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Eye-movement patterns are often utilized in studies of visual perception as indices
of the specific information extracted to efficiently process a given stimulus during a
given task. Our prior work, however, revealed that not only the stimulus and task
influence eye-movements, but that visuomotor (start position) factors also robustly
and characteristically influence eye-movement patterns to faces (Arizpe et al., 2012).
Here we manipulated lateral starting side and distance from the midline of face and
line-symmetrical control (butterfly) stimuli in order to further investigate the nature
and generality of such visuomotor influences. First we found that increasing starting
distance from midline (4◦, 8◦, 12◦, and 16◦ visual angle) strongly and proportionately
increased the distance of the first ordinal fixation from midline. We did not find
influences of starting distance on subsequent fixations, however, suggesting that eye-
movement plans are not strongly affected by starting distance following an initial
orienting fixation. Further, we replicated our prior effect of starting side (left, right)
to induce a spatially contralateral tendency of fixations after the first ordinal fixation.
However, we also established that these visuomotor influences did not depend
upon the predictability of the location of the upcoming stimulus, and were present
not only for face stimuli but also for our control stimulus category (butterflies). We
found a correspondence in overall left-lateralized fixation tendency between faces
and butterflies. Finally, for faces, we found a relationship between left starting side
(right sided fixation pattern tendency) and increased recognition performance, which
likely reflects a cortical right hemisphere (left visual hemifield) advantage for face
perception. These results further indicate the importance of considering and controlling
for visuomotor influences in the design, analysis, and interpretation of eye-movement
studies.

Keywords: eye movements, distance effect, face recognition, object recognition, visual perception, visual fields,
gaze control, visuomotor control
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Introduction

The locations of fixations are commonly regarded as spatial
indices of the information used to process given stimuli or
perform given tasks, as it is assumed that the specific stimuli
and the task are the primary determinants of the fixation pattern
rather than, for example, visuomotor factors. However, in a
previous study (Arizpe et al., 2012), we found that throughout
at least the first five fixations to face stimuli, a non-stimulus, non-
task factor, namely the pre-stimulus start position, had a robust
impact on the location of fixations. For peripheral start positions
(above, below, left of, and right of the upcoming face), the first
fixation was likely the result of a simple initial localizing saccade
as it was qualitatively different from subsequent fixations having
a shorter duration and having a different spatial distribution
compared to subsequent fixations, landing near the center of face
with a slight tendency toward the start position. Notably though,
on subsequent fixations, this spatial tendency flipped to one
strongly tending on the side of the face opposite the start position.
Those results indicate that the absolute locations of fixations
during face processing can be strongly influenced by factors
beyond stimuli and task, reflecting influences of visuomotor
effects. Our results, critically, suggested that previously reported
fixation patterns based on a single start position or the average
across multiple start positions may not accurately reflect the
information used in face processing.

In the present study, we first sought to further investigate
potential sources of such non-stimulus, non-task visuomotor
influences on eye-movements by manipulating lateral distance
of the start position from the upcoming stimulus (4◦, 8◦, 12◦,
and 16◦ of visual angle from midline), with the principal aim of
determining whether lateral starting distance from a face impacts
subsequent eye movement patterns. To our knowledge, no prior
published studies have investigated the influence of starting
distance on eye-movements to high level stimuli; however, there
are previous reports of a systematic saccadic range error for word
and simple point stimuli (Kapoula, 1985; Kapoula and Robinson,
1986; McConkie et al., 1988; Radach andMcConkie, 1998, but see
Vitu, 1991). In light of those reports, and taking themidline of our
stimuli as the reference, we specifically hypothesized that for the
first ordinal fixation we would find an overshoot of the midline
for near stimuli and an undershoot for far stimuli. Additionally,
given the results of our prior study (Arizpe et al., 2012), fixations
subsequent to the first ordinal fixation were expected to show
a tendency opposite to the start position, though we were also
interested in any evidence that starting distance could modulate
the strength of this tendency. Given that what is of interest in
most eye-tracking studies is how stimulus and/or task influence
eye-movement patterns, a clear characterization of the influences
of non-stimulus, non-task factors, such as starting distance, can
be informative for the design, analysis, and interpretation of eye-
tracking studies so that artifactual fixation pattern effects are
not confounded with effects of interest. Further, faces in real-life
typically appear in peripheral vision and require an initial saccade
to bring them close to the fovea, so the impact of starting distance
from the face is important for understanding eye movements to
faces.

Second, to extend and confirm the findings from our prior
study, we also manipulated the relative location of the start
position to the stimulus (left and right side). In particular, given
that the approximate location of the upcoming face stimulus
relative to the start position was predictable in our prior study,
we instead utilized a paradigm rendering the location of the
upcoming stimuli unpredictable so as to test our hypothesis that
the visuomotor influences induced by the start position also apply
when predictability is greatly reduced.

Third, to determine whether any visuomotor effects are
specific to face stimuli, the present study also utilized butterfly
stimuli as line symmetrical control stimuli. We hypothesized that
visuomotor influences are not specific to stimulus category.

Last, informed by a trend observed in our prior study we also
tested a hypothesis that differences in fixation patterns associated
with starting side, and possibly also distance, relate to recognition
performance. Specifically, we hypothesized that left start position
(which induces a right sided fixation tendency) is associated with
higher recognition performance.

We observed strong effects of Distance on the first ordinal
fixation, with an increasing undershoot of the midline of the
stimulus with increasing distance. Notably, there was no strong
impact on later fixations. These effects of Distance, as well as the
previously reported effects of left and right starting side, were
not specific to faces. We also established that the subsequent
contralateral tendency in fixation patterns does not depend
on predictability of the location of the upcoming stimulus or
on stimulus category (faces and butterflies). We observed a
correspondence between face and butterfly stimuli in overall
left laterality in fixation tendency, indicating that left lateral
tendency in fixation patterns is not specific to face perception.
Lastly, we found a relationship between left starting Side (right-
sided fixation pattern tendency) and increased recognition
performance for faces. We discuss what the methodological
implications for eye-tracking studies and the mechanistic
implications for visual perception are given the visuomotor
influences we report.

Materials and Methods

Ethics Statement
All participants gave written informed consent and were
compensated for their participation. The study was approved
by the Institutional Review Board of the National Institutes of
Health, Bethesda, MD, USA.

Participants
We recruited 17 right-handed participants, living in the
Washington D.C. area. Three were excluded because of poor eye-
tracking calibration or because of unusually rapid pace through
the experiment resulting in very few fixations on each face. Thus,
14 participants (six male) are included in analyses.

Eye-Tracking
We used an EyeLink II head-mounted eye-tracker (SR Research,
Mississauga, ON, Canada), and sampled pupil centroid at 250 Hz.
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Participants’ eyes were 57 cm from the stimulus display screen.
The default nine point calibration and validation sequences were
repeated throughout the experiment. Both eyes were calibrated
and validated, but only the eye with the lowest maximum error
was recorded for the trials following a particular calibration.
Calibration was repeated when maximum error at validation was
more than 1.33◦ of visual angle. Average validation error was
always substantially lower than 1◦ of visual angle. The mean of
the average validation errors was 0.35◦ of visual angle with a
standard deviation of 0.086◦ of visual angle. The mean of the
maximum validation errors was 0.86◦ of visual angle with a
standard deviation of 0.22◦ of visual angle. To minimize head
motion artifacts, all participants had their heads fixed with a chin
rest and, additionally, the “Head Camera” feature of the EyeLink
II was engaged so as to provide some compensation for head
motion that could still occur. Further, before each trial, a drift
correction was performed. Default criteria for fixations, blinks,
and saccades as implemented in the Eyelink system were used.

Stimuli
We collected 96 Caucasian-American (48 male) grayscale neutral
expression frontal-view face images (see Figure 1A for examples).
All face images were taken from the neutral expression 18–29 age
group of the Productive Aging Lab Face Database established by
the University of Texas at Dallas1 (Minear and Park, 2004). Each
face was scaled to have a forehead width subtending 10◦ of visual
angle at presentation and was rotated to correct for any tilt of the
head. Images were cropped to remove most of the background,
but not the hair or other external features, and all face images
were equated for overall luminance. At presentation, images
were centered on a black background. To eliminate any possible
stimulus bias as the source of any laterality effects, half of the
faces were randomly left–right flipped across the vertical midline
of the image for each participant. The website of the Productive
Aging Lab Face Database states: “This [database] contains a range
of face of all ages which are suitable for use as stimuli in face
processing studies. Releases have been signed by the participants
we photographed and the faces may be included in publications
or in media events.”

We also collected 96 grayscale “butterfly” images each of a
pinned specimen of a unique species of Lepidoptera on a white
background. All butterfly images were taken from Butterflies of
America2 , a website devoted to the study and enjoyment of
American butterflies (Warren et al., 2013). The butterflies were
aligned at the convergence of the upper and lower wings, and
scaled so that the maximum width of the upper wing close to
the point of alignment was the same. This width matched the
width of the faces. As with the faces, the butterfly images were
cropped to remove most of the background and were equated
for overall luminance. Likewise, at presentation, butterfly images
were also centered on a black background and half were randomly
left–right flipped across the vertical midline of the image for each
participant to eliminate any possible stimulus bias as the source
of any laterality effects.

1http://vitallongevity.utdallas.edu/stimuli/facedb/categories/neutral-faces.html
2http://www.butterfliesofamerica.com

Areas of Interest (AOIs)
To aid alignment of the face images and positioning relative
to the fixation starting position, rectangular areas of interest
(AOIs) were manually drawn uniquely for each face around the
right and left eyes, bridge of nose (i.e., middle of eye region),
right and left half of nose, and right and left half of mouth
(Supplementary Figure S1, for example) using EyeLink Data
Viewer software. These AOIs were never visible to participants
during the experiment.

Design
The experiment comprised of two parts, one with face stimuli
and the other with Lepidoptera (“butterfly”) stimuli. Both parts
were completed within the same experimental session. Each
part had two phases: study and test. During the study phases,
participants observed 48 faces (24 female) or 48 butterflies (each
of a unique Lepidoptera species) in a self-pacedmanner (up to 5 s,
self-terminating trials with a button press). At test, participants
observed 96 faces or butterflies (the 48 study phase faces or
butterflies plus 48 new faces or butterflies) for a limited duration
(1250 ms limit) and indicated with a button press whether or not
they recognized each stimulus (old/new task) as one observed
during the study phase. Participants were given up to 3 s to
respond following stimulus onset and were instructed to respond
as soon as they thought they knew the answer (Figure 1C) and to
guess if they were not sure. The experiment was programmed in
Python and interfaced with the eye-tracker.

Across trials, we systematically varied two factors (i) the side
of the visual field that the face or butterfly appeared relative to
the central fixation dot at the beginning of each trial, which thus
varied the start position (“Side”) relative to the face or butterfly,
and (ii) the distance along the horizontal-axis from midline of
the face or butterfly stimulus (“distance”) relative to the same
starting fixation dot.We varied left and right side because fixation
patterns are affected by visuo-motor factors (e.g., start position)
in addition to stimulus factors (e.g., face), (Arizpe et al., 2012).
Note that the manner in which side (start position) was varied
in the present study differs from our prior study (Arizpe et al.,
2012). Specifically, in the current study, we accomplished this
by varying the side that the face appeared relative to a central
starting fixation dot, whereas in the prior study we accomplished
this by varying the location of the starting fixation dot relative to
the centrally presented face stimuli. This difference in paradigm
aimed to induce greater uncertainty about the location of the
upcoming stimulus, and thus to allow us additionally to test
whether the effects of start positions previously observed also
occur under greater uncertainty about the stimulus location.

Side was defined in terms of the start position, so ‘left’ refers
to starting on the left of the face, not to a face presented in the
left visual field. In the case of faces, position along the y-axis
of the screen was calculated uniquely for each face stimulus
such that the central starting fixation dot would always have the
same y-coordinate component as the unique point equidistant
from all of the nearest internal facial features. Specifically, that
unique coordinate was calculated numerically for each face such
that it was equidistant from the centers of the nearest eye,
nearest half-nose, and nearest half-mouth AOI. In the case
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FIGURE 1 | Study design. (A) Example face and butterfly stimuli.
(B) Schematic depiction of starting distances from midline of stimuli.
(C) Schematic of trial sequences in study and test phases. A stimulus was
presented only if the participant successfully maintained fixation for a total of

1 s. After stimulus onset in the study phase, participants were free to study the
face for up to 5 s and pressed a button to begin the next trial. In the test phase,
faces were presented for 1.25 s only and participants responded with button
presses to indicate whether the stimulus was ‘old’ or ‘new.’

of butterflies, the y-coordinate of each butterfly stimulus was
selected such that the starting fixation dot was always at the same
y-coordinate as the convergence of the upper and lower wings
of the butterfly. Distance varied such that the midline of the
face or butterfly was 4◦, 8◦, 12◦, or 16◦ of visual angle from the
starting fixation dot along the x-axis (see Figure 1B for examples,
see Supplementary Figures S2–S7 for full screen examples and
schematics).

Before stimulus onset, participants fixated the start position
at the center of the screen, indicated by a standard EyeLink
II calibration target (0.17◦ diameter black circle overlaid on a
0.75◦ diameter white circle) on the black screen. Participants
initiated the trial by pressing a button while looking at the
fixation target. In this action, a drift correction was performed.
A colored dot (0.5◦ diameter) remained after drift correction, and
the stimulus appeared only after the participant had fixated the
dot for an accumulated total of 750 ms. This process ensured that

drift correction and fixation were stable prior to stimulus onset.
If more than 750 ms of fixation away from the start position
accumulated before the trial could be initiated, drift correction
was repeated. A fixation was considered off the start position if
it landed more than 0.5◦ from the center of the dot. Dot color
changed successively from red to yellow to green in order to signal
to the participant that a maintained fixation was successfully
detected at the start position.

In both the study and test phases, there were equal proportions
of trials for each combination of levels of the factors of side,
distance, and in the case of the face stimuli, face gender. The
particular subset of faces and butterflies used in the study phases
was randomized across participants. Of the faces and butterflies
presented in both study and test phase, all were presented on the
same side of the visual field and the same Distance condition at
study and test. The order in which the face and butterfly parts of
the study were run was counterbalanced across subjects.
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Analyses
Software
Fixation and AOI data were obtained through EyeLink Data
Viewer software by SR Research. Subsequent analyses on these
data and behavioral data from the test phase were performed with
custom Matlab (The MathWorks, Inc., Natick, MA, USA) code.
Statistical tests were performed in SPSS (IBM, Somers, NY, USA).

Behavior
We assessed participants’ discrimination performance, response
bias, and reaction time on the old/new recognition task in the
test phase. d′ (d′ = z(hit rate) – z(false alarm rate)) and criterion
c (c = –[z(hit rate) + z(false alarm rate)]/2) were computed for
discrimination performance for each participant, broken down
by Stimulus Category, Side, and Distance. Reaction times were
analyzed for correct trials only. Reaction time analyses were also
broken down by start position and stimulus conditions with
analysis being performed on the medians calculated for each
participant. Medians, rather than means, were calculated for each
participant (as is common practice for reaction time analyses)
because reaction time distributions tend to be skewed to high
reaction times. The mean reaction times displayed in our figure
are the means of the participant medians.

Spatial Density Analyses
We mapped the spatial density of fixations during the study
phase as a function of our experimental manipulations. Each
fixation was plotted with equal density and spatial extent, as
fixations were not weighted by the fixation duration. Fixations
beyond the fifth fixation were excluded from the analysis to
ensure an equal amount of data across trials. To ensure that
summation of fixation maps across different face trials produced
spatially meaningful density maps, fixation maps for individual
faces were first aligned to a common reference frame using
simple translations only. The internal facial features defined
this reference frame. Specifically, the alignment minimized the
sum of the squared differences between the center of the AOIs
for each face and the average centers of the AOIs across all
96 faces. For the same purpose, fixation maps across different
butterfly trials were first aligned such that the line of convergence
between the top and bottom wing coincided across stimuli.
All stimulus images had already been scaled to be comparable
size, so rescaling was not necessary in order to align fixation
maps.

Within this common reference frame, fixations were then
plotted as Gaussian densities with the peak density over the
fixation coordinate and a SD of 0.3◦ of visual angle in both the
x- and y-dimensions. These density plots were then averaged
across trials and across participants. The negligible proportion
of fixations (<1.1% during study phase) that fell outside of the
bounds of the stimulus image analysis region (i.e., onto the black
background outside the square frame of the face or butterfly
stimulus) were shifted to the nearest edge within the analysis
region so that total fixation density was comparable across
analyses. The resulting maps show the spatial fixation densities,
using a color scale from zero to the maximum density value
observed, with values approaching zero being deep blue. All maps

within a single figure contain the same total number of fixations
and so are scaled the same to allow for direct comparison.

Profile Density Analyses
We calculated profile densities (i.e., densities summed along
a single dimension of a heatmap) for the different conditions
during the study phase. The x-profile plots were produced by
summing along the vertical dimension (y-axis) of a spatial density
heatmap, and y-profile plots were produced by summing along
the horizontal dimension (x-axis) of a spatial density heatmap.
The x-profile plots visualize the overall left–right laterality of
fixations. The y-profile plots visualize fixation density over
specific vertical (e.g., facial) features without respect to laterality
or fine differences in horizontal position. Since the main focus of
this study was to determine the laterality of fixations with respect
to the midlines of our stimuli, we largely focused on x-profile
plots.

Similarity Matrix Analyses
In order to quantify and visualize the degree of similarity
between fixation patterns among the different side and distance
conditions, we computed similarity matrices for the spatial
density data. This data visualization method allows for concise
visualization of the relative similarities in overall data patterns
between given conditions, and enables further quantitative
analysis on the relative degrees of similarity. A similarity matrix
simply is an organized matrix, in which each cell represents a
comparison between given conditions, or a given combination of
conditions, and contains a value of a specific similarity measure
(e.g., correlation value, Euclidean distance, etc.) corresponding
to that specific comparison, which is specified by its index in
the matrix. This class of methods, along with the complementary
class of discrimination analyses (see “Discrimination Analyses”
subsection below), has become common in fMRI studies (e.g.,
Haxby et al., 2001; Kriegeskorte et al., 2008) and has also been
used in prior eye-tracking studies (Benson et al., 2012; Greene
et al., 2012; Tseng et al., 2013; Borji and Itti, 2014), including
two on face perception (Mehoudar et al., 2014; Kanan et al.,
2015).

In our study, the possible combinations of conditions for
which fixation patterns were compared between were the levels
of the factors of ordinal fixation number (1–5), side (left,
right), and distance (4◦, 8◦, 12◦, 16◦ visual angle) separately
for each stimulus type (faces, butterflies). In our analyses, only
the study phase data were utilized since the test phase had
a limited duration (1250 ms limit) that the stimulus was on
the screen, thus limiting the number of fixations possible to
analyze and also potentially inducing a pattern of eye-movement
dynamics different from those of the study phase due to the
time constraints of the recognition task. For our analysis, we
conducted “split-half ” analyses in which eye-movement data was
first split into two halves, namely, the first and last 24 trials of
the study phase, as each half had equal numbers of all possible
combinations of conditions (side, distance, and face gender).
Spearman’s correlations between corresponding (i.e., located at
identical spatial coordinates) pixels’ density values across the split
halves of the data were calculated for each given comparison for
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each subject, and, only when being visualized (i.e., in our figures),
the values were then averaged across subjects. For similarity
analyses in which the levels of a factor (e.g., left and right side)
were pooled together, correlations were first computed between
each half of the data containing identical levels of the pooled
factor, and then values were averaged across levels.

The use of Spearman’s correlations, rather than Pearson’s
correlation, for producing such pattern similarity measures is
considered best practice (e.g., Rousselet and Pernet, 2012).
Further, in the context of our study, in which fixation density
patterns are correlated with one another, we knew a priori that
our data would not technically satisfy all of the assumptions of the
Pearson’s correlation. Principally this is because the distribution
of fixation density values across the pixels of each heatmap can
almost be guaranteed not to have a normal distribution, but
rather a skewed distribution, owing to the fair number of pixels
with density values at or near zero in the spaces where fixations
did not tend to land (i.e., away from the internal features of the
face or butterfly).

Discrimination Analyses
In order to quantify and test the significance of the average
distinctiveness (“discriminability”) of the patterns of given
conditions compared to those of other conditions, we conducted
several discrimination analyses using the correlation values
from the similarity matrix analyses. We particularly focused
on discriminability among the levels of the distance factor.
In the similarity matrices, the diagonals always corresponded
to the correlation between the two halves of the data for the
same condition, and the off diagonal cells to those of non-
identical conditions; therefore, for each subject discriminability
of each given condition was quantified as the mean difference
between the diagonal and off diagonals for each row of the
given similarity matrix, where along rows are all the given
conditions for the first half (i.e., first 24 trials) of the data,
and along columns are those of the second half (i.e., second
24 trials) of the data. Thus a discriminability value existed for
each given condition and for each subject, in which greater
positive values indicate greater relative discriminability. When
testing for statistical significance of average discriminability for a
given condition from the others, a one-tailed, one-sampled t-test
of difference from zero was conducted on the discrimination
index distribution across subjects for the given condition (row).
A one-tailed test was chosen because only positive discrimination
values are interpretable in that context. Note also that this is
equivalent to a within-subject test, since discrimination indices
were computed within subject.

Results

Temporal Dynamics of Eye-Movements
We first investigated the temporal dynamics of eye-movements
(Figure 2) to test for influences of Distance and Stimulus, as well
as to test for replication of our prior findings (Arizpe et al., 2012)
that revealed an influence of Ordinal Fixation, but not of left and
right Side (start position), on the durations of fixations.

Latency to First Saccade
For both faces and butterflies, the latency to the first saccade
was longer for the shortest distance than for the other distances.
A three-way ANOVA with Stimulus Category (faces, butterflies),
Distance (4◦, 8◦, 12◦, 16◦ visual angle from stimulus midline),
and Side (left, right) as within-subject factors revealed a main
effect of Distance [F(3,39) = 54.65, p < 0.0005, η2p = 0.81]
and an interaction of Distance with Stimulus [F(3,39) = 7.31,
p < 0.001, η2

p = 0.36]. A main effect of Stimulus approached
significance [F(1,13) = 4.42, p < 0.057, η2

p = 0.25]. While t-tests
on latencies with Side conditions pooled confirmed that for both
faces and butterflies there was a longer latency for the shortest
Distance than the longer distances [all paired t(13) > 3.33,
p < 0.0055, two-tailed, bias corrected gHedges > 0.59], for
butterflies only the latency at 12◦ was significantly shorter than
that at 8 [paired t(13) = 3.073, p < 0.01, two-tailed, bias
corrected gHedges = 0.76]. Additionally, there was a longer
latency for butterflies than faces for the shortest Distance only
[paired t(13) = 3.38, p < 0.0048, two-tailed, bias corrected
gHedges = 1.05].

The increased latency for the first saccade at the shortest
distance, when the starting position was already on part of the
stimulus, likely reflects that even before initiating a saccade, our
participants were already processing the stimulus information
more deeply.

Fixation Durations
For both faces and butterflies, fixation duration tended to
increase with ordinal fixation number. Also, overall fixation
durations were longer for butterflies than for faces A four-way
ANOVA on fixation durations with Stimulus Category (faces,
butterflies), Distance (4◦, 8◦, 12◦, 16◦ visual angle from stimulus
midline), Ordinal Fixation (1st, 2nd, 3rd, 4th, 5th) and Side
(left, right) as within-subject factors revealed main effects of
Stimulus Category [F(1,13) = 7.99, p < 0.015, η2

p = 0.38] and
Ordinal Fixation [F(4,52) = 17.93, p < 0.0005, Greenhouse–
Geisser corrected, η2

p = 0.58], but no other main effects
or interactions (all, p > 0.12, Greenhouse–Geisser corrected,
η2
p < 0.15). Thus, Stimulus Category and Ordinal Fixation

seem to have independently influenced fixation durations.
The main effect of Stimulus Category was driven by overall
longer duration fixations for butterflies than faces. T-tests on
fixation durations pooling Stimulus Category, Distance, and
Side revealed that the main effect of Ordinal Fixation was
driven by a shorter first fixation than all the later fixations
[all paired t(13) > 4.82, p < 0.0005, one-tailed, bias corrected
gHedges > 1.29], as in our prior study (Arizpe et al., 2012).
Durations of later Ordinal Fixations were not significantly
different from each other [all paired t(13) < 1.65, p > 0.12,
two-tailed, bias corrected gHedges < 0.36], except the second
fixation was shorter in duration than the third fixation [paired
t(13) = 3.30, p < 0.007, two-tailed, bias corrected gHedges = 0.51]
and approached significance for being shorter than the fifth
fixation [paired t(13) = 2.02, p < 0.066, two-tailed, bias corrected
gHedges = 0.50].

The longer fixation durations for butterflies than for faces
suggests perhaps that a different kind or depth of information
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FIGURE 2 | Impact of starting distance on timing of initial saccades and
fixations. (A) Average latency to first saccade by starting distance and stimulus
category. There was a longer delay between stimulus onset and the first
saccade for the 4◦ distance compared to farther starting distances. Also there

was a longer delay for butterflies than faces for the 4◦ distance. (B) Average
duration of each of the first five fixations by starting distance and stimulus
category. The first fixations were significantly shorter than subsequent fixations,
and overall fixations were longer for butterflies than for faces.

processing was necessary for butterflies than for faces, consistent
with the reduced accuracy for butterflies.

Fixation Patterns
We used a number of different methods to examine fixation
patterns and the effects of Category, Distance, and Ordinal
Fixation number.We will first describe the spatial density profiles
and differences in the overall patterns of fixations, computing
similarity matrices across conditions. Then, since the main
question of this study was the effect of Distance, which was
manipulated in the x-direction only, we will focus on quantitative
analyses of the distribution of fixations along this dimension.

Spatial Density
To examine the overall pattern of fixations, we first produced
spatial density plots broken down by Side and Category
(Figures 3A–D), with the second through fifth Ordinal Fixations
and all Distance conditions pooled. The first ordinal fixation
was omitted because our prior study (Arizpe et al., 2012), as
well as the current study, revealed that the first fixation is
of a relatively short duration and thus is likely an orienting
fixation, which is less meaningful in the current analysis.
For faces, peak density of fixation occurred around the eye
region, and for butterflies the peak density was close to the
top of the main body. For both categories, an effect of Side
is apparent, such that when the fixation dot was on the left

of the upcoming stimulus there was a rightward tendency
in overall fixation patterns, and conversely when the fixation
dot was on the right there was the opposite overall tendency
(see later sections for detailed quantitative analysis). This
effect is consistent with our earlier study (Arizpe et al., 2012)
suggesting that the influences of pre-stimulus start position
are not specific to faces, but rather likely reflect a general
visuomotor phenomenon. Further, because the location of the
upcoming stimulus in each trial was much more unpredictable
in the current study than in our prior study (Arizpe et al.,
2012), both in terms of visual field relative to the starting
fixation and also distance from the starting fixation, these results
therefore indicate that the contralateral tendency in overall
fixation patterns induced by start position seen in our prior
study are, in principal, generalizable to situations of much greater
uncertainty with respect to the where a target stimulus will
appear.

Stimulus-Based Laterality in Spatial Density of
Fixations
As an index of the lateral tendency in fixations to our stimuli,
we calculated the proportion of spatial density to the left of
midline, when left and right start positions and ordinal fixations
two through five were again pooled. The result was greater
than 50% on average for both faces (51.93% ± 4.12 SEM) and
butterflies (59.08% ± 2.46 SEM) indicating a left-sided fixation
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FIGURE 3 | Spatial density maps and similarity matrices. (A–D) Spatial density maps by stimulus category and starting side. These densities reflect the second
through fifth ordinal fixations pooled. (E,F) Split-half correlation matrices by ordinal fixation and starting distance for each stimulus category. The correlations are
between spatial fixation densities.

tendency for both stimulus categories. A paired t-test between
faces and butterflies on these left-sided proportions revealed
that butterflies had a significantly greater left-sided fixation
density proportion [paired t(13) = 2.36, p < 0.035, two-tailed,
bias corrected gHedges = 0.53], indicating that butterflies may
have had a more pronounced left-sided fixation tendency than
faces, though the spatial density maps also indicate that peak
density on average fell closer to midline for butterflies than for
faces.

To test the correspondence between faces and butterflies in
their lateral tendency in fixations, we performed a correlation
between the two categories of stimuli on the proportions
of spatial density of fixations to the left of midline (Side
and Ordinal Fixations 2–5 pooled). This yielded a statistically
significant positive correlation [r(13) = 0.72, p < 0.0027,
two-tailed], indicating that individual differences in the lateral
fixation tendency of one stimulus category directly related
to that of the other stimulus category (see Supplementary
Figure S8 for the scatterplot). Thus the overall group-level
left-sided tendency in fixation, often reported for face stimuli,
was not specific to faces, and the extent of the lateral bias
in fixations for butterfly stimuli was related to that for
faces.

Similarity of Fixation Patterns
To compare the fixation patterns across all conditions, we
computed similarity matrices based on the spatial density plots
(see Materials and Methods) containing comparisons between all
levels of Distance (4◦, 8◦, 12◦, 16◦ visual angle), Ordinal Fixation
(1st, 2nd, 3rd, 4th, 5th), and Side (left, right) for each Stimulus
Category (face, butterfly). Although there was an effect of side on
the absolute fixation locations, there were no obvious differences
using this relative similarity metric, therefore we pooled across
this factor (Figures 3E,F).

First, the similarity matrices for faces and butterflies are
remarkably similar, indicating that Distance and Ordinal Fixation
influence fixation patterns in ways that are not specific to
Stimulus Category. As will be apparent in subsequent analyses,
the modulation by Distance is predominantly in the x-dimension.
Second, correlations among conditions within the first two
Ordinal Fixations are higher than those within the later fixations,
and higher than across Ordinal Fixations, indicating a distinct
fixation pattern for these two fixations. Third, for the first, and
to some extent the second, Ordinal Fixation, correlations for
the same Distance were higher than among different distances
indicating an effect of Distance. There was not strong evidence
for an effect of Distance on the later Ordinal Fixations.
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Discrimination Results
In order to test our hypothesis that Distance influences
fixation patterns, and specifically to more quantitatively verify
some of the suggested patterns in the similarity matrices just
described, we conducted discrimination analyses (see Materials
and Methods). Notably, Distance was fully discriminable (i.e.,
all four distances were significantly discriminable) only in the
first ordinal fixation, for both faces [weakest discriminability
among the four distances was t(13) = 2.93, p < 0.0059] and
butterflies [weakest discriminability among the four distances
was t(13) = 2.72, p < 0.0088]. In each of the later ordinal
fixations, Distance was totally indiscriminable (i.e., not a single
distance was significantly discriminable) with the exception the
shortest distance in the second ordinal fixation for butterflies
[t(13) = 4.33, p < 0.00042], and the longest distance in the fifth
fixation for faces [t(13) = 2.26, p < 0.021]. This confirms that
Distance influenced fixation patterns strongly only in the first
ordinal fixation.

Profile Analysis Results
Given our finding that Distance significantly modulated fixation
patterns in the x-dimension in the first ordinal fixation, and
the fact that what drives the similarities and discriminations
in fixation patterns as seen in our prior analyses are not fully
apparent without looking at the specific fixation patterns, we next
closely examined profile density plots for the x- (Figure 4) and
y-dimensions (Supplementary Figure S9).

The x-profile plots broken down by Ordinal Fixation,
Distance, and Side (Figure 4) revealed a number of striking
patterns, some of which, notably, were not detectable with our
similarity matrix analyses. In brief, peak densities from the first

ordinal fixation revealed an “undershoot” of the stimulus midline
ipsilateral to the Side condition for all Distance conditions, but
which was of a degree proportionate to the distance (i.e., longer
Distance induced a greater “undershoot”). Third ordinal fixations
tended to show an overall relative fixation density laterality
that was contralateral to the Side condition for both faces and
butterflies, but which appeared weakly, if at all, modulated
by Distance, in accord with the discrimination analysis results
already reported. The same seemed to hold true to some degree in
the fourth ordinal fixation in butterflies, though otherwise, later
fixations’ x-dimension densities tended to appear more variable
in spread and less distinguishable among Side and Distance for
both faces and butterflies.

The corresponding y-profile plots (Supplementary Figure S9)
revealed, in accord with the patterns seen in the similarity
matrices, that for faces, peak y-dimension density for the first
ordinal fixation was slightly lower on the face than those of
subsequent fixations, all of which had a peak in density just below
the eyes. For butterflies, however, the peak y-dimension density
did not seem to differ much across ordinal fixations, all of which
had a peak just below the head or roughly near the convergence
of the upper and lower wings. In general, for both faces and
butterflies, fixation densities in the y-dimension did not seem to
substantially differ between Side conditions, and the last three
ordinal fixations seemed to become progressively more variable
in spread in the y-dimension.

Behavioral Measures
In addition to the spatial and temporal dynamics of fixations
just described, we additionally investigated whether our
factors influenced recognition behavior. A three-way ANOVA

FIGURE 4 | X-dimension profile density plots by stimulus category,
starting distance, starting side, and ordinal fixation. Of note is
the increasing distance of fixations from midline of the stimulus in
the first ordinal fixation with increasing starting distance. Also, there is

a tendency for greater fixation density contralateral to the starting
side overall following the first ordinal fixation. For reference, white tick
marks along the x-axes indicate degrees of visual angle from
stimulus midline.
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FIGURE 5 | Recognition performance by stimulus category and
starting side. (A) Discrimination performance, measured by d′ . There was
significantly lower discrimination for butterflies than for faces, and significantly
greater face discrimination for the left than for the right starting side
(B) Reaction time. The longest distance elicited significantly longer reaction
times than the shortest distance.

on discrimination performance (d′) with Stimulus (faces,
butterflies), Distance (4◦, 8◦, 12◦, 16◦ of visual angle), and Side
(left, right) as within-subject factors revealed a main effect of
Stimulus [F(1,13) = 61.45, p < 0.0005, η2

p = 0.83], driven by
overall higher discrimination performance for faces, but no
main effects for either Distance or Side (both p > 0.19). No
interactions reached significance (all p > 0.24). Given the quite
low discrimination performance for butterflies overall and
the hypothesis that Side would modulate face discrimination,
we conducted additional planned t-tests on d′ between Side
conditions (left, right) for faces only. This yielded a significant
difference in discrimination by Side [paired t(13) = 1.97,
p < 0.036, one-tailed, bias corrected gHedges = 0.41], driven, as
hypothesized, by higher discrimination performance for faces
viewed starting on the left side. These results suggest that our
participants found butterflies more difficult to discriminate than
faces, and that faces were better discriminated when starting side
was on the left (Figure 5).

A three-way ANOVA on criterion (c) again with Stimulus,
Side, and Distance as within-subject factors was also conducted.
No main effects or interactions yielded significant statistics (all
p> 0.26), suggesting that these factors did not modulate response
bias.

A three-way ANOVA on reaction time again with Stimulus,
Side, and Distance as within-subject factors yielded a main effect
of Distance [F(3,39) = 3.84, p < 0.018, η2

p = 0.23], driven by
overall longer reaction time for the longest distance than the
shortest distance [paired t(13) = 3.16, p < 0.005, bias corrected
gHedges = 0.26] and possibly by a longer reaction time for
the 8◦ distance than the 4◦ distance that approached statistical
significance [paired t(13) = 2.06, p < 0.061, bias corrected

gHedges = 0.19; all other comparisons, paired t(13) < 1.45,
p > 0.17]. This is likely due, at least in part, to the fact that a
longer saccade requires more time than a shorter one, which adds
to the response time. No other main effects or interactions yielded
significant statistics (all p > 0.096) from the three-way ANOVA.

Discussion

Effects of Distance, Side, and Stimulus
Category
The principal aim of this study was to determine whether
lateral starting Distance from a face impacts subsequent eye
movement patterns. Since faces in real-life typically appear in
peripheral vision and require an initial saccade to bring them
close to the fovea, determining the impact of starting Distance
from the face is particularly important for understanding eye
movements to faces. We have previously demonstrated strong
effects of Start Position (specifically up, down, left, right, and
center of face) leading to an overall contralateral tendency in
fixations and so in the present study we also manipulated the
starting Side (i.e., left or right Start Position) to replicate and
extend our prior findings (Arizpe et al., 2012). In particular
we wanted to establish: (1) whether effects of starting side and
distance are specific to faces, (2), whether the effects of starting
side occur only when the location of the upcoming stimulus
is predictable as in our original study and (3) whether any
differences in fixation patterns associated with starting side and
distance relate to behavioral performance. While we observed
strong effects of Distance on the first ordinal fixation, with
an increasing undershoot of the midline of the stimulus with
increasing distance, there was no impact on later fixations. These
effects of Distance, as well as the previously reported effects
of Side, were not specific to faces. We also established that
the subsequent contralateral tendency in fixation patterns does
not depend on predictability of the location of the upcoming
stimulus or on stimulus category (faces and butterflies). Lastly,
we found evidence of a relationship between left starting Side
(right-sided fixation pattern tendency) and increased recognition
performance for faces.

Effect of Distance in First Ordinal Fixation
We hypothesized that the location of the first fixation would
systematically vary with distance. Given previous reports of a
systematic saccadic range error for word and simple point stimuli
(Kapoula, 1985; Kapoula and Robinson, 1986; McConkie et al.,
1988; Radach and McConkie, 1998, but see Vitu, 1991), and
taking the midline of the face or butterfly as the reference, we
specifically hypothesized that we would find an overshoot of
the midline for near stimuli and an undershoot for far stimuli.
We did indeed find a systematic variation of the horizontal
location of the first ordinal fixation as a function of lateral
starting distance as evinced by the fact that all four distances
were significantly discriminable from the fixation patterns in
the first ordinal fixation; however, we did not find an overshoot
for any distance, but rather an increasing undershoot of the
midline of the stimulus with increasing distance as is apparent
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in the profile density plots (Figure 4). Individual distance
conditions were largely not significantly discriminable in later
fixations, so we did not find strong modulation of subsequent
ordinal fixations as a function of distance. The influence of
distance in the first ordinal fixation was, notably, not specific to
faces, indicating visuo-motor factors that strongly influence eye-
movement patterns independently of stimulus category and task
factors.

Effect of Starting Side Robust to Distance and
Predictability
Overall fixation patterns tended contralateral to the start
position (Side), replicating the effect of start position as
reported in our prior study (Arizpe et al., 2012). Specifically,
while the first fixation tended to fall ipsilateral to the start
position, the later fixations tended contralateral. Importantly,
this effect was not specific to faces. Rather, the asymmetry
after the first fixation appeared even more pronounced for
butterflies. Because the overall contralateral tendency in fixation
patterns was present for all distances, even for the farthest
distance, this contralateral effect of Side is unlikely to be due
to presampling of stimulus information close to (ipsilateral
to) the start position, since little or no presampling of the
stimulus could occur at the farther starting distances. Of note,
the location of the upcoming stimulus, with respect to the
start position, was much more unpredictable in the current
study than in our prior study, both in terms of distance
and visual field. Thus, the current study clarifies that the
contralateral effect of start position was not dependent on
the predictability of the location of the upcoming stimulus.
The correspondence in the effects of Side on eye-movement
patterns between faces and butterflies, further, suggests that
visuomotor influences on eye-movements are general across
stimulus categories.

Eye-Movement Relationship to Behavior
We also investigated whether the differences in laterality of
overall fixation patterns we observed were related to recognition
performance. Distance did not significantly modulate the degree
of contralateral tendency induced by starting Side, and so
Distance conditions could be pooled to compare the effect of Side
on recognition performance. It has previously been suggested
that faces tend to be recognized better when presented in the
left visual field (Hellige et al., 1984; Luh et al., 1991, 1994;
Dutta and Mandal, 2002, though see Sergent and Bindra, 1981;
Sergent, 1982; Hellige et al., 1984; Rhodes, 1985), which likely
reflects some right hemispheric specialization in the brain for
face identity representation (Yovel et al., 2008), as suggested in
split-brain (Levy et al., 1972), neuropsychological (Warrington
and James, 1967; Benton and Van Allen, 1968; Sergent et al.,
1992b; De Renzi et al., 1994), PET/fMRI (Sergent et al., 1992a,b;
Kanwisher et al., 1997; Kanwisher and Yovel, 2006; Chan et al.,
2010), and electrophysiological (Bentin et al., 1996; Campanella
et al., 2000; Rossion et al., 2003; Yovel et al., 2003) studies
on humans. Intriguingly though, a bias for fixating on the
left side of the face has also been reported when free viewing
was allowed (Gallois et al., 1989; Mertens et al., 1993; Phillips

and David, 1997; Butler et al., 2005; Everdell et al., 2007; Guo
et al., 2009, 2010, 2012; Saether et al., 2009; van Belle et al.,
2010). Given that start position strongly modulates the laterality
of fixation patterns, it could be hypothesized that it therefore
also modulates recognition performance. In our prior study
(Arizpe et al., 2012), we found a trend for higher discrimination
performance with a left start position; however, several aspects
of the design may have prevented strong detection of such
effects. Specifically, left and right start positions were swapped
between study and test phases for half of the trials, there were
limited trials per subject for each start position for upright faces,
and participants were allowed up to 10 s to study each face.
In the current study, the first two limitations did not exist,
and also participants had a more restricted time (up to 5 s)
during which they could study the stimuli. With these changes
in design, we did find significant (p < 0.036, one-tailed) higher
discrimination performance for when faces were viewed with
a left sided-start position, which corresponds to a right-sided
tendency in fixation patterns. When fixating on the right side
of a face, most of the face is in the left visual field, thus this
result is consistent with a right-hemisphere cortical advantage
for face perception and representation. Though the first ordinal
fixation tended to fall ipsilateral to the start position, it had a
shorter duration relative to later fixations, regardless of distance,
and there is evidence that stimulus information is not deeply
processed in just the first fixation (Renninger et al., 2007; Hsiao
and Cottrell, 2008). Thus we suspect that there was shallow
sampling of the side of the stimulus ipsilateral to the start
position in the first ordinal fixation, and that this difference
in performance is driven by the fixations contralateral to the
start position. We did not find any evidence of difference for
butterflies, though discrimination performance was overall quite
low for butterflies. These data regarding the relationship between
eye-movements and behavior are suggestive and preliminary,
and so further research is warranted to better characterize how
eye-movement patterns relate to visual recognition performance
and information use (Luh et al., 1991, 1994; Burt and Perrett,
1997; Butler et al., 2005; Malcolm et al., 2008; Samson et al.,
2014), whether such effects are specific to faces (Leonards
and Scott-Samuel, 2005), and how such relationships may be
subject to individual differences (Levine et al., 1988; Miellet
et al., 2011; Peterson and Eckstein, 2013; Mehoudar et al.,
2014).

Differences in Processing between Butterflies
and Faces
As already stated, we observed a close correspondence between
faces and butterflies in the similarities in influences of Distance
and Side on spatial fixation patterns across ordinal fixations.
We did, however, also observe lower discrimination performance
and longer short distance latencies to first saccade for butterflies
than faces, suggesting the stimulus information of butterflies
required more effort to process and was more difficult to
recognize. Additionally, while our similarity measures indicate
that the influences of Distance and Side are highly correspondent
between faces and butterflies, nonetheless, the fixation patterns
for the two stimuli categories are quite distinct, just by virtue
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of the stimulus categories being different. Though the patterns
of information contained within our butterfly stimuli are
arguably much more distinct than faces from a computer vision
perspective (each butterfly image was of a distinct species of
Lepidoptera, not separate individuals within a species), our
participants nonetheless seem to have found butterflies more
difficult to visually process and discriminate. This likely reflects
specialized visual processing mechanisms and expertise for facial
recognition.

Methodological Implications for Eye-Tracking
Studies
Our findings can inform the design and analytic considerations
of eye-tracking studies of visual perception. The strong influence
of Distance in the first ordinal fixation, but not for subsequent
fixations, suggests that for eye-movement studies in which the
experimental factors of interest are stimulus- or task-related,
lateral starting distance can be safely modulated without the
danger of strongly confounding visuomotor influences on eye-
movements beyond the first fixation. This result, together with
the significantly shorter duration of the first ordinal fixation and
prior evidence that the visual information is not deeply processed
in the first fixation (Renninger et al., 2007; Hsiao and Cottrell,
2008), indicates that when analyzing eye-movements, it may be a
good general practice to exclude the first ordinal fixation.

The overall tendency for fixations to fall on stimulus regions
contralateral to the starting side (after the first ordinal fixation),
regardless of the stimulus category, indicates that there are
general visuomotor factors that must be controlled for in
the design of studies of eye-movements and considered in
the analysis and interpretation of eye-movement data. This
contralateral tendency in fixation patterns is strongly present
whether the location of the upcoming stimulus is predictable
(Arizpe et al., 2012) or is unpredictable, as in the current study;
therefore, such visuomotor influences cannot be eliminated
through modulation of the predictability of the location of
stimuli, andmust simply be taken into account when interpreting
eye-movement data.

The kind of correlation matrix and discrimination analyses
utilized in the present study may, when possible and relevant,
be an advantageous set of analysis methods for detecting
the independent effects of stimulus- and task-related factors
even though potentially confounding visuomotor factors are
also present in a study. This is because correlation matrices
containing the factors of interest can simply be averaged
across the separate matrices for each start position condition.
These factors out any potential nuisance visuomotor influences
from subsequent discrimination analyses without the artificial
regressing of fixation patterns to the mean between start
position conditions that would otherwise occur with the common
practice of averaging spatial density maps. More broadly
though, the additional potential for hypothesis generation
and for data-driven approaches from such analysis methods
could be of great utility in eye-tracking studies of visual
perception.

Many studies investigating eye movements to faces, only test
faces themselves, making it unclear whether any effects, where

relevant, are specific to faces or not. Our finding of influences
on eye-movements not only for faces, but also for butterflies,
highlights the importance of including control stimuli in eye-
movement experiments so that inferences regarding stimulus
specificity or generality can be made.

Mechanistic Implications for Visual Perception
and Further Questions
We report that the overall tendency to fixate the left side of
the stimulus was not specific to faces, but was also present, and
apparently to a greater extent, for our line-symmetric stimulus
category, butterflies. Indeed, a significant positive correlation
[r(13) = 0.72, p < 0.0027, two-tailed] between faces and
butterflies on the proportions of spatial density of fixations
to the left of midline indicate that our participants’ individual
differences in the lateral fixation tendency of one stimulus
category directly related to that of the other stimulus category.
Thus the extent of the lateral bias in fixations for butterfly
stimuli was related to that for faces. Though the left-sided fixation
tendency is often noted in face perception, and thought to
reflect face specific mechanisms, there is the possibility that this
tendency may be general to all other stimulus categories. This
notion is consistent with some prior research (Levine et al., 1988;
Luh et al., 1991, 1994), and is worth further investigation to
elucidate the general mechanisms of visual recognition and the
specific mechanisms of face recognition. Visual representation
of faces tends to be cortically right-hemisphere lateralized
(Warrington and James, 1967; Benton and Van Allen, 1968; Levy
et al., 1972; Sergent et al., 1992a,b; De Renzi et al., 1994; Bentin
et al., 1996; Kanwisher et al., 1997; Campanella et al., 2000;
Rossion et al., 2003; Yovel et al., 2003, 2008; Kanwisher and Yovel,
2006; Chan et al., 2010), but there is evidence that representations
for other stimulus categories may tend to be right hemisphere
lateralized as well (Warrington and Taylor, 1973; Warrington
and James, 1986; Konen et al., 2011) and also that perceptual
asymmetries may relate to asymmetric hemispheric arousal (Levy
et al., 1983), and so the left-sided tendency in fixation may be
related to this characteristic functional neuroanatomy.

Relatedly, our recognition performance results indicate a
paradox, which reveals that the relationship between lateralized
fixation tendency, hemispheric lateralization, and behavioral
performance requires much deeper investigation. We found a
significantly higher discrimination performance for when faces
were viewed with a left sided-start position, which corresponds
to an overall right-sided tendency in fixation patterns (after
the first ordinal fixation). When fixating on the right side of a
face, most of the face is in the left visual field. Thus, improved
recognition performance under this condition is consistent
with a right-hemisphere cortical advantage for face perception
and representation. However, if recognition performance is
indeed more optimal for right-sided fixation on the faces,
then it is puzzling why there is the natural tendency to fixate
the left side of the face, as has been ubiquitously reported
in prior studies (Gallois et al., 1989; Mertens et al., 1993;
Phillips and David, 1997; Butler et al., 2005; Everdell et al.,
2007; Guo et al., 2009, 2010, 2012; Saether et al., 2009; van
Belle et al., 2010), and how this relates to the tendency to
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use the information on the left side of the face during perceptual
judgment (Gilbert and Bakan, 1973; Luh et al., 1991, 1994;
Burt and Perrett, 1997; Butler et al., 2005). Though recognition
performance was overall too low for butterflies to determine
if a similar asymmetry in performance existed for butterflies,
there is the possibility that such a paradox applies for visual
stimulus categories besides faces too. It is unclear what factors
may induce eye-movement patterns which are less than optimal
for the recognition to be employed during recognition tasks.

Though there was an influence of Side present throughout
the first five fixations, the lack of a strong independent
influence of Distance past the first fixation is intriguing. It
suggests that the first fixation may reflect a simple initial
localizing saccade to the stimulus, required before a more
stereotyped information sampling program of fixations can be
employed. This reveals the limits of the non-stimulus non-task
visuomotor influences on eye-movements, and thereby suggests
that definite loci on stimuli serve as functional targets for visual
information extraction, the visuomotor influences (Distance and
Start Position) notwithstanding.

Conclusion

We investigated the effects of lateral starting distance and
side from a face on subsequent eye movement patterns, and

whether such effects may generalize to other line symmetrical
stimuli (butterflies). We found an increasing undershoot of the
midline of the stimulus with increasing distance for the first
ordinal fixation, which was not specific to faces. A tendency
for later fixations to fall contralateral to the left- or right-
lateralized start position was observed as in our previous
study (Arizpe et al., 2012), and this did not depend on the
predictability of the location upcoming stimulus. Lastly, we
found preliminary evidence for a relationship between left
starting position (right-sided fixation pattern tendency) and
increased recognition performance for faces that deserves further
investigation.
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