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The importance of structure coefficients and analogs of regression weights for analysis

within the general linear model (GLM) has been well-documented. The purpose of this

study was to investigate bias in squared structure coefficients in the context of multiple

regression and to determine if a formula that had been shown to correct for bias in

squared Pearson correlation coefficients and coefficients of determination could be used

to correct for bias in squared regression structure coefficients. Using data from a Monte

Carlo simulation, this study found that squared regression structure coefficients corrected

with Pratt’s formula produced less biased estimates and might be more accurate and

stable estimates of population squared regression structure coefficients than estimates

with no such corrections. While our findings are in line with prior literature that identified

multicollinearity as a predictor of bias in squared regression structure coefficients but not

coefficients of determination, the findings from this study are unique in that the level of

predictive power, number of predictors, and sample size were also observed to contribute

bias in squared regression structure coefficients.

Keywords: structure coefficients, beta weights, multiple linear regression, general linear model

Investigating Bias in Regression Squared Structure Coefficients

Empirical reviews of published analytic practices show that multiple regression has been a widely
used statistical method within the social sciences (cf. Willson, 1980; Goodwin and Goodwin, 1985;
Elmore and Woehlke, 1988; Kieffer et al., 2001; Leach and Henson, 2007). In such studies, it is
not unusual for predictors to be correlated. Increases in multicollinearity are problematic because
multicollinearity can inflate variances of regression coefficients, and can complicate the ability to
identify the importance of predictor variables (Stevens, 2002).

In the presence of correlated predictors, Courville and Thompson (2001) advised researchers to
use structure coefficients or correlation coefficients in addition to β weights when interpreting the
results of multiple regression. While β weights indicate the predicted change in the standardized
dependent variable for every unit change in a given standardized predictor variable, holding all
other predictors constant, squared structure coefficients indicate how much of the regression effect
can be attributed to a given predictor. It is possible for a predictor to have a low β weight and a
high structure coefficient (indicative of multicollinearity) or a high β weight and a low structure
coefficient (indicative of suppression). Without considering both sets of coefficients, researchers
may incorrectly interpret a predictor as making little to no contribution to the regression effect
because its contribution is being masked due to multicollinearity as well as miss the presence of
suppression. As such, both sets of coefficients are needed to help researchers interpret regression
results in the presence of multicollinearity. Additionally, the coefficients answer different research
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questions. As noted by Nathans et al. (2012), β weights can be
used the answer the question, “What is the contribution of each
independent variable to the regression equation, holding all other
independent variables constant? (p. 3) and squared structure
coefficients can be used the answer the question, “How much
variance in the predicted scores for the dependent variable (̂y)
can be attributed to each independent variable when variance is
allowed to be shared between independent variables?” (p. 7).

In the present study, we investigated the bias of squared
regression structure coefficients and determined if a formula,
that has been used to correct for bias in coefficients of
determination and Pearson r2, could be used to correct for bias
in squared regression structure coefficients. Squared regression
structure coefficients with less bias will be more true to
the population parameters and more accurately describe how
much of the regression effect can be attributed to a given
predictor. In the remainder of this section, we review the general
linear model (GLM) as a rubric for regression interpretation
followed by the squared regression structure coefficient, squared
multiple correlation coefficient, Pearson r2, and sample sizes
in published literature before presenting the purpose of the
study.

General Linear Model (GLM) as a Rubric for
Regression Interpretation

Multiple regression analyses are part of the GLM. Furthermore,
all analytic methods that are part of the GLM are correlational
and have the capability of producing variance-accounted-for
effect sizes such as R2, η2, ω2, which are analogs to r2 (see
Thompson, 2000, 2006; Zientek and Thompson, 2009). As
Graham (2008) further explained,

The vast majority of parametric statistical procedures in common
use are part of (a single analytic family called) the GLM, including
the t-test, analysis of variance (ANOVA), multiple regression,
descriptive discriminant analysis (DDA), multivariate analysis of
variance (MANOVA), canonical correlation analysis (CCA), and
structural equation modeling (SEM). Moreover, these procedures
are hierarchical (italics added), in that some procedures are special
cases of others. (p. 485).

The hierarchical structure of the GLM has been demonstrated by
the work of several researchers. First, Cohen (1968) showed that
all univariate parametric analyses such as t-tests, ANOVAs, and
Pearson r are subsumed as special cases of multiple regression
analysis. Next, Knapp (1978) showed that all of the common
univariate and multivariate analyses conducted in research are
special cases of canonical correlation analysis. Finally, Bagozzi
et al. (1981) and later Graham (2008) showed that SEM can be
categorized as an even more general case of the GLM (see Fan,
1997 for more detail).

The importance of interpreting structure coefficients and
analogs of regression weights for statistical analyses within the
GLM permeates the literature. For example, within the GLM for
the exploratory factor analysis case, Gorsuch (1983) argued that
the interpretation of factors is contingent on the factor structure.

Graham et al. (2003) made a similar argument with respect to
the importance of interpreting both factor pattern coefficients–
the analogs of regression β weights–and structure coefficients in
confirmatory factor analysis.

Kerlinger and Pedhazur (1973) noted that the weights that
are analogs to regression β weights emerge as a weak link in the
canonical correlation chain. According to Meredith (1964), when
variables are moderately intercorrelated, there is the possibility
that interpretations of canonical variables will be nearly nil by
inspection of regression weights (function coefficients). Thus,
Thompson and Borrello (1985; also see Dunlap and Landis, 1998)
argued that

If structure coefficients rather than function coefficients should
be interpreted in the canonical case, logic suggests that perhaps
structure coefficients should be interpreted in the regression case,
since the two methods are actually identical. (p. 205).

Or, perhaps more appropriately, both β weights and structure
coefficients should be interpreted whenever regression predictor
variables are correlated with each other. A review of relative
importance indices further indicates that β weights and validity
coefficients (zero-order correlations between given predictor
variables and the dependent variable) or structure coefficients
are indices that have been interpreted to determine relative
importance for multiple regression results (see Johnson and
Lebreton, 2004).

Structure Coefficients rx̂y
Regression structure coefficients rxŷ are the bivariate correlation
coefficients between given predictor variables and the latent
predicted outcome variable (i.e., Ŷ). With a few simple
commands, regression structure coefficients can be included in
statistical output (Kraha et al., 2012). In addition, regression
structure coefficients can be calculated by dividing the validity
coefficient for a predictor (i.e., bivariate correlation between
a predictor variable X and the dependent variable Y) by
the multiple correlation coefficient: rxŷ =

rxy
Ryŷ

. Because

regression β weights are the multiplicative weights applied to
the standardized predictor variables to compute scores on the
latent predicted outcome variable, simultaneously interpreting
structure coefficients or validity coefficients along with β

weights allows researchers to view different dynamics within the
data.

Because, both the squared multiple correlation coefficient
(R2

yŷ
) and the squared validity coefficient (r2xy) are biased (see

Yin and Fan, 2001; Skidmore and Thompson, 2011), logically,
r2
xŷ

is biased. We located only one study that conducted a Monte

Carlo study that included regression structure coefficients. Jiang
and Smith (2002) determined that rxŷ increased as a function
of multicollinearity, was relatively stable across multiple sample
sizes, and increased when a strong predictor was excluded from
the model. Because R2

yŷ
and r2xy are terms in the r2

xŷ
formula

(r2
xŷ

=
r2xy

R2
yŷ

) and both have been identified as being biased, a

review of those statistics is warranted.
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Squared Multiple Correlation Coefficient R2
ŷy

The squared multiple correlation coefficient R2
yŷ

has been one

of the most reported effect sizes, possibly because of the
pervasiveness of multiple regression analyses in social science
research and the fact that R2

yŷ
is routinely and automatically

produced in statistical software output (Kirk, 1996; Alhija and
Levy, 2009). However, R2

yŷ
tends to be positively biased because

the assumption “that the values of the independent variables
are known constants and are fixed by the researcher before
the experiment” is usually not met (see Yin and Fan, 2001, p.
206). In order to shrink R2

yŷ
, which is the denominator of r2

xŷ
,

a number of correction formulas have been developed. By the
late 1990s, the field had not yet decided on the best correction
formula; thus, several researchers began a quest to identify
the formula that created the smallest amount of bias under
various conditions. The research produced inconsistent results
about the best correction formula to apply, possibly because
of methodological issues, such as a given simulation including
a limited number of formulas investigated or using real data
instead of simulated data (see Raju et al., 1999; Yin and Fan,
2001). For instance, results from Raju et al. (1999) suggested
that the Ezekiel (reported as Adjusted R Square in standard SPSS
output), Smith, and Wherry formulas were good for estimating
the population squared multiple correlation coefficient (ρ2

yŷ
).

However, Raju et al. acknowledged that the use of one dataset
limited their ability to take into consideration various number
of predictor variables and population effect sizes. In a review
of correction formulas contained in published studies, Leach
and Henson (2007) showed that the Ezekiel correction was
the most conservative and Claudy-3 was the least conservative
correction for sampling error. In a Monte Carlo study, Yin
and Fan (2001) investigated bias for six formula corrections
for R2

yŷ
and found that the Pratt formula (Cureton, personal

communication, October 20, 1964; as cited in Claudy, 1978, p.
597) was the best performer as an unbiased estimator for ρ2

yŷ

under three multicollinearity and population conditions and five
N/p conditions and the Olkin and Pratt formula was the second
best performer under those conditions. As indicated in Equation
(1), Pratt’s formula adjusts R2

yŷ
based on the sample size (N) and

number of predictors (p) in a particular regression model:

ρ2
yŷ = 1−

(N − 3) (1− R2)

N − p− 1
[1+

2
(
1− R2

)

N − p− 2.3
] (1)

Yin and Fan’s (2001) results indicated that the Pratt formula
generated the smallest amount of bias for estimating ρ2

yŷ
,

particularly for relatively small ratios of N/p, and the Claudy
formula-3 generated the largest amount of bias. Furthermore,
they determined that for all of the correction formulas they
investigated, when the ratio N/p was large, or around 100, almost
all of the six correction formulas were unbiased. However, their
results suggest that when N is around 60 and with 2 predictor
variables, the Pratt and Claudy-3 formula might be the best
unbiased estimator ρ2

yŷ
; and when N is around 100 with 2

predictor variables, theWherry-2 was the best unbiased estimator

for ρ2
yŷ
. Confirmation that choosing the most appropriate

correction formula can be complicated is evidenced by the fact
that three different correction formulas yield the smallest amount
of bias when the sample size is 200 and there are 2, 4, or 8
predictor variables (i.e., Smith and Wherry-1, Claudy-3, and
Wherry-2, respectively). Yin and Fan, therefore, recommended
that researchers examine the results published in their Table 3
to determine the formula to use under various sample sizes and
numbers of predictors. Particular attention should be given to
the formulas used in statistical software because the Adjusted R
Square reported in standard SPSS output sometimes has been
correctly attributed to Ezekiel, and sometimesmistakenly credited
to Wherry (cf. Leach and Henson, 2007).

As noted by Leach and Henson (2007), it would be logical that
the generic factors that influence sampling error would influence
the shrinkage of R2

yŷ
. Sampling error decreases as (a) sample size

increases, (b) the number of predictor variables decreases, and (c)
population effect sizes increase (Thompson, 2006). Results from
Raju et al. (1999) revealed that as sample size increases, the bias
for the correction formulas for ρ2

yŷ
tend to decrease. In the study

by Yin and Fan (2001), sample size was the most important factor
that contributed to the variance of bias, although the amount of
contributions of all of the factors was small.

Squared Validity Coefficient r2xy
The squared validity coefficient is the Pearson r2 (herein referred
to as r2) between the dependent variable Y and a given predictor
variable X (r2xy). When there is one predictor variable in the

model, r2xy and R2 are equivalent. Researchers typically do not

apply a correction formula to r2 even though sampling error
certainly affects these estimates too. Wang and Thompson (2007)
examined the bias of r2 and sought to determine under a variety
of conditions the best formula for minimizing the bias of r2.
They investigated five correction formulas for R2

yŷ
(i.e., Claudy,

Ezekiel, Olkin-Pratt, Pratt, and Smith) and applied those to r2.
They found that when that when the sample sizes were small and
the population effect sizes were small, r2 was biased. However,
while all of the correction formulas except Claudy (1978) seemed
to reasonably control bias for r2 for a variety of conditions,
the Ezekiel (1929) and Smith (as cited in Ezekiel, 1929, p.
100) correction formulas appeared to be the most suitable for
controlling the exhibited bias. Skidmore and Thompson (2011)
built on the Wang and Thompson (2007) study by investigating
absolute bias and including another correction not including in
their study (i.e., Olkin and Pratt, 1958). They found that the
best correction formula for r2 was the Pratt formula but that
the Olkin–Pratt Extended was a viable option and the Ezekiel
formula was a reasonable option. Shieh (2010) also found that the
Olkin and Pratt (1958) formula resulted in a minimal amount of
bias for Pearson r.

Sample Sizes in Published Research
Because sample size is an important feature of research studies,
it is important to know the sample sizes typically published in
research. Reviews of research have indicated that sample sizes
across various content areas with the majority containing fewer
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than 200 participants. The review of sample sizes published
in core psychological research across four journals found no
statistically significant differences in the median sample size in
1955 and the sample sizes of studies published in 1977, 1995,
and 2006. In 1955, they found the median of 448 sample sizes
in four reviewed journals was 59.95 with a mean of 180.49 (SD =

193.86). In 2006, they found the median of 690 sample size was
40 with the mean sample size of 195.78 (SD = 680.02). The
third quartile of data was 131.30 for 1955 and 136 for 2006.
Thus, the largest range occurred between the top 25% of the data.
In education and counseling psychology, Kieffer et al. (2001)
examined sample sizes of quantitative research studies that were
published over a 10-year timeframe. In their review of articles,
median samples sizes for each of the 10 years in the American
Educational Research Journal ranged from 43 to 169 and median
samples sizes in the Journal of Counseling Psychology ranged from
76 to 139.

Purpose of the Present Study

Various statistics can be interpreted when a regression effect
size is deemed noteworthy, including dominance statistics and
relative weights. However, as regression β weights are readily
available in statistical software output, applied researchers are
advised to interpret β weights alongside structure coefficients in
the presence of correlated predictors (Courville and Thompson,
2001). Despite realization thatR2

yŷ
and r2 are positively biased, the

discussion of bias has not typically included structure coefficients.
If each term in the structure coefficient formula is biased, we
hypothesize that structure coefficients are also biased. Even
though Jiang and Smith (2002) examined rxŷ in theirMonte Carlo

study, they did not seek to find a correction formula for r2
xŷ
.

The purpose of the present study was to investigate bias in r2
xŷ

across a number of study conditions to determine if there was
sufficient bias to warrant correction, and, if so, to determine if a
formula (i.e., Pratt’s) that had been shown to correct for bias in
r2 and R2

yŷ
could be used to correct for bias in r2

xŷ
. Investigating

bias under additional conditions than have been previously
considered (cf., Jiang and Smith, 2002) and analyzing the effects
of applying relevant correction formula will advance researchers’
abilities to interpret MR results. The sample sizes were chosen
that were reflective of articles published in education, psychology,
and counseling (Kieffer et al., 2001; Marszalek et al., 2011).

Method

We conducted a Monte Carlo simulation to investigate the
bias of r2

xŷ
under the same study conditions in which Yin

and Fan (2001) investigated the bias of corrected R2
yŷ
. These

study conditions included three population squared multiple
correlation coefficients (ρ2

yŷ
= 0.20, 0.50, 80), three levels of

multicollinearity among the predictors in the population (ρ2
xx =

0.10, 0.30, 50), five sample sizes (n = 20, 40, 60, 100, 200), and
three levels of predictor set size (k = 2, 4, 8). As in Yin and
Fan (2001), we choose the “correlation coefficients between the

dependent and independent variables to yield the desired squared
populationmultiple correlation coefficient” (p. 213) andmodeled
the correlations among the independent variables to be the same
(e.g., ρx1x2 = ρx1x3). As can be seen in Table 1, the population
squared validity coefficients (ρ2

xy) varied from 0.11 to 0.60 and the

population squared structure coefficients (ρ2
xŷ
) varied from 0.21

to 0.75 as a function of ρ2
yŷ
, ρxx, and k.

In total, 27 population inter-correlation matrices were derived
based on the study parameters. These matrices served as the
input parameters to the mvrnorm function (Venables and Ripley,
2002) in R (R Development Core Team, 2015), which was used
to generate the population data for a given simulation design
cell. For each cell, 1 million cases were simulated. To confirm
that the code correctly created the population data, we compared
the covariance matrix from each set of population data to its
corresponding input covariance matrix and determined that the
code was correct.

To sample from the populations, we next employed the
sample function in R and the standard simulation practices
outlined in Taylor et al. (2006) such that “cases were drawn

TABLE 1 | Population parameter study conditions.

k ρ
2
ŷy

ρxx ρ
2
xy ρ

2
x̂y

2 0.2 0.1 0.11 0.55

2 0.5 0.1 0.28 0.55

2 0.8 0.1 0.44 0.55

2 0.2 0.3 0.13 0.65

2 0.5 0.3 0.33 0.65

2 0.8 0.3 0.52 0.65

2 0.2 0.5 0.15 0.75

2 0.5 0.5 0.38 0.75

2 0.8 0.5 0.60 0.75

4 0.2 0.1 0.07 0.33

4 0.5 0.1 0.16 0.33

4 0.8 0.1 0.26 0.33

4 0.2 0.3 0.10 0.48

4 0.5 0.3 0.24 0.48

4 0.8 0.3 0.38 0.48

4 0.2 0.5 0.13 0.63

4 0.5 0.5 0.31 0.63

4 0.8 0.5 0.50 0.63

8 0.2 0.1 0.04 0.21

8 0.5 0.1 0.11 0.21

8 0.8 0.1 0.17 0.21

8 0.2 0.3 0.08 0.39

8 0.5 0.3 0.19 0.39

8 0.8 0.3 0.31 0.39

8 0.2 0.5 0.11 0.56

8 0.5 0.5 0.28 0.56

8 0.8 0.5 0.45 0.56

k, number of predictors; ρ2
yŷ
, population squared multiple correlation coefficient; ρxx ,

population correlation coefficient between predictors; ρ2
xy , population squared validity

coefficient; ρ2
xŷ
, population squared structure coefficient.
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without replacement within a sample but with replacement
across samples” (p. 233). We drew 5000 samples under each
simulation design condition to minimize the standard error of
simulation.

In each of the 675,000 (3×3× 5×3× 5000) samples, bias was
computed by subtracting known population parameters from
sample estimates. Positive bias values reflect coefficients that
overestimated true population parameters, while negative bias
values reflect coefficients that underestimated true population
parameters. We used Pratt’s formula to compute corrected R2

yŷ
s

and r2xys which were then used to compute corrected r2
xŷ
s because

Pratt’s formula was shown to yield less bias in prior studies for
R2
yŷ
and r2. We followed Shieh’s (2008) recommendation and set

negative corrected r2xys and R2
yŷ
s to zero. Corrected r2

xŷ
s were set

to zero for all instances when corrected r2xys and R2
yŷ
s were zero.

Corrected r2
xŷ
s were set to one in cases where corrected r2xys were

greater than corrected R2
yŷ
s.

A multi-way ANOVA was performed on the uncorrected
and corrected r2

xŷ
, R2

yŷ
, and r2xy to determine the effect of the

study conditions and their interactions. We used ANOVA η2

values to partition the total sums of squares into non-overlapping
components (cf. Wang and Thompson, 2007) and ANOVA
estimated marginal means to plot bias as a function of the
study parameters (cf. Skidmore and Thompson, 2011). We also
computed the percentage of cells where the average bias was
within the bounds of± 0.01 in keeping with Yin and Fan (2001).

Results

The mean bias (and SD) for the uncorrected r2
xŷ
, R2

yŷ
, and r2xy

were −0.03 (0.08), 0.04 (0.11), and 0.01 (0.06), respectively (see
Table 2). The corrected versions of r2

xŷ
,R2

yŷ
, and r2xy resulted in a

lower set of mean bias across the study conditions:−0.010, 0.001,
and 0.002, respectively. While the mean bias for the uncorrected
statistics do not appear to be substantial, analyses of bias as a
function of study parameters revealed cases where the amount of
bias was sufficiently large enough (>|0.01|) to warrant misleading
conclusions regarding the percentage of the regression effect that
should validly be attributed to a predictor in the population (cf.,
Yin and Fan, 2001).

The ANOVA η2 values (see Table 2) suggest that the negative
bias in r2

xŷ
appeared to be mostly a function of the study’s

main effects as well as number of interaction effects including
n:ρ2

yŷ
, ρ2

yŷ
:ρ2

xx, ρ
2
yŷ
:k, and ρ2

xx:k. However, the ANOVA estimated

marginal means tell somewhat of a different story (see Figure 1).
When ρ2

yŷ
= 0.80, bias was minimal as long as the level of

multicollinearity = 0.30 or 0.10. When ρ2
yŷ

= 0.50 and ρ2
yŷ

=

0.20, bias was minimal as long as the level of multicollinearity =
0.10. In other instances, bias appeared to be a factor of k and n,
with the greatest impact being seen in the case when ρ2

yŷ
= 0.20

and ρ2
xx = 0.50. The role that k and n plays in the bias of r2

xŷ

appears to stem from related bias in R2
yŷ
, where the interaction

between k and n appears to be a function of ρ2
yŷ
(see Figure 2). It

TABLE 2 | Statistics for bias within the 135 (3 × 3 × 3 × 5) simulation

conditions.

Statistic/source Uncorrected Corrected

r2
xŷ

R2
yŷ

r2xy r2
xŷ

R2
yŷ

r2xy

M −0.03 0.04 0.01 −0.010 0.001 0.002

SD 0.08 0.11 0.06 0.106 0.103 0.066

η
2 VALUES FOR SIMULATION DESIGN FACTORS FOR BIAS

n 4.10% 1.56% 1.38% 2.35% 0.06% 0.09%

ρ2
yŷ

8.94% 5.75% 0.54% 1.72% 0.05% 0.03%

ρ2xx 4.85% 0.01% 0.07% 0.27% 0.01% 0.00%

k 3.22% 6.89% 0.12% 0.06% 0.01% 0.02%

n:ρ2
yŷ

2.27% 3.37% 0.35% 3.98% 0.17% 0.10%

n:ρ2xx 2.03% 0.00% 0.08% 0.64% 0.00% 0.02%

ρ2
yŷ

: ρ2xx 3.90% 0.01% 0.03% 1.11% 0.01% 0.07%

n:k 0.64% 4.16% 0.07% 0.03% 0.02% 0.02%

ρ2
yŷ

: k 2.16% 1.49% 0.04% 0.04% 0.01% 0.01%

ρ2xx : k 2.50% 0.01% 0.09% 0.36% 0.01% 0.06%

n:ρ2
yŷ

: ρ2xx 0.63% 0.00% 0.01% 0.77% 0.00% 0.01%

n:ρ2
yŷ

: k 0.34% 0.88% 0.01% 0.05% 0.04% 0.00%

n:ρ2xx : k 0.36% 0.00% 0.01% 0.12% 0.00% 0.01%

ρ2
yŷ

: ρ2xx : k 1.17% 0.03% 0.03% 0.37% 0.02% 0.03%

n:ρ2
yŷ

: ρ2xx : k 0.06% 0.01% 0.01% 0.10% 0.01% 0.00%

Total 37.17% 24.17% 2.84% 11.97% 0.42% 0.47%

r2
xŷ
, sample squared structure coefficient; R2

yŷ
, sample squared multiple correlation

coefficient; r2xy , sample squared validity coefficient; n, sample size; ρ
2
yŷ
, population squared

multiple correlation coefficient; ρxx , population correlation coefficient between predictors;

k, number of predictors.

would also appear that the role that sample size play in the bias of
r2xy contributes to the bias of r

2
xŷ
(see Figure 3).

After applying Pratt’s formula to r2
xŷ
, R2

yŷ
, and r2xy, we see

that with few exceptions, study parameters played little role in
identifying the remaining bias in the corrected estimates (see
Table 2, Figures 1–3). The notable exception is when ρ2

yŷ
= 0.20

and n = 20. In this case, positive bias in ρ2
yŷ

generally increased

as k increased. For r2
xŷ
, whether k generated positive or negative

bias was a function of ρ2
xx (see Figures 1, 2).

The impact of the study conditions can also be seen in Table 3

that outlines the proportions of cell conditions in which unbiased
estimated where observed across the study’s main effect. Across
r2
xŷ
, R2

yŷ
, and r2xy, the proportion of cell conditions with unbiased

estimates were generally higher for corrected estimates across
all levels of the study’s main effects with the exception of r2

xŷ

when ρ2
xx = 0.10. In addition, it would appear that further

work is necessary to produce accurate and stable estimates of ρ2
xŷ
,

particularly when ρ2
yŷ
and n are small.

Discussion

Using data from a Monte Carlo simulation, we found that
r2
xŷ

computed from R2
yŷ

and r2xy corrected with Pratt’s formula

produced less biased estimates and more stable estimates of
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FIGURE 1 | Bias of uncorrected squared structure coefficients (top panel) and corrected squared structure coefficients (bottom panel). k, number of

predictors; n, sample size.
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FIGURE 2 | Bias of regression effects (top panel) and corrected regression effects (bottom panel). k, number of predictors; n, sample size.
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FIGURE 3 | Bias of squared validity coefficients (top panel) and corrected squared validity coefficients (bottom panel). k, number of predictors; n, sample

size.
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TABLE 3 | Proportions of cell conditions in which unbiased estimates

observed across main effects.

Main effect Uncorrected Corrected

r2
x̂y

R2
ŷy

r2xy r2
x̂y

R2
ŷy

r2xy

ρ
2
ŷy

0.20 0.27 0.09 0.40 0.33 0.84 0.82

0.50 0.60 0.24 0.62 0.91 1.00 1.00

0.80 0.87 0.62 0.84 0.96 1.00 1.00

ρ
2
xx

0.10 0.82 0.29 0.53 0.71 0.96 0.91

0.30 0.53 0.31 0.60 0.76 0.96 0.93

0.50 0.38 0.36 0.73 0.71 0.93 0.98

n

20 0.26 0.11 0.19 0.52 0.74 0.74

40 0.56 0.19 0.33 0.67 1.00 0.96

60 0.63 0.33 0.67 0.74 1.00 1.00

100 0.67 0.33 0.93 0.85 1.00 1.00

200 0.78 0.63 1.00 0.85 1.00 1.00

k

2 0.73 0.62 0.71 0.76 0.71 0.96

4 0.60 0.27 0.60 0.69 0.60 0.93

8 0.40 0.07 0.56 0.73 0.56 0.93

r2
xŷ

= sample squared structure coefficient. R2
yŷ

= sample squared multiple correlation

coefficient. r2xy = sample squared validity coefficient. ρ2
yŷ

= population squared multiple

correlation coefficient. ρxx = population correlation coefficient between predictors. n =

sample size. k = number of predictors.

ρ2
yŷ

than estimates with no such corrections. The findings

from this study are in line with prior literature that identified
multicollinearity as a predictor of bias in rxŷ but not R

2
yŷ
(cf. Yin

and Fan, 2001; Jiang and Smith, 2002). The findings from this
study are unique as ρ2

yŷ
, k and n were also observed to contribute

bias to r2
xŷ
. This latter finding should not be surprising as it is

logical these same factors influence sampling error and would
therefore influence the bias of R2

yŷ
and r2

xŷ
(see discussion by

Leach and Henson, 2007).
Researchers should be aware that when analyzing regression

models with low to moderate amounts of explained variance in
the presence of moderate to high amounts of multicollinearity,
observed squared structure coefficients may underrepresent the
predictive power of an independent variable in the population.
Especially when the sample size/predictor ratio is 10 or less,
the predictive power of an independent variable could be
underrepresented by as much as 30%. Even with a more
optimum sample size/predictor ratio of 10, our study revealed
instances when the predictive power of an independent variable
as measured by a uncorrected squared structure coefficient
was underrepresented by as much as 10%. When considering
Cohen’s (1988) guidelines for the interpretation of variance
accounted statistics, this amount of bias ranges between
medium to large. Correcting observed structure coefficients
using Pratt’s formula is likely to yield less biased results
with the exception of models with low amounts of explained
variance.

The findings of the present study should be reviewed in
light of the study’s limitations. Our study considered a limited
number of study conditions and the possibility exists that other
study conditions might produce different results. An interesting
scenario to study, for example, would be to consider conditions
where validity coefficients and correlations among predictors
were heterogeneous as in LeBreton et al. (2004). Another
interesting scenario might be to conduct a study where specific
values of ρxy were simulated independently of values of ρ2

yŷ
. In

such a design, ρxx would therefore be chosen to yield desired
levels of ρ2

yŷ
given desired values of ρxy. Future research might

also examine other correction formulas than Pratt’s. While Pratt’s
formula was chosen based on our review of the literature and
has been touted as one of the best corrections for R2

yŷ
and r2,

knowing howmuch better one formula does versus another could
be informative. In the meantime, however, the realization that
researchers might be able to report more accurate and stable
estimates of ρ2

yŷ
by computing r2

xŷ
from corrected R2

yŷ
and r2xy with

Pratt’s formula should lead to the reporting of less biased results.

In a research world where multicollinearity is omnipresent,
sample and effect sizes impact power, and the number of
predictor variables affects regression results, we need to better
understand how to minimize bias of r2

xŷ
. Identifying the best

correction formula will help in interpreting sample results that
are more true to the population parameters. Even though the
reporting of correction formulas has been recommended, many
researchers are not adhering to those recommendations. In
addition, when effect sizes have been reported, many authors
do not report the correction formula used (Leach and Henson,
2007). Providing further evidence into the amount of bias
exhibited and how to correct for this bias will help improve the
validity of quantitative research.

The present study may also be beneficial for researchers as it
serves as a foundation for multivariate analyses in the general
linear model. For example, structure coefficients are utilized in
many analyses within the general linear model. The results for
multiple regressions, given similar conditions, should transfer
to other analyses that produce structure coefficients. Utilizing
decisions for one analyses based on another analyses is not new.
For example, when conducting canonical correlation analyses,
Sherry and Henson (2005) advocated cutoff values (i.e., 0.45)
for noteworthy structure coefficients that typically have been
used in exploratory factor analysis. Our study, therefore, could
serve as a launching-off point to investigate corrections for
structure coefficients for canonical correlation analyses, which
subsumes all other analyses within the GLM (Knapp, 1978). One
wonders, for example, to what degree decisions made to consider
variables as noteworthy in canonical correlation based on fixed
cutoff values of structure coefficients may have been influenced
by bias. As noted by Thompson (1990), utilizing correction
formulas in multivariate effect sizes can alert researchers for the
need to conduct further analyses to resolve ambiguity when the
noteworthiness of non-adjusted and adjusted effect sizes are not
congruent.

Multiple regression has been a prevalent analyses in education
research (Willson, 1980; Elmore and Woehlke, 1988; Kieffer
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et al., 2001; Zientek et al., 2008). Structure coefficients
are essential to correct result interpretation in most cases
(Thompson and Borrello, 1985; Courville and Thompson,
2001). Thus, reporting adjusted structure coefficients with

the smallest amount of bias and then conducting follow-up
analyses such as bootstrapping, cross-validation, or jackknife
procedures can help researchers arrive at correct result
interpretations.
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