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The papers in this volume of Frontiers all relate to 3D vision. What, then, is a paper about visual
stability doing among them? I will argue that these topics are really two sides of the same coin: if we
are not to be surprised by the changes in images that occur as we move (we see a stable world), we
must have some sort of representation of the 3D environment that has given rise to those images.

In general, 3D vision arises from viewing the world frommultiple vantage points. Of course, 3D
structure can be deduced from “pictorial cues” (i.e., those that are available from a single vantage
point) but this is a special case relying on past experience. The more general case of multiple-view
vision entails the construction of a coherent interpretation of changing images as the observer
moves, based on the assumption of a static 3D scene. In other words, if an observer is not to
be bewildered by these changing images, they must have a some type of internal representation
that allows them to predict the way that the image will change as they move. This representation
(whatever form it takes) is the basis of their 3D vision, while the successful predictions underlie
their subjective impression of visual stability. Thus, 3D vision and visual stability are two different
aspects of the same problem.

We can see this clearly when we look at the standard computer vision approach to 3D vision,
whose goal is to find the 3-dimensional structure of the scene (X) and the rotation and translation of
the camera in the ith image (Ri, Ti) that gives rise to a set of image locations (xi), where xi is a 2 by n
matrix of image locations for n points whose 3Dworld coordinates are stored inX. If n is sufficiently
large, this has a closed form solution for two and three views (Hartley and Zisserman, 2000) and
robust statistical methods have been established for solving the problem numerically for a larger
number of frames (Triggs et al., 2000) and even in real time as the camera moves (Davison et al.,
2007). In this case, the relationship between the problem of visual stability and 3D representation
is very clear: stability implies that the set of 3D world coordinates (X) remains constant over time.
However, there is no consensus that animals compute X or anything like it (Colby, 1998; Cheung
et al., 2008; Pickup et al., 2013).

What is clear is that the brain predicts the sensory consequences of action all the time and,
usually (perhaps always), this process does not rely on an explicit 3D reconstruction of the world.
For example, output from the cortex to the spinal cord predominantly consists of:

• alpha motor signals that will lead to the contraction of muscles (a “force” command);
• gamma motor signals that provide a prediction of the length of the muscle (an “expected length”

signal).

There are almost as many gamma-motor fibers innervating a muscle as there are alpha-motor
fibers and, if sensory fibers from muscle spindles are included, the number sending a prediction
of muscle length and monitoring the accuracy of the prediction far outweighs that involved in
stimulating the contraction (McIntyre and Bizzi, 1993). In this non-visual domain, it is commonly
assumed that the brain is capable of storing a long list of contexts in which different expected
levels of resistance are likely to be encountered (hence different alpha/gamma co-activations). Rare
counter-examples—like picking up an empty suitcase that we believe to be full—emphasize how
often our predictions are correct. Storing a long list of expected contexts is very different from
the notion of the brain carrying out active processes, such as receptive field “re-mapping,” that are
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often discussed in relation to visual stability (Duhamel et al.,
1998; Ross et al., 2001; Wurtz, 2008; Melcher, 2011).

Others have provided a helpful critique of the notion that
remapping of cortical receptive fields could explain the subjective
phenomenon of visual stability (Cavanagh et al., 2010; Rolfs et al.,
2011). They point out that many of the phenomena that have
been interpreted as a remapping of receptive fields are compatible
with a transfer of activation to a location that will be stimulated
by a target after a saccade, so “priming” those neurons in advance
of an imminent stimulus. It gives a head start to attentional
processing at the retinal location where a target is about to appear
and increases activation there.

It is a familiar idea that the role of cortical processing is
to adapt to repetitive elements of the input signal and hence
minimize the output sent from one level to the next. Even the
output of photoreceptors, which adapt to mean luminance levels
and signal only differences from this mean, fit this description;
but cortical neurons can do the same trick in more than
one dimension (e.g., Barlow and Földiák, 1989). “Top-down”
feedback has an important long-term role in ensuring that the
system remains tuned to the statistics of the sensory input
and so it minimizes the “prediction errors” that are passed
forward through the initial layers (e.g., Rao and Ballard, 1999).
In theory, top-down feedback could also play a short-term role
in interpreting the current image (e.g., Lee and Mumford, 2003).
According to this view, perception (not just visual stability) is
a process that attempts to match incoming “driving” signals
with a “cascade of top-down predictions” (Clark, 2013). But it is
also possible that visual stability is achieved without any active
cascade of this type.

It is worth contrasting the active feedback processes that are
proposed by authors such a Clark (2013), Friston (2010), and
Lee and Mumford (2003) with those that have been discussed in
relation to the perception of visual stability. The goals of these two
types of “top down” signals are quite different: one is designed to
reduce neural responses to expected, unsurprising stimuli while
the other (e.g., Duhamel et al., 1998; Wurtz, 2008) has the effect
of “priming” neurons in advance of a stimulus, with the effect that
they respond more vigorously than otherwise.

It is clear that the example we began with, in which efferent
gamma signals carry a prediction of expected muscle length,
really is an active predictive process. But in this case, the brain
has no option other than to export a prediction of muscle length,
if movements are to be controlled smoothly at a spinal level. The
same is not true of the task of predicting incoming visual data
after a movement. In theory, this comparison could take place
without any active “nulling.”

If there is no active process underlying visual stability, then,
as I have mentioned, one possibility is that the brain stores a
long list of contexts in which different expected visual input
is likely to be encountered, much like the storage of expected
resistances to muscular force discussed above. The cerebellum is
well suited to this task as it can store large numbers of sensory
contexts and associated motor commands (Marr, 1969; Albus,
1971; Apps and Garwicz, 2005). The idea is that sight, like
other senses, is fundamentally based on sets of sensory contexts
that are linked, through motor commands, to new, predicted

sensory contexts. This has similarities to other proposals (e.g.,
Clark, 2013) but without invoking active “cascades” of feedback.
Figure 1 illustrates this point in relation to 3D vision. The
relevant movements in this case are rotational eye movements
(saccades) and small translations (head movements) in different
directions. An eye or camera is at the center of the sphere and
can rotate through the angles indicated by the arcs on the sphere
to fixate each of the objects in the scene. So, a sensory context
(“I am looking at A”) plus a motivational context (“I want to be
looking at B”) is sufficient to lead to a motor movement (camera
rotation or saccade) that results in a new sensory context (“I
am now looking at B”). A sphere, as shown in Figure 1, is a
compact way to illustrate the spatial relationships but a neural
instantiationmight be more like a list of contexts, their associated
motor outputs and expected sensory consequences. The sphere in
Figure 1 also contains information about the depth structure of
the scene and, again, these 3D relationships can be encoded as a
list of sensorimotor contingencies. The details of this proposal
can be found elsewhere (Glennerster et al., 2001, 2009) but
the essence is that a representation can be stored that avoids
3D coordinates and yet contains sufficient information about
the depth and direction of objects to be useful for predicting
the sensory consequences of actions. Intuitively, one can see
that if, as an observer moves their head around, they discover
that the image of object B moves against a stable background
(defined by the thin black arcs) then they have information that
B is close whereas object A is distant. If the observer kept all
the information about the motion parallax of A and B relative
to other objects then they would, of course, have exactly the
information needed to compute a 3D reconstruction of these
objects in the scene. But if, on the other hand, the observer kept
only a “summary” of the motion parallax information (e.g., for
each arc in Figure 1, keep a running mean of the change in arc
length computed over a series of observer translations) then the
information stored is not the same. Because a representation

FIGURE 1 | An illustration of potential saccades between objects and

how these change with head movements. The eye is in the center of

the sphere. The black circles show the visual directions of distant objects.

The angles between these barely change despite head movements in 100

different random directions. By comparison, the angles between near

objects (white circles) and other objects change to a much greater extent.

The color scale shows mean angle change as a proportion of original

angle for 100 translations of the same magnitude in different random

directions. Reproduced, with permission, from Glennerster et al. (2001).
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of this type falls short of a full 3D reconstruction, some scene
changes can be sneaked in “under the radar,” unnoticed by the
observer; in these cases, the summary statistics of the image
change are indistinguishable from those produced by a truly
static scene. Proposals of this type should lead to experimentally
testable predictions about the nature of visual representation of a
3D scene.

We perceive a stable world if, when we move our head
and eyes, the image we receive falls within the set of images
that we were expecting. The imprecision of our prediction
means that sometimes we are fooled into thinking a scene is
stable when actually it is not (Wallach, 1987; Jaekl et al., 2005;
Tcheang et al., 2005; Glennerster et al., 2006). Demarcating the
“equivalence classes” of scenes that can be interchanged and still

perceived as stable is likely to be a useful tool in studying visual
stability. But we need not suppose that visual stability per se
is a particular problem. Predicting the sensory consequences of
actions is ubiquitous in the brain and does not need to entail
(nor is it normally considered to entail) complex “re-mapping.”
We should not, without good reason, assume that visual stability
has any special status over the problem of sensory prediction
in other domains such as touch or proprioception and we
should ask ourselves whether it really presents a tricky problem
at all.
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