the same stressor. As an example, Zoladz et al. (2013) reported
that males, but not females, exhibited an impairment of long-
term memory when exposed to a brief stressor 30 min prior to
learning. These investigators also showed that stress immediately
before learning reduced false memory production in males and
females but enhanced true memory in females only (Zoladz et al.,
2014c).

One factor that may underlie these observed sex-dependent
effects is the modulatory role female sex hormones can exert
on physiological mechanisms involved in memory formation.
As many studies that have included female participants did
not control for phase of the menstrual cycle, levels of estrogen
and progesterone, or use of oral contraceptives, the possible
interaction that may be occurring between female sex hormones
and the time-dependent effects of stress-induced neurochemicals
is not well understood. Further research investigating the
modulatory role that female sex hormones may be playing in
stress effects on learning and memory may offer much needed
information as to how the timing of stress differentially influences
learning and memory in males versus females.

An additional nuance that is important when considering the
temporal dynamics model is the severity of the stressor. For
severe stressors, the excitation phase of hippocampal function
could be much more short-lived, or in the case of traumatic
stressors, non-existent. For milder stressors, it is possible that the
excitation phase could last longer. That the temporal dynamics

of stress-induced alterations of hippocampal function could vary
from stressor to stressor could relate to individual differences
in physiological responses to stress, perceptions of control in
times of stress, and what constitutes a stressful event. Numerous
studies have shown that some individuals respond strongly to
laboratory stressors (defined as “Responders”), while others show
little changes in SNS or HPA axis activity (defined as “Non-
Responders”). Moreover, it may be useful to consider what type
of genetic variations across individuals could make them more
or less susceptible to stress-induced changes in amygdala and
hippocampal function. For instance, in a recent study, we showed
that female carriers of the ADRA2B deletion variant (a genetic
alteration that make the noradrenergic systemmore responsive to
stress) were more susceptible to stress-induced enhancements of
long-termmemory (Zoladz et al., 2014b). If some genetic variants
influence susceptibility to stress-induced enhancements of long-
term memory, this could lend insight into who is more likely to
form an intrusive, traumatic memory following extreme stress.

Finally, it is worth noting that the idea of stress inducing
an amygdala-dependent biphasic effect on hippocampal
function is largely dependent on electrophysiological work
focusing more exclusively on the perforant pathway, which
terminates in the dentate gyrus of the hippocampus. Other
electrophysiological work has shown that corticosteorids
can exert much different effects on different hippocampal
subregions, such as CA1 and CA3 (Joels et al., 2009).
Therefore, stress-induced amygdala activity, which biphasically
influences dentate gyrus LTP, could affect other areas
of the hippocampus in a different time-dependent
manner.

Clearly, stress can exert differential effects on learning and
memory depending on when it is administered and how long
it lasts. Although the temporal dynamics notion may be an
oversimplification of an overly complex area of research, it
provides a useful guide for understanding how stress time-
dependently influences learning and its neurobiological basis.
Future work is necessary to clarify how timing interacts with
stress effects on memory and how sex and individual differences
can influence these effects.
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