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To transform or not to transform:
using generalized linear mixed
models to analyse reaction time data
Steson Lo* and Sally Andrews

School of Psychology, University of Sydney, Sydney, NSW, Australia

Linear mixed-effect models (LMMs) are being increasingly widely used in psychology

to analyse multi-level research designs. This feature allows LMMs to address some of

the problems identified by Speelman and McGann (2013) about the use of mean data,

because they do not average across individual responses. However, recent guidelines

for using LMM to analyse skewed reaction time (RT) data collected in many cognitive

psychological studies recommend the application of non-linear transformations to satisfy

assumptions of normality. Uncritical adoption of this recommendation has important

theoretical implications which can yield misleading conclusions. For example, Balota

et al. (2013) showed that analyses of raw RT produced additive effects of word frequency

and stimulus quality on word identification, which conflicted with the interactive effects

observed in analyses of transformed RT. Generalized linear mixed-effect models (GLMM)

provide a solution to this problem by satisfying normality assumptions without the need

for transformation. This allows differences between individuals to be properly assessed,

using the metric most appropriate to the researcher’s theoretical context. We outline

the major theoretical decisions involved in specifying a GLMM, and illustrate them by

reanalysing Balota et al.’s datasets. We then consider the broader benefits of using

GLMM to investigate individual differences.

Keywords: RT transformations, generalized linear mixed-effect models, mental chronometry, interaction effects,

additive factors

Introduction

A central theme of this special issue is how the uncritical use of statistical procedures in
psychological research can lead researchers to draw incorrect theoretical and practical conclusions.
From a procedure as simple as averaging over a set of data points, Speelman and McGann (2013)
elaborated how the resulting value is often used to draw conclusions that violate many theoretical
positions describing individual, or evenmoment to moment, volatility in human cognitive systems.

Similarly, Trafimow (2014) expressed concern over the use of statistical techniques like related-
samples t-tests, which appropriately assess differences between individuals (e.g., do changes
in attitudes differ across people on average because of variable X), but are ubiquitously used
inappropriately to address hypotheses formulated within each individual (e.g., does variable X cause
a particular person’s attitude to differ).

Extending this theme, we focus on another simple procedure that can lead researchers to
draw misleading theoretical conclusions if applied uncritically: the routine transformation of the
dependent variable to meet assumptions of normality in inferential statistics. In particular, we
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address issues associated with analysis of reaction time (RT)
data—one of the most commonly used dependent variables in
cognitive psychological research.

For over 100 years, cognitive psychologists have used RT to
investigate unobservable mental processes (Donders, 1868/1969;
Luce, 1986). These investigations are based on two fundamental
assumptions: (i) mental processes take time to complete, and that
(ii) each measured RT reflects a composite of several distinct
stages of processing (e.g., visual encoding, mental processing,
and response selection). This “chronometric” approach to mental
processes underpins many paradigms in cognitive psychological
research (Posner, 1978).

Because any single RT might contain idiosyncratic processes,
such as lapses in attention, orthogonal to the mental process
under investigation (however see Speelman and McGann,
2013 for an alternative perspective), researchers usually recruit
multiple participants and subject them tomultiple measurements
of RT. This distribution of RTs obtained in simple decision
tasks is invariably positively skewed. In traditional mean-based
ANOVA analyses, issues regarding skew are typically ignored
because the method has been repeatedly shown to be “robust
to violations of normality” (e.g., Glass et al., 1972; Harwell
et al., 1992; Lix et al., 1996). Consequently, many cognitive
theories have been developed and validated against such mean
RT data, raising many of the interpretive problems highlighted
by Speelman and McGann (2013).

In response to such theoretical limitations, there have been
two major developments in analysis of RT in cognitive research
relevant to the themes of this issue. First, many researchers have
moved “beyond mean RT” (Balota and Yap, 2011) by analysing
changes in the RT distribution at a more fine-grained level in
order to yield more accurate measures of group performance
(Heathcote et al., 2004). Application of these procedures has
allowed researchers to conduct sophisticated tests of cognitive
theories that cannot be distinguished on the basis of mean RT
alone (e.g., Heathcote et al., 1991; Andrews and Heathcote,
2001; Yap et al., 2009). For example, Yap et al. (2009) reported
that an individual’s vocabulary level modulated how word
frequency and semantic priming affected the shape of their
RT distribution. They found additive effects between these
factors across the RT distribution for those of high vocabulary,
suggesting that semantic priming was automatically triggered
for both high and low frequency words among these people
with highly fluent lexical representations. In contrast, those of
low vocabulary showed interactive effects, particularly for slow
responses, suggesting that the increased skew associated with
greater priming for less familiar, low frequency target words
might be due to strategic use of semantic information. Analyses
of individual RT distributions have therefore proved to be useful
in identifying and interpreting individual differences in speeded
response tasks.

A second recent response to limitations of traditional ANOVA
analyses of mean RT, which is the focus of the present paper,
is the use of linear mixed-effect models (LMMs). LMMs have
become increasingly prevalent within many areas of science,
because they are able to account for random populations that
share a nested relationship like hospitals chosen from different

districts (Carey, 2002), or blocked relationships like fertilizer
treatment on samples over different soil plots (Lane, 2002).
Within cognitive psychology, LMMs have had the strongest
recent impact in psycholinguistics, because the use of mean RT
in traditional ANOVA analyses has been unable to capture the
crossed relationship between counterbalanced sets of linguistic
stimuli presented to different subjects (Clark, 1973; Forster and
Dickinson, 1976; Baayen, 2008). LMMs provide a statistical
solution to this problem (Baayen et al., 2008), and have become
the recommended form of analysis in high impact journals within
the field.

Importantly, LMMs have the potential to address many of
the problems raised by Speelman and McGann (2013) about
the use of mean RT, because the ability of these models to
simulate the multi-level structure of the designs described above
eliminates the need to average data across subjects, items, plots,
or hospitals. This crucial property of LMMs therefore provides
a powerful and refined method for investigating interactions of
experimental effects with individual and item differences that
cannot be investigated in traditional ANOVA approaches because
they do not collapse across these variables. For example, by
exploring the variance/covariance parameters, Kliegl et al. (2010)
showed that individuals who responded more quickly tended
to produce larger masked repetition priming effects in a lexical
decision task. Across individual trials, Kinoshita et al. (2011)
showed that sensitivity to the difficulty of the previous trial
interacted significantly according the prime-target relationship
and task environment in a parity judgment task. Thus, LMMs
have the potential to accommodate the different levels of analysis
required to “optimize both scientific rigor and sensitivity to
individual variability” that was identified as one of the goals
outlined in this Special Issue.

Although the sophistication of LMMs present a significant
leap forward for individual differences research, their application
is complicated for skewed dependent variables like RT because
current guidelines for LMM recommend that researchers
transform their RT for two reasons. The first is that skewed
RT data can affect the estimate of the mean, thus distorting
the outcome of statistical tests. For example, Baayen (2008)
recommends transforming RT data to avoid a situation in
which “just a few extreme outliers might dominate the
outcome, partially or even completely obscuring the main trends
characterizing the majority of datapoints” (p. 33). The second
reason is that non-normally distributed residuals produced by
skewed data reflect a non-constant heteroscedastic pattern that
affects the precision with which the standard error of the mean
is estimated (Cohen et al., 2003). Therefore, researchers are
expected to use the Box–Cox procedure (Box and Cox, 1964) to
identify a transformation that allows them to meet the Gaussian
assumptions of normality and homoscedasticity. For RTs, the
transformation that best satisfies this mathematical assumption
is often the reciprocal or inverse RT (Balota et al., 2013).

To Transform or Not to Transform?
Unfortunately, routinely applying such transformations has
important theoretical implications. For example, applying a non-
linear (e.g., log, inverse) transformation to the dependent variable
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not only normalizes the residuals, but also distorts the ratio scale
properties of measured variables, such as dollars, weight or time
(Stevens, 1946). As a concrete example within the aging literature,
two samples—one older and one younger—might exhibit
differential benefits in RT when the preceding prime word was
semantically related to the target (e.g., nurse–doctor) relative to
when it was semantically unrelated (e.g., plane–doctor) (e.g., 600
and 700ms for the younger adults, and 780 and 910ms for the
older adults). However, on the log-transformed scale, differences
between these two samples are obscured because on this scale the
differences disappear [e.g., log(700ms)−log(600ms) = 0.15415;
log(910ms)−log(780ms)= 0.15415] (i.e., there is no interaction
between age and priming).

While many readers will recognize these discrepant results as
another example of “scale dependent” interactions (Loftus, 1978),
the critical question that we wish to address is what the correct
scale should be in “chronometric” research. According to the
“mental chronometry” approach (Posner, 1978), the answer is
clearly raw RT. Differences in RT over experimental conditions
are assumed to directly reflect differences in the amount of time
taken to perform these mental operations (Townsend, 1992).
In the example above, additive effects suggest that automatic
spreading activation, which is thought to underlie semantic
priming, proceeds in much the same way for both younger and
older adults (e.g., Hasher and Zacks, 1979), whereas over-additive
effects suggest that age-related deficits in terms of response speed
interacts with semantic activation in order to produce greater
savings in time when both the prime and target are semantically
related (Laver and Burke, 1993).

But this does not mean that raw RT is always the
most appropriate dependent variable. Other theoretical
positions assume a different relationship between RT and
mental operations that is most appropriately measured by
a transformation such as log or inverse RT. For example,
differences calculated on the logarithmic metric reflect
proportional change [i.e., log(700ms)−log(600ms) =

log(700/600ms)], which aligns with many theories of aging
which attribute a causal role to general cognitive slowing (e.g.,
Salthouse, 1985). However, the vast majority of cognitive theories
have been developed and validated on raw RT. So by routinely
applying a transformation to yield the normal distribution
required for LMM, the researcher may ultimately fail to test their
hypotheses using the dependent variable that underpinned their
theoretical predictions.

In individual differences research, scale dependent
interactions touch upon even broader theoretical implications.
At its most basic conceptualization in a two-factor design, a
significant interaction indicates that the effect of a particular
variable (the numerical difference on the dependent variable
between levels of one of the factors) changes across the
population of interest because it differs as a function of a
second independent variable; typically another group of people
or a different condition. Conversely, a lack of interaction
between these factors suggests that the average effect remains
uniform across individuals or conditions under assessment.
Thus, statistical assessment of interactions provides insight as
to whether there is a single “true value that we are trying to

approximate when we measure humans on some dimension”
(Speelman and McGann, 2013, p. 2), or whether multiple values
exist particular to each individual.

Thus, the increasing reliance on LMM in cognitive psychology
presents researchers with a conundrum created by the mismatch
between the dependent variable dictated by theory and
the dependent variable dictated by the requirements of the
statistical analysis. As discussed above, in cognitive psychological
investigations of “mental chronometry,” raw untransformed RTs
are usually the metric about which the researcher has predictions.
However, to satisfy the assumptions of LMM, the statistical
analysis is conducted on the transformed metric. Thus, in order
to interpret the results and in order to compare them with earlier
published ANOVA data, the estimates of the empirical effects
from the LMM are often “back-transformed” into raw RT. But
unfortunately, back-transformation can be unreliable because
statistically significant differences on the transformed metric are
uninformative as to whether significant differences exist on the
original untransformed metric and vice versa (Berry et al., 2010).
Cognitive psychologists are therefore trapped between a rock and
a hard place. Analyses on raw RT are inappropriate because they
fail to meet the assumptions of the linear model, but analyses on
transformed RT are uninformative because they fail to answer the
research questions of interest.

The ideal solution to this quandary would be to allow
statistical assessment on the original raw RT metric, but to also
meet the mathematical constraints imposed by the statistical
model. Such a solution is offered by generalized linear mixed-
effect models (GLMMs) which offer one approach to achieving
this ideal that is readily implemented in many statistical
packages. By separating the mathematical and theoretical
components of the model, GLMMs allow researchers to use
the dependent variable most appropriate to their research
question, while simultaneously meeting the mathematical
criterion of normalized, homoscedastic residuals in linear
regression. To achieve these goals, GLMMs require the
researcher to consider these issues as part of the specification
process.

A Case Study: Effects of Word Frequency and
Stimulus Quality on Lexical Retrieval
To demonstrate the interpretative problems associated with
routinely transforming RT to meet the normality assumptions
of LMM and to illustrate how GLMM can be applied to avoid
the need for transformation, we present re-analyses of data
recently reported by Balota et al. (2013). Specifically, they used
LMM to re-analyse the data from three published studies which
reported additive effects of word frequency and stimulus quality
in ANOVA analyses of raw RT (Yap and Balota, 2007; Yap
et al., 2008). However, for the LMM analyses on inverse RT,
the data transformation that most effectively normalized the
residuals for all datasets, the results yielded a completely different
pattern for all three experiments: significant underadditive
interactions.

In “chronometric” research, additive or interactive effects
reflect fundamental assumptions about the nature of RT
described at the beginning of this paper. Because each measured
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RT is assumed to reflect a composite of several distinct stages
of processing, separate stages in mental operation can be
inferred if the time required to perform a second mental
operation is independent of the time required to complete the
first mental operation (i.e., the effects are additive) (Sternberg,
1969). This reasoning is crucial for additive-factors logic
(Sternberg, 1969), because without the ratio measurement scale
properties in raw RT (Townsend, 1992), the inferential power
of this technique is lost because equivalence in measurable
raw RT can no longer be taken as evidence of equivalence in
processing.

Thus, within the additive-factors logic (Sternberg, 1969)
framework described above, the temporal relationship between
word frequency and stimulus quality has important theoretical
implications regarding the nature of lexical representation.
Taken individually, low frequency words and visually degraded
stimuli both serve to slow RT relative to when the stimuli
are clearly presented or of high frequency (Stanners et al.,
1975). However, the additive effects of these two variables
on raw RT reported in the original papers suggest that that
these factors selectively influence separate stages of mental
processing, and produce significant challenges for activation
models which predict interactive effects between frequency
and stimulus quality (Borowsky and Besner, 1993). Specifically,
activation models propose that the threshold for activation is
determined by word frequency and the rate of activation by
stimulus quality, so stronger effects of stimulus quality on low
frequency words should therefore be observed because more
time is required to reach the higher activation threshold for
low frequency words when combined with a slower rate of
activation in the context of degraded stimuli (Morton, 1969).
This consistent evidence of additive effects of word frequency and
stimulus quality in the experimental data, under conditions that
yield interactions between each of these variables and semantic
priming, therefore presents a strong challenge to fully interactive
activation models (Borowsky and Besner, 1993; Balota et al.,
2013). Given the central theoretical importance of the additive
effects of word frequency and stimulus quality observed on raw
RT, Balota et al.’s (2013) demonstration that the additive pattern
is specific to raw RT and changes when the dependent variable is
transformed directly reflects the theoretical quandary presented
above.

The Generalized Linear Mixed-Effect
Model (GLMM) Framework

GLMMs combine and extend the properties of LMM and
generalized linear model (GLM) approaches, by relaxing LMM’s
assumption that the dependent variable (and the residuals) follow
a normal (Gaussian) distribution, and extending GLM’s scope of
inference to extend beyond a single random population. Rather
than making the default assumptions of LMM methods, GLMM
requires researchers to specify a number of components of their
data and design:

(1) the explanatory variables responsible for systematic variation
in responses: referred to as the fixed factors;

(2) the sampling structure of the design contributing to random
variability in responses: the random factors;

(3) the probability distribution describing the plausible
processes underlying the observed data: the distribution of
the dependent variable; and

(4) the mathematical function characterizing the relationship
between the fixed factors and the dependent variable: the link
function.

The following sections introduce the key theoretical and
methodological issues regarding specification of GLMMs within
the context of the three experiments from Balota et al.
(2013). Readers interested in more technical mathematical and
computational details regarding LMM (Pinheiro and Bates, 2000;
Raudenbush and Bryk, 2002; Baayen, 2008), GLM (McCullagh
and Nelder, 1989), and GLMM (Jiang, 2007; Stroup, 2013)
should consult the excellent resources already published on these
topics.

The three experiments re-analyzed by Balota et al. (2013) each
factorially manipulated word frequency and stimulus quality
within a lexical decision task. For the word responses in all three
experiments, each participant responded to 100 high frequency
and 100 low frequency words, presented in either clear or
degraded stimulus quality conditions. In Yap and Balota (2007),
the stimulus quality manipulation was conducted between
subjects while Yap et al. (2008, Experiments 1 and 2) used within-
subjects manipulations conducted on counterbalanced item sets.
The non-word items in Yap and Balota (2007) and Yap et al.
(2008, Experiment 1) comprised of 200 pronounceable pseudo-
words (e.g., flirp), while Yap et al. (2008, Experiment 2) used
200 pseudo-homophones (e.g., brane). Further details regarding
the design are available in each experiment’s respective published
reports.

The Fixed Factors
Users of ANOVA and ordinary least squares regression in the
basic linear model framework will already be familiar with
specifying fixed factors in their analyses. Both at a conceptual
and practical level, this remains unchanged in GLMM. In
order to differentiate them from random factors described
below, fixed factors are the components of the linear predictor
responsible for systematic variability in the observed responses.
Typically, fixed factors consist of the independent variables
(or covariates) with a small finite number of levels under
experimental manipulation. The levels of these factors are the
object of hypothesis testing (fixed effects), and represent the
conditions for which the model provides estimates of the average
response over the entire population(s) (generally denoted by
the symbol µ̂ —the estimated mean corresponding to each
condition).

Across the three experiments reported in Balota et al. (2013),
the fixed factors correspond to word frequency and stimulus
quality. Normalized sum contrasts specified on these fixed factors
yielded four fixed effects in the statistical model: mean RT
associated with the lexical decision task (intercept), differences
in RT associated with the manipulations of word frequency (high
vs. low), stimulus quality (clear vs. degraded), and frequency ×
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stimulus quality interaction1. Of central interest is whether the
observed data are consistent with interactive effects of frequency
and stimulus quality predicted by interactive models, or the
additive effects that follow from the independent processing
stages assumed by serial models.

The Random Factors
Within the mixed modeling framework, random factors
correspond to components of the linear predictor in which a
random subset of levels are sampled from a larger population.
As opposed to fixed factors, in which systematic variability
between conditions (i.e., mean differences) is explicitly estimated
and compared, variability in the random factors is used to:
(1) estimate the extent to which mean responses vary across
units of the random factor; (2) allow inferences about whether
fixed effects generalize beyond the units sampled in the random
factor; (3) remove variability in responses that are associated with
the random factor rather than the conditions of experimental
interest (i.e., reduce Type I error rate). Typically, many levels of
the random factor are sampled in the experiment under which
responses are meaningfully clustered. Although clustering is one
form of structural dependency typically associated with a random
factor, other structural dependencies such as nesting, cross-
classification, blocking and other counterbalancing procedures
can also contribute to nuisance variability that is partialled out
with a random factor2.

Subjects and items constitute the random factors common
across the three experiments reported in Balota et al. (2013),
because responses are clustered according to individual
participants and English words—both of which represent a
random sample from their respective populations. Following
nomenclature within the LMM literature (e.g., Barr et al., 2013),
the overall mean for each subject and item were estimated as
“random intercepts” in each of the experiments, while with the
degree to which each fixed effect varied across subjects and/or
items were estimated as “random slopes.” This latter specification
for random slopes differed according to the design of the three
experiments. In the Yap and Balota (2007) experiment, stimulus
quality was manipulated between-subjects and word frequency
was manipulated between-items, so the random slopes controlled
for subject-specific variability in the frequency effect which can
be distinguished from variability associated with particular

1Balota et al. (2013) also included the lexicality and stimulus quality of the previous

trial as fixed factors in their analyses in order to investigate the modulating

role of trial history on performance, and to assess the generality of Masson and

Kliegl’s (2013) claim that additive effects of word frequency and stimulus quality

are a spurious outcome of ignoring trial history. Evaluating the effects of such

trial level variables is only possible in LMM and GLMM using unaggregated

data because they allow structural dependencies to be accounted for as random

factors. However, Balota et al. (2013) reported no evidence of previous trial history

significantly modulating the relationship between word frequency and stimulus

quality, so these variables were not included in our analyses.
2At the time of writing, implementation of LMM and GLMM in popular statistical

software assumes that the mean responses across the units of the random factor

are normally distributed. Though this may be a reasonable assumption given that

sample means can be normally distributed even though the underlying population

of responses is non-normal based on the central limit theorem, further advances in

computation may allow non-normally distributed random factors to be specified

in doubly generalized linear mixed-effect models as described by Lee et al. (2006).

words, and item-specific variability in the stimulus quality effect
which can be distinguished from variability associated with
different participants. For the other two experiments in which
word frequency and stimulus quality were both manipulated
within-subjects, the random slopes controlled for subject-specific
variability in the frequency effect, stimulus quality effect, and
frequency by stimulus quality effect, as well as item-specific
variability in the stimulus quality effect. This represents the
“maximal” random effect structure (Barr et al., 2013) for each of
the experiments.

The Dependent Variable
A key feature of GLM and GLMM is the ability to appropriately
model a variety of response distributions. As noted previously,
GLMM does not make the default assumption that this
distribution is Gaussian and therefore requires that the researcher
specify an appropriate distribution. In some measurement
contexts, this selection is straightforward—binary responses
are described by a binomial distribution; count responses are
described by a Poisson distribution. But selecting the appropriate
dependent variable is less straightforward in domains like
cognitive psychology, where researchers often investigate latent
constructs that are indexed by continuous behavioral measures,
like RT, which can be described by a host of distributions (e.g.,
normal, beta, gamma, uniform, etc.), and where there is often
no consensus on the “correct” distribution. This ambiguity has
contributed to researchers’ willingness to transform RTmeasures
to meet the mathematical assumptions of LMM. GLMMoffers an
alternative: the researcher can select the quantitative distribution
that best captures the properties of their measured variable. As
we describe below, both theoretical and empirical considerations
underpin this decision.

Across the three experiments reported in Balota et al. (2013),
the dependent variable was the RT to correctly classify each
stimulus as an English word. As illustrated in Figure 1, the
distributions of observed RT (represented by solid lines) for all
three experiments were unimodal with a distinct positive skew. In
addition to this characteristic shape, the data for all experiments
also revealed a linear relationship between the standard deviation
of RTs and mean RT demonstrated in many previous studies of
RT in binary choice tasks (e.g., Luce, 1986; Faust et al., 1999;
Wagenmakers and Brown, 2007). This linear relationship is also
evident in plots of the residuals which show hetereoscedasticity
in LMM analyses, evidenced by increasing spread in residuals
for longer predicted RT (Kliegl et al., 2010; top row of plots in
Figure 3).

Rather than transforming the dependent variable to eliminate
this deviation from normality, GLMM allows the researcher to
select a theoretical distribution that matches the properties of
measured RT. Two of the two-parameter distributions currently
implemented for GLMMs in the stats package as part of the
default installation of the R program for statistical computing
(R Core Team, 2013), the Gamma and Inverse Gaussian
distributions reproduce these surface characteristics of raw RT—a
unimodal skewed distribution with continuous responses greater
than or equal to 0. As shown in Figure 1, they both provide
a closer approximation to the observed distribution of RTs
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FIGURE 1 | Observed (solid lines) and fitted densities (dotted,

dashed and broken lines) to the RT from the three Balota et al.

(2013) experiments. For the Yap and Balota (2007) experiment, the

gamma density was fitted with a rate of 0.018 and a shape parameter

of 11.967 (dashed line), the inverse Gaussian density was fitted with a

λ parameter of 8201.5 and a mean of 658.8 (dotted line), the normal

density was fitted with a mean of 658.8, and a standard deviation of

212.97 (broken line). For the Yap et al. (2008, Experiment 1), the

gamma density was fitted with a rate of 0.026 and a shape parameter

of 16.000 (dashed line), the inverse Gaussian density was fitted with a

λ parameter of 10223.8 and a mean of 620.1 (dotted line), the normal

density was fitted with a mean of 620.1 and a standard deviation of

172.26 (broken line). For the Yap et al. (2008, Experiment 2), the

gamma density was fitted with a rate of 0.015 and a shape parameter

of 10.740 (dashed line), the inverse Gaussian density was fitted with a

λ parameter of 7704.3 and a mean of 697.0 (dotted line), the normal

density was fitted with a mean of 697.0 and a standard deviation of

242.67 (broken line).

in the three experiments than the normal distribution. The
distributions also provide an explicit mathematical relationship
between the mean and variance. For the Gamma distribution,
the variance of the distribution increases proportionally with the
mean, while the variance increases proportionally with the cube
of the mean for the Inverse Gaussian distribution. Despite the
differences in their mathematical expression, both distributions
are able to approximate a variety of distributional shapes that
allow them to “statistically mimic” RT responses and yield fits
that are practically indistinguishable from each other (Van Zandt
and Ratcliff, 1995).

As well as approximating the surface characteristics of
the distribution of the dependent variable, the probability
distribution should also provide a plausible description of the
processes underlying the response. At a conceptual level, both
the Gamma and Inverse Gaussian distributions can be linked to
waiting time—how long it takes until an event of interest (e.g., a
button press) to occur. Mathematically, the Gamma distribution
is the sum of multiple exponential distributions, which can be
considered to model the probability that no event occurs until
a certain period of time. The Gamma distribution can therefore
be considered to model several serial stages of processing, each
of which finishes with a time that is exponentially distributed
(Van Zandt and Ratcliff, 1995). Similarly, the Inverse Gaussian
distribution has been identified with the time for evidence
accumulation to reach a single threshold boundary within a
diffusion process (Schwarz, 2001).There are other distributions
as described in the General Discussion (e.g., ex-Gaussian, ex-
Wald, shifted Wald) with parameters that have also been
associated with psychological processes underlying RT (Matzke
and Wagenmakers, 2009). Given that there is no consensus as
to the “correct” distribution for mapping from psychological

processes to RTs, the purpose of this introduction is not to
advocate for a particular distribution, but to illustrate that the
Gamma and Inverse Gaussian are examples of distributions that
provide a plausible description of processes reflected in RT.

The Link Function
In GLM and GLMM, fixed factors are assumed to be linear
predictors of a function of the observed response rather than
the observed response itself. Thus, the model assesses the linear
predictors (µ̂) on an unbounded transformed scale (e.g., the scale
upon which a latent variable like “lexical retrieval” is measured
could contain any numerical value), that is different from the
bounded original scale of the dependent variable (DV) (e.g.,
observed RT contains strictly positive values like those produced
by the Gamma distribution; the observable probability of an
inaccurate response is bound between the values of 0 and 1
like those from a binomial distribution). The transformed and
original scales are connected by a monotonic differentiable link
function that allows back-transformation to the original metric
by providing a one-to-one mapping between the range of fitted
values produced by the linear predictor on the transformed
metric and the range of observed values on the original metric
[i.e., DV = f (µ̂)]. Therefore, the nature of the relationship
between the two scales can be considered to be defined by the
mathematical function connecting the observed response to the
latent construct upon which the fixed factors are assessed. In the
special case where “no function” is required and the observed
response is assumed to directly tap the latent construct (e.g., RT
is a direct measure of the time required for lexical retrieval), the
function binding the expected values produced by the predictors
to the dependent variable is the identity link (i.e., DV = µ̂).
Ordinary linear regression and LMM assumes an identity link
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between the DV and the latent construct. When researchers
using these methods believe that the measured DV is not directly
related to the latent construct, they canmathematically transform
the DV into the latent construct, and then apply this transformed
variable in the analysis as the DV in order to achieve a similar
effect3. That is, the link function in GLM(M) explicitly defines the
nature of the expected relationship between the predictors and
the observed response.

In the context of the experiments reported in Balota et al.
(2013), there are two reasons as to why the identity link is
appropriate. Firstly, from a theoretical perspective, the tradition
of mental chronometry assumes that manipulations directly
affect RT rather than some function of RT. More explicitly within
additive factors logic, RT is assumed to be linearly affected by the
experimental factors so that factors that affect a single processing
stage interact, while those that affect separate processing stages
do not. By changing the form of this mapping with a non-linear
link function or a non-linear transformation of the dependent
variable as applied in LMM, such an interpretation cannot be
applied and cannot inform the models from which they were
derived. Secondly, from a mathematical perspective, a non-linear
link function is usually applied to constrain the predicted values
within the bounds of the dependent variable. Since the bulk of
observed RTs in Balota et al. (2013) are situated well away from
the negative boundary (in part because RTs faster than 200ms
were removed), and predictions are not extrapolated beyond the
observed conditions, there is little danger of the model producing
impossible negative values for RT which are difficult to interpret.

Using GLMM to Avoid the Need for
Transformation of Skewed RT Data

To illustrate the application of GLMM to address the problems
with transformation outlined earlier, we re-analyzed the three
experiments that Balota et al. (2013) recently demonstrated to
yield contradictory outcomes in analyses conducted on raw and
transformed data. They report that LMM analyses of the inverse
RT transformed data that best satisfied criteria for normality
yielded underadditive interactions rather than the additive effects
of frequency and stimulus quality found with raw RT.

We report the results of six analyses of each of the three
experiments. Two of the analyses parallel Balota et al.’s (2013),
by using LMMs on raw RT (DV = RT) and inverse RT
(DV = − 1000/RT). By default, these analyses assume a
Gaussian distribution and identity link function. The remaining
four analyses are GLMMs on raw RT which assume either a
Gamma or Inverse Gaussian distribution of the DV, and a linear
(identity link function; RT = µ̂) or inverse relationship (inverse
link function; RT = − 1000/µ̂) between the predictors and
RT. We chose −1000/µ̂ as the specific form of the inverse link
function to parallel the inverse transformation applied to RTs
in Balota et al.’s (2013) LMM analyses (i.e., −1000/RT). These

3It is important to note that differences in the logs of the means (i.e., passing µ̂

through a log link) is not the same as differences in the means of log-transformed

data, but general compression in differences involving larger values on either scale

is maintained in either method.

GLMM analyses are therefore analogous to the LMM analyses
conducted on inverse RT.

The primary interest is in the results from the properly
specified GLMMbased on the decisions described in the previous
section, but we also aim to clarify how differences in the
specification of the dependent variable and link function relate
to the conflicting findings between raw and inverse transformed
RT reported by Balota et al. (2013).

The analyses were conducted on RT data for correct word
responses for Yap and Balota (2007) and Yap et al. (2008
Experiments 1 and 2) using version 1.0-5 of the lme4 package
(Bates et al., 2013) in the R program for statistical computing
(R Core Team, 2013) following the same trimming procedures
described in Balota et al. (2013). Since there is continuing debate
as to how p-values should be generated for LMMs because of
computational issues regarding degrees of freedom, we follow the
current practice of considering effects greater than two standard
errors (i.e., |t|> 2) to be significant at the 0.05 level for datasets
involving a large number of observations (Kliegl et al., 2010;
Masson and Kliegl, 2013). The R syntax used to generate these
models along with the full model output and predicted mean RT
for each condition can be found in the Supplementary Materials.

Figure 2 summarizes the predictions of the models assuming
a linear relationship between the predictors and RT for the three
experiments. The corresponding results for models assuming
an inverse relationship between the predictors and RT are
presented in Figure 4. Each column of Figures 2–5 corresponds
to a different experiment, while the rows of the figures present
estimates from the LMM models (top row), and GLMM models
assuming Gamma (middle row), and Inverse Gaussian (bottom
row) distributions, respectively, of the DV.

For each model summarized in Figures 2, 4, the shaded
region of the prediction plot depicts the estimated effect of
word frequency (difference between high and low frequency
conditions) based on the fitted values for each of the four
frequency by stimulus quality conditions as plotted on the
model transformed scale (x-axis), while the y-axis plots the
same difference after the mean estimates have been back-
transformed via the link function on the original RT scale. The
estimates are identical on the model and back-transformed RT
scales in Figure 2 because the identity link assumes that the
scale of the latent construct assessed by the model (x-axis) is
synonymous with RT. The form of the link function itself is
depicted by the solid black line connecting the diagonals of
the plot.

Although an identity link function (DV = µ̂) was also
specified for the LMM analysis on inverse transformed RTs
(DV = −1000/RT), we depict a non-linear function in Figure 4

to illustrate the back-transformation from inverse to raw RT
(RT = −1000/µ̂) that researchers typically apply to interpret
their data. The p-value corresponding to the critical interaction
effect, which is presented in the bottom-right corner of each plot
only assesses whether there is a significant difference in the linear
effect of frequency on the model transformed scale (x-axis), and
does not assess whether significant (linear) differences exist on
the original RT scale (y-axis) unless the identity link was specified
(Berry et al., 2010).

Frontiers in Psychology | www.frontiersin.org 7 August 2015 | Volume 6 | Article 1171

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Lo and Andrews Generalized linear mixed-effect models

FIGURE 2 | Prediction plots illustrating the estimated frequency effect

and statistical results (t- or z- value and corresponding p-value) of

the word frequency by stimulus quality interaction (shaded region on

x-axis) based on models assuming a linear relationship between the

predictors and RT (identity link function). Note that the

back-transformed estimates (shaded region on y-axis) are identical because

of the identity link function. Each column of plots represents the results from

a different experiment (from left to right: Yap and Balota, 2007; Yap et al.,

2008: Experiment 1; and Yap et al., 2008: Experiment 2), and each row of

plots represents a different assumption for the distribution of RTs (from top to

bottom: Gaussian, Gamma, and Inverse Gaussian). Note that precise

p-values are produced in GLMM for the Wald Z-statistic in R, while

approximate p-values can only be inferred based on the magnitude of the

t-value produced in LMM.

Selecting the Right Model
Each of the individual analyses in Figures 2, 4 produced subtle
differences in the magnitude, direction or statistical significance
of the word frequency by stimulus quality interaction. A
decision must therefore be made about the best-fitting correctly
specified model. There are a number of ways to address this
question.

Throughout the previous sections, we have argued that, from
a theoretical perspective, the dependent variable of theoretical
interest in mental chronometric research like this is raw RT,
and that additive factors logic assumes a linear relationship
between the experimentally manipulated variables and RT itself.
From this perspective, only the analyses using raw RT as the
dependent variable and specifying an identity link function
provide meaningfully interpretable results for this experiment
(Figure 2).

To further discriminate between the analyses, we can identify
the statistical model that provides predictions which best fits

the observed RTs. Figure 3 allows a visual inspection of model
fit, by plotting the residuals against predicted RT. The LMM
analyses (top row of plots), which assume a Gaussian distribution
of raw RT, clearly exhibit a heteroscedastic (fan-shaped) pattern
that is not evident in the GLMM analyses assuming a Gamma
or Inverse Gaussian distribution (middle and bottom row of
plots). Therefore, these plots suggest that the Gamma or Inverse
Gaussian distributions provide a better fit to the data because they
explicitly account for the hetereoscedastic pattern of increasing
variability with slower responses and therefore yield more
normally distributed residuals.

A similar conclusion derives from AIC and BIC summary
fit indices presented in Table 1, and the estimated Gaussian,
Gamma, and Inverse Gaussian distribution fits to the observed
RT density in Figure 1. Across the three experiments, the Inverse
Gaussian distribution (followed by the Gamma and Gaussian
distributions) produce parameters that best approximate the
shape of the observed RT distribution, and yield fit values
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FIGURE 3 | Plots of the residuals over predicted RT from models

assuming a linear relationship between the predictors and RT

(identity link function). Each column of plots represents the results

from a different experiment (from left to right: Yap and Balota, 2007;

Yap et al., 2008: Experiment 1; and Yap et al., 2008: Experiment 2),

and each row of plots represents a different assumption for the

distribution of RTs (from top to bottom: Gaussian, Gamma, and

Inverse Gaussian).

that are consistently lower than the Gamma or Gaussian
distributions. Thus, on both these graphical and empirical
indices, the Inverse Gaussian distribution provides the best fitting
model.

Having identified the most appropriate statistical model, we
can consider its results. Consistent with the ANOVA analyses
reported in the original published papers, none of the three
experiments yielded a significant interaction between word
frequency and stimulus quality in the Inverse Gaussian GLMM
with identity link function (bottom row of plots in Figure 2).
This model predicted effects of frequency that were 5, 8, and
5ms greater for the degraded than clear condition in the Yap
and Balota (2007), Yap et al. (2008, Experiment 1), and Yap
et al. (2008, Experiment 2) data, respectively. The magnitude and
direction of these effects are essentially identical to the 6, 7, and
5ms overadditive effect reported in original ANOVA analyses.
Although these estimated effects are similar to those predicted in
the poorer fitting Gamma andGaussian GLMMwith identity link
(top and middle row of plots in Figure 2), the test statistic (t- or
z-value) is larger and corresponding p-value lower for the better
fitting models, suggesting that the standard errors have been
more precisely estimated. Better fitting models provide more
powerful adjustment to extreme values, particularly in the slowest
condition of degraded low frequency words, where calculation of
the average would be most affected, thus allowing greater power
as well as reliability with which to assess individual differences
between subjects and items (see Appendix in Supplementary
Material for mean RT predicted for each condition by the six
models).

Different conclusions about the relationship between word
frequency and stimulus quality are suggested by the results of
models using transformed RTs or link functions that assume a
non-linear relationship between the predictors and RT. From
the perspective of model fit alone, the analysis on inverse
transformed RT produces residuals that offer the least amount
of hetereoscedasticity (Figure 5), suggesting that the fit is at
least as good, if not better, than the Inverse Gaussian GLMM
with identity link described above4. This is the expected
outcome of applying the Box–Cox procedure to estimate a
power transformation that stabilizes variance in order to create
normally distributed data. However, although these models meet
the mathematical assumptions of normality required by LMM,
as Balota et al. (2013) report, relying on the transformed DV in
LMM put the researcher in the unhappy situation of developing
an ad-hoc explanation of why the estimated effect of frequency
is now underadditive (Figure 4), as opposed to the additive or
slightly overadditive effects observed on raw RT.

These contradictions arise because interval differences
in the dependent variable are distorted when non-linear
transformations are applied. For each of the prediction plots
based on an inverse transformation or inverse link function
in Figure 4, almost all of the back-transformed estimates
suggest no difference, or a slightly larger numerical effect of
frequency for degraded words (a small overadditive effect) on
the RT scale (y-axis). However, on the model estimate scale

4Empirical fit indices such as AIC/BIC values are not comparable across models

with different dependent variables (Burnham and Anderson, 2002).
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FIGURE 4 | Prediction plots illustrating the estimated frequency effect

and statistical results (t- or z-value and corresponding p-value) of the

word frequency by stimulus quality interaction (shaded region on

x-axis) based on models assuming an inverse relationship between

the predictors and RT (inverse link function). The plots also present the

back-transformed estimates (shaded region on y-axis) on the original RT

metric. Each column of plots represents the results from a different

experiment (from left to right: Yap and Balota, 2007; Yap et al., 2008:

Experiment 1; and Yap et al., 2008: Experiment 2), and each row of plots

represents a different assumption for the distribution of RTs (from top to

bottom: Gaussian, Gamma, and Inverse Gaussian). Note that precise

p-values are produced in GLMM for the Wald Z-statistic in R, while

approximate p-values can only be inferred based on the magnitude of the

t-value produced in LMM.

(x-axis), these differences are distorted by the non-linear inverse
link function into a numerically larger effect of frequency for
clear words (underadditive effect). For the Yap and Balota
(2007) experiment, the distortion caused by the non-linear
transformation was severe enough to push the underadditive
effect to statistical significance in the LMM analysis (top left
panel of Figure 4). The underadditive interactions in this dataset
were also marginally significant in the GLMM analyses using the
inverse link function.

Tomeaningfully interpret this underadditive effect, and effects
assessed on the inverse RT scale more generally, the researcher
must assume that the predictors are inversely related to RT.
This view is consistent with recent attempts to map effects
assessed on the reciprocal scale to differences in processing rate
or processing speed (Kliegl et al., 2010). For example, processing
rate or speed of evidence accumulation is assumed to be slower
for visually degraded as opposed to clearly presented words in
activation models (e.g., McClelland and Rumelhart, 1981), thus

yielding the slower RT typically observed for these conditions.
However, a core assumption within all of these models is that
rate of evidence accumulation is linear over time (e.g., Borowsky
and Besner, 1993; Ratcliff and Rouder’s, 2000, diffusion model;
Brown and Heathcote’s, 2008, linear ballistic accumulator)—in
direct contrast to the non-linear relationship implied by the
inverse scale. So while there may be physiological reasons to
expect non-linearity at the level of neural spike rates (e.g.,
Carpenter and Williams, 1995), the implications associated with
the reciprocal nature of this transformation on RT appears to
be limited because psychological models assuming linearity are
able to closely predict responses in observed data (Ratcliff, 1978;
Brown and Heathcote, 2008).

Thus, the GLMM procedure allows researchers to select the
DV most appropriate to their research question rather than use
a transformed DV simply to meet mathematical assumptions.
If raw RT is the most appropriate metric, as we have argued
to be the case for most mental chronometric research, an
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FIGURE 5 | Plots of the residuals over predicted RT (or inverse RT)

from models assuming an inverse relationship between the

predictors and RT (inverse link function). Each column of plots

represents the results from a different experiment (from left to right: Yap and

Balota, 2007; Yap et al., 2008: Experiment 1; and Yap et al., 2008:

Experiment 2), and each row of plots represents a different assumption for

the distribution of RTs (from top to bottom: Gaussian, Gamma, and Inverse

Gaussian).

TABLE 1 | AIC and BIC indices of model fit comparing LMMs and GLMMs of different distribution and link assumptions for each of the three experiments.

Link function Distribution (DV) Yap and Balota (2007) Yap et al. Yap et al.

(2008, Experiment 1) (2008, Experiment 2)

AIC BIC AIC BIC AIC BIC

LMM (Identity link) Gaussian (inverse RT) 6337 6404 3284 3356 6832 6912

Gaussian (raw RT) 170,573 170,640 66,775 66,847 138,196 138,276

GLMM (Identity link) Gamma (raw RT) 164,722 164,790 64,954 65,026 133,528 133,608

Inverse Gaussian (raw RT) 163,161 163,229 64,461 64,533 132,318 132,398

GLMM (Inverse link) Gamma (raw RT) 164,545 164,613 64,870 64,942 133,304 133,384

Inverse Gaussian (raw RT) 163,012 163,079 64,395 64,467 132,128 132,207

Note that the dependent variable (DV) specified in the first row (LMM) were on inverse transformed RT, so these fit indices are not directly comparable with the other five rows of models

which used raw RT as the DV.

Inverse Gaussian or Gamma distribution can be assumed to
achieve more normal homoscedastic residuals, while retaining
raw RT as the DV. As Figure 2 shows, this produces more
power than LMMs conducted on raw RT. Alternatively, if the
researcher’s predictions are for a transformed scale, such as
inverse RT, specifying a non-linear link function of the same
form as the inverse transformation applied to RTs (inverse
link function; −1000/µ̂) produces an identical distortion of
frequency effects toward underadditivity (see middle and bottom
row of prediction plots in Figure 4). Moreover, there appears to
be no loss in model fit relative to the matching models using an

identity link according to both a visual inspection of the residuals
(Figures 3, 5) and empirical fit statistics (Table 1).

In summary, GLMMs allow assumptions regarding the
relationship between the predictors and the dependent variable
to be tested independently of assumptions regarding the
distribution of dependent variable. In LMM, the two are
confounded because the relationship between the predictors
and the dependent variable is dictated by the transformation
selected to normalize the distribution of the dependent variable.
By contrast, GLMM allows the form of the link function to be
determined by the theoretical issues under consideration.
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General Discussion

The broad goal of this paper is to echo Speelman and McGann’s
(2013) cautions about the routine use of statistical procedures
without reflecting on the theoretical assumptions underlying
their use. Within cognitive psychology, researchers are keenly
aware of the dangers associated with relying on the mean,
and many have begun to turn to the multilevel properties
of LMMs as a way of simultaneously controlling for (or
explicitly investigating) individual sensitivity between each item
or participant as an explanation of overall differences between
conditions (Clark, 1973; Locker et al., 2007). These methods
offer one approach to reconciling the logic of group-based and
individually focused research, one of the topics suggested for this
Special Issue.

However, this change in statistical practice raises a new set
of theoretical assumptions that have to be critically evaluated.
Many cognitive researchers have adopted LMM because it is
the statistical technique in current vogue, and a vast majority
follow the recommendation to normalize RTs without proper
consideration of the implications of such transformation for the
theoretical rationale underpinning their research question.While
for some researchers, the issues and recommendations proposed
in this paper seem as obvious to those provided by Speelman and
McGann (2013) with respect to the mean, we hope for many
others that this discussion will serve as a timely reminder to
reflect on the theoretical implications wedded to a seemingly
innocuous statistical procedure.

Specifically, we have argued that raw RT is the most
appropriate metric from the assumptions derived as part of
the “mental chronometry” approach. However, transforming
the dependent variable might be more appropriate from other
theoretical perspectives. For example in the aging literature,
theories of general cognitive slowing (e.g., Salthouse, 1985)
propose that larger differences in RT for older as opposed to
younger adults arise simply because the older adult’s slower
responses allowmore time for the experimental effect to manifest
(e.g., Kliegl et al., 2010). Such models therefore predict that
the magnitude of effect expressed by younger and older adults
should be defined by a constant ratio across RT (Myerson
et al., 1992). Returning to the semantic priming example
presented in the introduction, we showed that proportional
differences can be mathematically expressed through logarithms.
Thus, at a conceptual level, log RT is more appropriate than
raw RT if one’s research question is concerned with whether
an experimental effect deviates from the theoretically defined
proportional increase expected for slower responses. In our
semantic priming example, parallel analyses of log and raw RT
would therefore provide useful complementary insight regarding
the nature of the relationship between response speed, age, and
lexical activation.

There are, however, two major obstacles which impede the
widespread application of logarithmic transformations within
psychological data. The first is the finding in large-scale meta-
analyses that proportional effects predicted by models such as
general cognitive slowing are not fully captured by a logarithmic
transformation alone, (e.g., Chapman et al., 1994; Faust et al.,

1999). This is echoed in applications of the Box–Cox procedure
in LMM analyses which typically identify the reciprocal rather
than natural logarithm as the transformation best suited for
psycholinguistic data (Balota et al., 2013). The result is that
comparisons using LMM are being conducted on the inverse
scale rather than on log or raw RT for which the researcher has
predictions. By separating the mathematical issues related to the
distribution of RT in GLMM, the researcher is able to specify
the form of the link function (e.g., log, identity) that directly
addresses their theoretical questions of interest.

The other major goal of the present paper is to introduce
how GLMMs might be specified using a popular statistical
program and concrete psycholinguistic example (see Appendix
in Supplementary Material). Using a GLMM that fulfilled
the mathematical requirements of homoscedastic residuals by
assuming an Inverse Gaussian distribution but maintained the
theoretically relevant dependent variable through the identity
link function, the results yielded additive effects of word
frequency and stimulus quality across the three experiments
from Balota et al. (2013). This finding is important for two
reasons. Computationally, the more powerful GLMM analyses
yield statistical outcomes that confirm the robust additivity
reported between these factors in previous literature, and yield
numerical results that are consistent with a small overadditive
effect estimated in the ANOVA analyses conducted by Yap
and Balota (2007) and Yap et al. (2008). Theoretically, additive
effects are consistent with separate stages of processing within
the additive-factors framework (Sternberg, 1969) and support
interpretations that assume an initial perceptual normalization
process that is sensitive to stimulus quality which precedes the
memory retrieval process responsible for effects of frequency
(Borowsky and Besner, 1993; Yap and Balota, 2007).

Alternatively, additive effects of word frequency and stimulus
quality can be accommodated in dynamic connectionist models
(e.g., Plaut and Booth, 2000). A core assumption underlying
these models is that the amount of activation required for
the network to settle and output a RT response depends on
the strength of its input along a non-linear sigmoidal function
(see Figure 6). Variables which produce stronger input (e.g.,
higher frequency words, more semantically related concepts,
older individuals with greater reading or perceptual ability)
elicit stronger activation within the network, and thus output
faster RT. However, proportionally smaller differences on RT
are expected if all of the input falls within the upper and lower
extremities of the sigmoid for which RT is most compressed
(right part of Figure 6), relative to themore linear middle portion
of the activation curve (left part of Figure 6). As described
above, this proportional difference can bemathematically defined
through a non-linear transformation. For example, a reciprocal
relationship between input and RT (i.e., RT = −1000/µ̂ as
in Figure 4) might characterize a situation in which the input
strength associated with word frequency and stimulus quality are
both assumed to fall at specific points within the lower rising
part of the sigmoid. But in order to yield the observed additive
effect on RT, a smaller effect of frequency must have arisen
among the clearly presented items, which are assumed to produce
stronger input. Given the positive relationship between input and
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FIGURE 6 | The sigmoid activation function from the Plaut and Booth

(2000) model. In this diagram the effects of perceptual ability, word

frequency, and semantic priming are all assumed to lie in the linear and upper

portion of the curve. From “Individual and developmental differences in

semantic priming: Empirical and computational support for a

single-mechanism account of lexical processing” by Plaut and Booth (2000).

Copyright 2000 by American Psychological Association. Reproduced with

permission.

activation, this finding is exactly opposite to that predicted by
activation models as described in the Introduction.

Conversely, a completely opposite pattern is derived if the
effects of word frequency and stimulus quality are both assumed
to fall on the upper part of the sigmoidal function (as depicted
in Figure 6). For example, specifying a logarithmic link function
[RT = 500 × log(µ̂)], paralleling the upper section of the
sigmoid function within GLMM analyses assuming an Inverse
Gaussian distribution of RT, revealed a trend toward significant
overadditive interaction in all three experiments (z = −1.75,
p = 0.08, for Yap and Balota, 2007; z = −1.26, p = 0.21,
for Yap et al., 2008 Experiment 1; z = −1.45, p = 0.15; for
Yap et al., 2008 Experiment 2). Individuals can therefore yield
underadditive, additive or overadditive effects depending on their
hypothesized position on the sigmoidal function.

As a concrete demonstration of this possibility, Plaut and
Booth (2000) hypothesized that children of both high and low
perceptual ability lie within the more linear portion of the
sigmoid, because these less proficient readers are understood
to possess generally weaker input than highly proficient adult
readers. The result is that the magnitude of semantic priming

is approximately equal for both high and low frequency words
among those of high or low perceptual ability. In contrast,
adult readers are hypothesized to possess greater input strength,
positioning them within the upper part of the sigmoid. Because
of the non-linearity associated with this upper portion of
the curve (see Figure 6), adult readers of greater perceptual
ability produce attenuated effects of semantic priming for high
frequency words, relative to the more additive effects observed
among adults of low perceptual ability. By manipulating overall
input strength associated with children and adults though
the stimulus-onset asynchrony (SOA) of the prime, Plaut and
Booth were able to induce interactive effects between semantic
priming, word frequency, and perceptual ability in children by
lengthening prime SOA, and more additive effects between these
variables in adults by shortening SOA. Thus, Plaut and Booth’s
approach provides important theoretical insight into how a single
mechanism (prime SOA) can yield a range of different behavioral
outcomes for different individuals. However, without concrete
specification of how the sigmoid maps onto the RT scale for the
lexical decision task, connectionist models become unfalsifiable
if the theory is able to simultaneously predict every form of
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relationship between the factors, and the empirical data can
be transformed by different parts of the sigmoidal function to
produce any pattern of effect.

In general, we recommend against a “trial-and-error”
approach to specification of the link function without firm
theoretical guidance. However, such an approach might be
considered if the statistical analysis has the truly exploratory
goal of providing a description of how the dependent variable
is affected by the predictors5. Critically, the focus of such
exploratory analyses should not be on the statistical outcome
of the fixed factors, because such tests assess how much
the predictors affect the transformed metric rather than the
dependent variable (Berry et al., 2010). Instead, the emphasis
should center on how closely the description defined by the
link function fits the observed data. Interestingly, the fit values
determined by the AIC/BIC criteria favor the inverse link
function over the identity link for all three experiments. Since we
know of no current theory that explains why word frequency and
stimulus quality are defined by an inverse relationship with RT,
the fact that such a relationship is observed in the data remains of
interest for future theoretical development.

Besides the mathematical form of the link function, we have
also emphasized the importance of specifying an appropriate
probability distribution for the dependent variable. Principally,
this was achieved though theoretical consideration of the
processes described by the probability distribution (e.g., RTs are
more likely to reflect waiting time captured by a Gamma or
Inverse Gaussian distribution than the number of times an event
occurs in a Poisson distribution—even though the likelihood
of observing extreme responses from both these processes are
positively skewed). When multiple distributions provide equally
plausible description of the processes underlying the dependent
variable, as is the case with RT, the statistical analysis should be
conducted using each of the distributions, with final selection
based on the distribution that provides the closest fit to the
observed data as determined by AIC/BIC fit statistics. Although
the Inverse Gaussian distribution provided a superior fit for the
experiments reported in Balota et al. (2013), the Gamma or other
distributions not yet considered may provide a better match for
other RT experiments.

Specifically, Rouder (2005) proposed that distributions for
RT should also account for differences in minimum RT across
experiments or individuals. Two-parameter distributions are
ill-fitting because a third “shift” parameter is thought to be
necessary in order to capture the fact that there is little or
no mass below this minima in observed RTs. However, three-
parameter Gamma or Inverse Gaussian distributions, which
are similar to the shifted lognormal or shifted Weibull used
by Ratcliff and Murdock (1976) and Rouder et al. (2008), are
beyond the scope of GLMMs. This has led Rouder and colleagues
to develop hierarchical models that use Bayesian statistics to
make the necessary computations tractable (e.g., Rouder and
Lu, 2005). Although such innovations will produce significant

5Other more appropriate methods, such as regression splines (Friedman and

Roosen, 1995) and generalized additive models (Hastie and Tibshirani, 1990), are

available if the goal is estimation of this relationship.

improvements over model fit as Bayesian techniques become
better supported in popular statistical programs, the same careful
consideration of the relationship between RT and the linear
predictors (e.g., Rouder et al., 2008), and appreciation of models
that capture rather than transform the attributes of RT are issues
which remain pertinent for hierarchical Bayesian models.

While the results from the Balota et al. (2013) data suggest
that better fitting distributions produce more precise standard
errors and statistical greater power, the statistical outcomes from
these datasets also seem to be relatively robust against moderate
misspecification of the distribution in the GLMM framework.
Given there is now evidence that experimental factors can
produce isolated or even opposing effects on different parts of
the RT distribution (e.g., Heathcote et al., 1991), GLMM analyses
could be supplemented by consideration of how distributional
shape is affected through variation in its parameters. An
important step in this direction are the distributional analyses
reported in Yap et al. (2009) that demonstrated differential
effects of the experimental factors on the skewed tail of the RT
distribution. By fitting ex-Gaussian distributions to the observed
RTs, Yap et al. (2009) detected a significant four-way interaction
between an individual’s vocabulary ability, word frequency, non-
word type and semantic priming on the τ parameter, reflecting
stronger growth in the expression of semantic priming across
the RT distribution for low compared to high frequency words
particularly among those of lower vocabulary scores within
a pseudo-homophone non-word environment. Importantly,
transforming the data and analysing log or inverse RTwould have
obscured these findings of variation across individuals because
the slowest condition - reflecting precisely those responses from
low frequency words by those of poor vocabulary in a difficult
pseudo-homophone non-word environment at the very tail of
the distribution—would be more affected by the non-linear
transformation than any of the other conditions (Balota et al.,
2013). To extend these findings, future analyses could investigate
these differences within the µ or λ parameters of the Inverse
Gaussian distribution used in the present analyses, or to consider
effects in three parameter distributions such as the ex-Gaussian
or shifted Weibull (Rouder et al., 2008).

In summary, researchers are keenly aware of the potential
biases associated with using skewed RT data for mean-based
analyses. This has prompted recommendations to “transform
away” these “erroneous. . . deviations from nature’s ideals”
(Speelman and McGann, 2013, p. 2), which exert even greater
“undue influence” in skewed data than if responses had been
normally distributed. By accommodating the shape of the
skewed RT distribution, GLMMs remove the need to transform
the dependent variable and allow the researcher to construct
statistical models that answer their questions of interest, rather
than being forced to change their question of interest to meet
the constraints of the statistical model. Apart from alerting
researchers to the problems associated with transforming their
data and potentially obscuring systematic differences between
individuals, the primary focus of this paper is to introduce
an alternative solution and to describe the set of decisions
required to correctly specify a GLMM. We have argued that
the mental chronometry assumptions underlying much of the
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cognitive psychological research using RT data mean that
the “correct metric” to analyse is often raw RT, but have
illustrated scenarios for which transformed data might be more
appropriate depending on the research question at hand. Should
researchers have a clear theoretical basis for expecting a non-
linear relationship between the predictors and the dependent
variable, we have shown how specification of the form of the link
function is able to achieve the same result in GLMMs without
directly transforming the raw data. As the present analyses
demonstrate, without such theoretical motivation, analyses based
on non-linear transformations can lead researchers to spuriously
conclude that an average effect is uniform across individuals or
conditions (or vice versa) by altering the scale of the differences in
an interaction to produce misleading or potentially contradictory
results.
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