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Recent experiments examining where participants look when grasping an object found
that fixations favor the eventual index finger landing position on the object. Even
though the act of picking up an object must involve complex high-level computations
such as the visual analysis of object contours, surface properties, knowledge of an
object’s function and center of mass (COM) location, these investigations have generally
used simple symmetrical objects – where COM and horizontal midline overlap. Less
research has been aimed at looking at how variations in object properties, such as
differences in curvature and changes in COM location, affect visual and motor control.
The purpose of this study was to examine grasp and fixation locations when grasping
objects whose COM was positioned to the left or right of the objects horizontal midline
(Experiment 1) and objects whose COM was moved progressively further from
the midline of the objects based on the alteration of the object’s shape
(Experiment 2). Results from Experiment 1 showed that object COM position influenced
fixation locations and grasp locations differently, with fixations not as tightly linked
to index finger grasp locations as was previously reported with symmetrical objects.
Fixation positions were also found to be more central on the non-symmetrical objects.
This difference in gaze position may provide a more holistic view, which would allow both
index finger and thumb positions to be monitored while grasping. Finally, manipulations
of COM distance (Experiment 2) exerted marked effects on the visual analysis of the
objects when compared to its influence on grasp locations, with fixation locations
more sensitive to these manipulations. Together, these findings demonstrate how object
features differentially influence gaze vs. grasp positions during object interaction.

Keywords: visuomotor control, fixations, gaze locations, grasp locations, irregular non-symmetrical objects

Introduction

We move about and interact with objects in our environment so effortlessly that the complexities
of these interactions are rarely noticed. Although the integration of various senses, such as visual
and tactile feedback when locating and picking up objects and vestibular information for balance
(for review see Kandel et al., 2000), plays key roles in our interactions, we primarily rely on our
sense of vision to accurately carry out our movements, with eye movements typically preceding
handmovements in both pointing (Abrams et al., 1990; Bekkering et al., 1994; van Donkelaar et al.,
2004) and object manipulation tasks (Land et al., 1999; Johansson et al., 2001; Land and Hayhoe,
2001; Hayhoe et al., 2003; Hayhoe and Ballard, 2005). When you want to pick up an object, it
is usually a simple matter to look where you remember leaving it, reach out to its location, and
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accurately pick it up. However, we do not typically grasp objects
in arbitrary locations or look at random parts of that object
during these actions. Instead, how we interact with an object
depends on both the ongoing and planned behavior of the
individual (Hamed et al., 2002) and the cognitive demands of the
task (Yarbus, 1967).

For example, where we look on an object will vary depending
on whether we are directly interacting with that object (e.g.,
picking it up; Johansson et al., 2001; de Grave et al., 2008;
Brouwer et al., 2009; Desanghere and Marotta, 2011; Prime
and Marotta, 2013), performing a series of movements (e.g.,
making sandwiches or tea; Ballard et al., 1992; Smeets et al.,
1996; Land et al., 1999; Hayhoe et al., 2003), or completing a
perceptual task such as visual search (Findlay, 1997; Zelinsky
et al., 1997; Klein, 2000; Araujo et al., 2001), viewing objects
(He and Kowler, 1991; Kowler and Blaser, 1995; McGowan
et al., 1998; Melcher and Kowler, 1999; Vishwanath et al.,
2000; Vishwanath and Kowler, 2003, 2004), or size estimation
(Desanghere and Marotta, 2011). Indeed, visuomotor control is
a complex, interactive process between perception and action;
reflective in the separate yet interconnected neural pathways
dedicated to these processes (for review see Milner and Goodale,
1995; Goodale, 1998, 2014; Schenk andMcIntosh, 2010). Not only
do we use vision to identify objects with which we are interacting,
vision also provides us with feedback about the approaching hand
(toward the object) to enable online corrections (Binsted et al.,
2001; Riek et al., 2003), as well as provides information about
where the contact location on the object is relative to the arm’s
motor system (Land and Hayhoe, 2001; Soechting et al., 2001).
Research has shown that eye movements are typically initiated
toward the object 40–100 ms prior to movement onset (Prablanc
et al., 1979; Biguer et al., 1982; Land et al., 1999) with fixations
linked to where participants grasp an object (i.e., they look at the
location where they place their index finger during a precision
grasp; Brouwer et al., 2009; Desanghere andMarotta, 2011; Prime
and Marotta, 2013), and, when manipulating the objects, linked
to forthcoming grasp sites, obstacles, and landing sites where
objects are subsequently grasped, moved around, and placed,
respectively (Johansson et al., 2001).

How fixations change throughout a reach-to-grasp movement
and exactly what object properties are fixated has yet to be
fully explored. A growing body of research has investigated
where on an object people are fixating during basic reaching and
grasping movements to simple objects. For example, de Grave
et al. (2008) examined fixation locations during a reaching and
grasping task to objects that were either fully visible or that
had the index finger, thumb, or both grasp locations partially
occluded. They found that first and second fixations on the
objects were above the object’s center of mass (COM), as well
as above the visible COM (calculation of the COM based on the
visible surface area of the object) in the case of partly occluded
objects. In both instances fixation locations were toward index
finger grasp location. However, similar to Johansson et al. (2001)
where participants were instructed to grasp the object at a specific
location, participants in this experiment also had specific grasp
locations where they had to place their index finger and thumb
on relatively simple objects such as a triangle or cross. In a

later investigation using similar objects, Brouwer et al. (2009)
contrasted fixation locations when participants were reaching
out to grasp an object vs. when they were asked to simply view
that object. They found that during first fixations to the objects
there was no difference between tasks; during both grasping and
viewing participants were looking closer to the COM. During
second fixations, however, fixations while grasping were found
to be significantly higher up on the objects (toward index finger
location) than those found during viewing. Desanghere and
Marotta (2011) and later Prime and Marotta (2013) showed the
opposite pattern in fixations when grasping simple symmetrical
objects (squares and rectangles), with fixation locations first
directed towards the grasp site for the index finger, and then
directed lower toward the object’s COM just prior to contact
with the object. In these experiments, participant’s grasp axis (the
imaginary line joining the contact points of the index finger and
thumb on the object) coincided with the object’s COM location.

These studies all suggest that where we look on an object plays
a key role in real-time grasping movements, with grasp and gaze
locations sensitive to COM location and linked to the eventual
index finger grasp location. In everyday life; however, we are not
always reaching out to grasp simple symmetrical objects. Our
visuomotor system must deal with complex calculations such as
surface curvature and differences in an object’s COM. Indeed, the
role of vision in grasping is not only to activate appropriate grasp
schemas, but also to determine accurate positioning of the fingers
on the objects (Jeannerod et al., 1995; Smeets and Brenner, 1999).
However, it is not always a simple relationship between fixation
location and focal attention (i.e., what someone is concentrating
on), as visual-spatial attention can be directed either overtly
by actively fixating the eyes (the fovea) onto a specific area or
covertly, by allocating cognitive resources to process information
that is located in another region of space (Posner, 1980; Irwin,
2004). In this way, we are able to successfully reach out and pick
up objects outside of foveal vision. Despite this; however, research
has shown that when reaching out to pick up objects (Brouwer
et al., 2009; Desanghere and Marotta, 2011; Prime and Marotta,
2013), participants’ fixation locations do not stray off the object
and are linked to the most relevant dimensions of the objects
(index finger grasp location during a precision grasp), even in
instances where digit trajectories of the thumb are made more
variable (Cavina-Pratesi andHesse, 2013). In other words, despite
participants’ ability to fixate any part of the desired object or
any part of the scene in front of them and still complete the
task, participants in these experiments reliably fixate the eventual
index finger grasp location on the object with which they are
interacting.

As we can see, the relationship between index finger
grasp location and fixation locations are well documented,
demonstrating a reliable relationship between grasp locations
and focal attention. However, the effects that object complexity
and changes in COM may have on eye-hand coordination are
under-explored. Although it has been shown that alterations in
object shape affect various reaching and grasping kinematics
such as minimum grip force (Jenmalm et al., 1998), maximum
grip aperture (Eloka and Franz, 2011), and digit placement
(Jeannerod, 1988; Goodale et al., 1994; Lederman and Wing,
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2003; Marotta et al., 2003; Kleinholdermann et al., 2007), the
relationship between where we look relative to where we grasp
on irregular objects remains unclear. Given that current research
suggests that both the relevant dimension of an object and the
overall shape of the object facilitate ongoing movements during
reaching and grasping tasks (Eloka and Franz, 2011), further
investigations between eye-hand coordination when grasping
more complex objects needs to be carried out.

The primary goal of this research was to examine the
variability in fixation locations across several conditions on
irregular shaped objects and explore the relationship of these
fixation locations to grasp locations on those same objects. In
Experiment 1, we investigated fixation and grasp locations to
contoured objects that had an asymmetrical design and compared
this behavior to grasps made to symmetrical objects (squares and
rectangles). Both object types had identical maximum horizontal
and vertical dimensions. In Experiment 2, we explored the
effects of object shape and changes in COM location on fixation
and grasp locations. Based on the literature it was expected
that participant’s grasp axis and fixation locations would be
shifted away from the horizontal center of the objects, toward
the object’s COM (Experiments 1 and 2), and this distance
would increase with increases in COM locations from that point
(Experiment 2), and in both instances be linked to the eventual
index finger grasp location. If object irregularity is affecting visual
analysis of the object, we expect to see differences in fixation
locations relative to symmetrical objects (Experiment 1) and
grasp locations (Experiments 1 and 2). If fixation locations are
identical across conditions (e.g., linked to index finger location
and not influenced by object irregularity) this would suggest
that the visual analysis of irregular shaped objects during object
manipulation is taking in only the most relevant dimensions of
the objects needed for grasping.

Experiment 1

Materials and Methods
Participants
Fourteen undergraduate psychology students (nine female)
between the ages of 18 and 30 (M = 21 years-old) were recruited
for participation in this study. All participants were shown to
be strongly right-handed as determined by a modified version
of the Edinburg Handedness Inventory (Oldfield, 1971), and
had normal or corrected-to-normal-vision. This research was
approved by the Psychology/Sociology Human Research Ethics
Board (PSREB) at the University of Manitoba.

Stimulus and Procedure
Participants were instructed to reach out “quickly but naturally”
with their index finger and thumb and pick up randomly
inter-mixed symmetrical (Efron blocks; Efron, 1968) and
asymmetrical (Blake shapes; Blake, 1992) objects (all blocks
weighed approximately 10 g). The Efron blocks differed in
shape but were equal in surface area, and had the following
horizontal and vertical dimensions: (1) 15.2 cm × 4.2 cm, (2)
12.2 cm × 5.2 cm, (3) 10.2 cm × 6.2 cm, (4) 9.0 cm × 7.1 cm,

and (5) 8.0 cm × 8.0 cm (see Figure 1). The Blake shapes
had smoothly bounded contours and lacked clear symmetry (see
Figure 1). Thus, the positioning of stable grasp locations on
asymmetrical Blake shapes requires the analysis of the entire
shape (Goodale et al., 1994). Each of the five Efron blocks were
matched with Blake shapes with identical maximum vertical and

FIGURE 1 | Displays the Efron Shapes (dashed lines) and Blake shapes
used in Experiment 1. The Blake shapes in this Figure demonstrate COML
objects. Maximum horizontal and vertical object dimensions are as follows: (1)
15.2 cm × 4.2 cm, (2) 12.2 cm × 5.2 cm, (3) 10.2 cm × 6.2 cm, (4)
9.0 cm × 7.1 cm, (5) 8.0 cm × 8.0cm. The COM location for each
asymmetrical object is represented by a white circle on the object, with the
following X and Y distances relative to the center of the object which is
represented by the intersection of the black lines (1) 1 cm, 0 cm; (2) 0.3 cm,
−0.5 cm; (3) 0.03 cm, 0.05 cm; (4) 1 cm, 0 cm; (5) 0.5 cm, 0.3 cm.
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horizontal dimensions. In addition, each Blake shape was either
presented with the COMoriented to the left or right of the object’s
horizontal midline (objects were the mirror image of themselves),
resulting in two asymmetrical object groups: Blake shapes with
their COM shifted to the left (COML), and Blake shapes with
their COM shifted to the right (COMR; see Figure 1 for COM
positions), and a third symmetrical group of Efron blocks.

Reach-to-grasp movements were recorded with an Optotrak
Certus 3-D recording system (150 Hz sampling rate, spatial
accuracy up to 0.01 mm; Northern Digital, Waterloo, ON,
Canada). Two IREDs were fastened onto the participants’
index finger (positioned on the left side of the cuticle), thumb
(positioned on the right side of the cuticle), and wrist (positioned
on the radial portion of the wrist) of their right hand. An
Eye-link II (250 Hz sampling rate, spatial resolution <0.5◦; SR
Research Ltd., Osgoode, ON, Canada) was used to record eye-
movements in both tasks. Kinematic information from both the
Optotrak and the Eyelink II was integrated into a common frame
of reference via MotionMonitor software (Innovative Sports
technology, Chicago, IL, USA). The Motion Monitor system
integrates eye, head, and hand data in a common frame of
reference.

Both eyes were calibrated using a nine point
calibration/validation procedure on the computer monitor,
after which, a black display board was fastened over the
calibration area. The asymmetrical and symmetrical objects
were suspended via small magnets to this display during the
grasping paradigm. To ensure accurate calibrations of less than
1◦ error and reliability of binocular eye data, accuracy checks
both immediately following calibration and after the completion
of the experiment were taken by having participants fixate a
marker on the display while positional eye data was obtained.

At the start of each trial, participants held their right hand
stationary on the start button with their index finger and thumb
together and their eyes closed. The experimenter signaled the
beginning of each trial with verbal instructions for the participant
to open their eyes. At that point, participants reached out as
quickly, but as naturally as they could, and grabbed the object
with their index finger and thumb (objects were positioned 30 cm
from the start button), and placed it on the table in front of them.
Each grasp was positioned vertically, such that participant’s index
finger made contact with the object’s top edge, and their thumb
made contact along the bottom edge. After the completion of
the trial, participants returned to the starting position with their
index finger and thumb on the start button and their eyes closed,
until given the verbal command to start the next trial.

The shapes were always presented with their longest axis on
the horizontal plane such that, for the asymmetrical objects, their
COM was oriented to the left or right of the actual center of the
object on any given trial. For the purpose of these experiments,
the ‘center’ of an object corresponds to the horizontal and vertical
midpoint of each object, the halfway point calculated from the
maximum horizontal and vertical dimensions of the block. The
COM refers to the point where all of the mass of the object
is concentrated, based on the averaging of the surface area of
the objects (see Figure 1). Each object was suspended in such
a manner that every object’s vertical and horizontal center was

aligned with the board’s center. All horizontal (X-axis) and
vertical (Y-axis) coordinates were calculated from this location.
For example, negative fixation or grasp locations represented
locations to the left of or below the object’s horizontal and vertical
center, respectively. To protect from false start or end times,
the beginning of all trials started when wrist velocity reached
5 cm/sec and ended when wrist velocity decreased to 10 cm/sec.
Each object was randomly presented five times, for a total of 75
experimental trials. Sessions took ∼ 1 h to complete.

Data Analysis
The main goal of Experiment 1 was to investigate where
participants looked when grasping asymmetrical shapes, when
compared to symmetrical shapes, and whether fixations were
linked to grasp locations. Thus, we were mainly concerned
with fixation and grasp locations on the objects, and how these
locations differed between conditions (symmetrical Efron blocks
vs. asymmetrical Blake shapes (COML, COMR)). For the purpose
of clarification in the results, object shapes are referred to
individually by object type and size [COML(1-5), COMR(1-5),
symmetrical shapes(1-5)] or collectively based on object category
(collapsed across all sizes; COML, COMR, and symmetrical
shapes).

Fixation locations (both X and Y positions) and durations
were determined by a dispersion algorithm (see Salvucci and
Goldberg, 2000), with a minimum duration threshold of 150 ms
and a maximum dispersion threshold of 1 cm. The dispersion
algorithm identifies fixations from the raw eye position data
points when consecutive data points are located within a specified
spatial window (maximum dispersion threshold) for a minimum
period of time (minimum duration threshold). Fixations were
calculated from the point when participants first opened their
eyes until they made contact with the object. All X and Y
coordinates of the gaze were relative to the center of the object.

For all analyses, significance levels of p < 0.05 were used.
Analyses were carried out on the mean values computed across
repeated trials in a given condition. For any main effects or
interactions, Bonferroni adjusted planned comparisons were
carried out. To explore differences between fixation locations
(first and second fixations) across object types (COML, COMR,
and symmetrical objects), and the five object sizes (X and Y
dimensions: (1) 15.2 cm × 4.2 cm, (2) 12.2 cm × 5.2 cm, (3)
10.2 cm × 6.2 cm, (4) 9.0 cm × 7.1 cm, and (5) 8.0 cm × 8.0 cm;
see Figure 1), a 2 fixation × 3 object type × 5 object size repeated
measure analysis of variance (rmANOVA) was carried out for
fixation positions along the X- and Y- axes separately. To explore
whether fixation locations were linked to grasp axis locations for
each object type, a 2 location (first fixation location by grasp axis
location) × 5 object size rmANOVA was carried out for each
object type (COML, COMR, and symmetrical objects) relative to
X-axis locations.

For the kinematic data, rmANOVA’s, with within subject
variables of object type and object size, were carried out
on the following dependent variables: grasp line, maximum
grip aperture between the index finger and thumb (MGA),
time to MGA, peak wrist velocity, and reach duration A
participant’s ‘grasp line’ location, an imaginary line connecting
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the contact points of the index finger and thumb on the
object, was calculated by determining the perpendicular distance
between the ‘grasp line’ and the horizontal midpoint of the
object.

Results
Fixation Data
A first fixation was detected in 97% of all experimental trials.
Ninety percent of those trials contained more than one fixation.
Fixations were not detected in 3% of trials due to loss of eye data
(e.g., loss of corneal reflection or IRED interference resulted in
loss of data or inaccurate fixation points outside of the calibrated
region), and these trials were excluded from any further analyses.
A 2 fixation × 3 object type × 5 object size rmANOVA revealed
the expected influence of COM location on fixation locations
(i.e., fixations were drawn toward the COM location) along the
X-axis [F(2,26) = 12.46, p < 0.001]. That is, fixation locations
were significantly more to the left (M = 0.13 cm to the right of
the center, SE = 0.23) when grasping the COML objects when
compared to the COMR objects (M = 0.68 cm to the right of the
center, SE = 0.25; p < 0.001). No differences in fixation locations
to symmetrical objects were observed (M = 0.33 cm to the right
of the object’s center, SE = 0.33) when compared to asymmetrical
fixation locations. No significant differences between first and
second fixation locations along the X-axis were apparent in any
object category (COML, COMR, symmetrical objects). A main
effect of object type showed some variability in fixation locations
within the different object categories [F(8,104)= 6.20, p< 0.001].
For the COML objects, fixation locations were significantly more
to the left when grasping COML 4 when compared to COML
3 (see Figure 2A). For the COMR objects, fixation locations
were significantly more to the right when grasping COMR 4
when compared to COMR 2, 3, and 5 objects (see Figure 2B).
No significant differences in fixation locations were observed
across objects within the symmetrical object category sizes (see
Figure 2C).

Along the Y axis, a 2 fixation × 3 object type × 5 object
size rmANOVA revealed a significant main effect of object size
[F(4,52) = 8.82, p < 0.001]. In general, as object size increased
in height, fixation locations moved progressively higher. Post hoc
comparisons showed these differences to be significant between
the tallest object categories (5: M = 2.51 cm, SE = 0.40) and 4:
M = 2.34 cm, SE = 0.36) with the two shortest object categories
(2: M = 1.86 cm, SE = 0.31 and 1: M = 1.89 cm, SE = 0.28;
p’s < 0.05). A significant main effect of object type (COML,
COMR, symmetrical objects) [F(2,26) = 9.55, p = 0.001] showed
differences in the Y-axis locations to asymmetrical objects relative
to symmetrical shapes. Fixation locations to both asymmetrical
COML and COMR objects were significantly lower on the objects
(M’s = 2.05 cm (SE = 0.34) and 2.00 cm (SE = 0.35) above
the center, respectively) compared to fixations to symmetrical
objects (M = 2.37 cm above center, SE = 0.34). A significant
object type by object size interaction [F(8,104) = 3.23, p = 0.02]
showed that Y fixation locations were located significantly higher
when grasping symmetrical shapes 3 and 4, than when grasping
COMR 3, COML 4, or COMR 4 objects (p’s< 0.05; see Figure 3).

FIGURE 2 | Displays first fixation and grasp axis locations along the
X-axis (cm) across object size for each object group separately in
Experiment 1: (A) COML, (B) COMR, (C) symmetrical objects. Negative
values represent fixation locations to the left of the object’s horizontal center.
Error bars represent the standard error of the mean. The COM location for
each asymmetrical object is represented by a white square on the object.

Kinematic Data
Of all experimental trials, 4% were removed due to loss of
IRED signal from the camera (due to obstruction). Results
again showed the expected influence of COM location on
grasp location (i.e., grasp locations were drawn to COM
location). A 3 (object type) by 5 (object size) rmANOVA
showed a significant main effect of object type (COML, COMR,
symmetrical objects) [F(2,26) = 28.74, p < 0.001]. Grasp axis
locations for COML objects were significantly more to the left
(M = 0.43 cm to the left of the object’s center, SE = 0.06)
when compared to COMR and symmetrical objects (p’s < 0.05;
M’s = 0.41 cm (SE = 0.09) and 0.29 cm (SE = 0.19) to
the right of the object’s center, respectively). No significant
differences were observed between the symmetrical and COMR
objects.

Frontiers in Psychology | www.frontiersin.org 5 October 2015 | Volume 6 | Article 1537

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Desanghere and Marotta Object influences on grasp and gaze

FIGURE 3 | Displays the vertical fixation locations (cm) when grasping the Asymmetrical (COML, COMR) and symmetrical objects in Experiment 1.
Positive values represent fixation locations above the object’s vertical center. Error bars represent the standard error of the mean.

An object type by object size interaction [F(8,104) = 11.03,
p < 0.001] showed differences in grasp axis locations within each
object category. For COML objects, grasp axis locations were
significantly more to the left when grasping COML four when
compared to all other objects (p’s < 0.05; see Figure 2A). For
COMR objects, grasp axis locations were significantly more to
the left when grasping COMR 5 (the shortest in width) when
compared to COMRs 4, 2, and 1 (p’s < 0.05). In addition, grasp
axis locations for COMR 3 were positioned significantly more to
the left of grasp axis locations to COMRs 2 and 4 (p’s < 0.05; see
Figure 2B). For the symmetrical objects, no differences in grasp
axis locations were observed (see Figure 2C).

A 3 (object type) by 5 (object size) rmANOVA on MGA
showed a significant main effect of object size [F(4,52) = 121.70,
p < 0.001]. Across object categories, MGA increased with
object height. Planned post hoc comparisons revealed significant
increases in MGA between all object sizes except object size 3
with 4 (p’s < 0.05). On average, participants obtained MGA
75% through the reach-to-grasp movement. Across objects, no
significant main effects or interactions were observed for peak
velocity or total reach time (p’s > 0.05). On average, participants’
peak velocity was 113 cm/sec (SE = 5) and their completed
reach-to-grasp movement was 594 ms (SE = 38).

Fixation Locations (X-axis) vs. Grasp Axis Locations
A 2 location (first fixation location by grasp axis location) × 5
object size rmANOVA revealed that overall, fixation locations

supported grasp axis locations for all object categories except
COML objects [F(1,13) = 8.90, p = 0.01]. Post hoc comparisons
revealed that across objects, grasp axis locations to COML objects
were significantly more to the left of first fixation locations
on the same objects (p’s < 0.05; see Figure 2A). A location
by object size interaction was observed for COMR objects
[F(4,52) = 3.38, p = 0.02]. Post hoc analysis revealed that
fixation locations supported grasp locations for all objects except
COMR 5, where first fixations were significantly more to the
right of grasp axis locations (p’s < 0.05; see Figure 2B). Finally,
a significant location by object size interaction was observed for
the symmetrical objects [F(4,52)= 4.62, p= 0.003], however, post
hoc comparisons did not reveal any significant differences in first
fixation and grasp axis locations across these objects (p’s > 0.05;
see Figure 2C).

Experiment 2

The results from Experiment 1 demonstrate grasp and fixation
locations were influenced by COM location. Grasp and fixation
locations to asymmetrical objects with their COM to the left of
the object’s midline were found to be more to the left of grasp
and fixation locations to asymmetrical objects whose COM was
to the right of the object’s midline, grasp and fixation locations
for symmetrical objects were in between. In all instances, there
were no differences in grasp axis locations and fixation locations
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along the X-axis, except when grasping the COML objects
and the smallest width asymmetrical (COMR 5) object. This
experiment showed both a dissociation in fixation locations and
grasp locations on asymmetrical objects due to COM position as
well as a tendency to fixate areas closer to an object’s COM when
grasping asymmetrical vs. symmetrical shapes. However, despite
COM location exerting a large effect on where we looked and
grasped objects, we are still unsure how systematic changes in
COM location (i.e., an increase in distance of the COM of an
object from its horizontal center) would influence visuomotor
control. In Experiment 2, we wanted to further explore the
relationship between COM location and visuomotor control by
investigating how fixation and grasp locations are affected by
changes in COM distance. In other words, will fixation and
grasp positions be influenced by systematic changes in COM
distance from an object’s midline? To explore this, the COM
of three different objects were dissociated from each object’s
horizontal midline at three different distances and fixation and
grasp locations were recorded. It was expected that participant’s
grasp axis and fixation locations would be shifted away from the
horizontal center of the objects, towards the object’s COM, and
this distance would increase with increases in COM locations
from that point.

Materials and Methods
Participants
Fifteen undergraduate psychology students (11 female) between
the ages of 18 and 32 (M = 20 years-old) were recruited for
participation in this study. All participants were right-handed as
determined by a modified version of the Edinburg handedness
inventory (Oldfield, 1971) and had normal or corrected-to-
normal-vision. This research was approved by the PSREB at the
University of Manitoba.

Stimulus and Procedure
All equipment, procedures, and instructions were identical as
that described in Experiment 1. The stimuli used in this task
were one asymmetrical object (modeled after the Blake shapes)
and two differently shaped symmetrical objects with one axis of
symmetry. These three distinct objects were selected to explore
the effects that COM distance, across a variety of shapes, exerted
on grasp and fixation selection. Each object was presented in
three variations, with the COM at 0.5 cm, 1 cm, and 1.5 cm from
the center of the object (total of nine objects; due to changes
in COM, slight variations in shape within object categories
occur; see Figure 4). Each object was presented 16 times [eight
presentations with the COM oriented to the left (COML) and
eight presentations with the COM oriented to the right (COMR)
of the subjects midline], for a total of 144 trials. Sessions took
approximately one and a half hours to complete.

Analysis
To explore the immediate influence of COM position on fixation
locations, only first fixations were analyzed in this experiment.
To investigate whether changes in COM location were affecting
grasp axis locations and gaze fixation locations along the X-
and Y- axis, rmANOVA’s, with factors of COM position (COML,

COMR), COM distance (COM 0.5 cm, 1 cm, and 1.5 cm away
from horizontal center), and object type (three different objects:
object 1, 2, and 3), were performed on all dependent measures. To
explore whether fixation locations supported grasp axis locations
for each object type across changes in COM distance and COM
position, a 2 location (first fixation location X-axis, grasp axis
location) × 3 object type × 3 COM distance × 2 COM position
rmANOVA was carried out.

Results
Fixations
On average participants made 2.03 fixations per trial. In 98% of all
trials a first fixation was detected. Fixations were not detected in
2% of trials due to loss of eye data (e.g., loss of corneal reflection
or IRED interference), and these trials were excluded from any
further analyses.

Object type exerted a significant main effect on both X
[F(2,28) = 3.86, p = 0.03] and Y [F(2,28) = 4.42, p = 0.02]
fixation locations. While fixation locations to object 1 were
positioned more to the right (M = 0.61 cm to the right of
the object’s midline, SE = 0.25) of fixations to object 2 and 3
(M’s= 0.42 cm (SE= 0.27) and 0.44 cm (SE= 0.23) to the right of
the object’s midline, respectively), post hoc analysis only showed
significant differences along the vertical axis; first fixations to
object 3 (M = 1.77 cm above the object’s center, SE = 0.36) were
significantly higher when compared to object 2 (M = 1.54 cm
above the object’s center, SE = 0.32; p < 0.05). First fixations
to object 1 were located 1.71 cm (SE = 0.36) above the object’s
center.

Expected differences in fixation locations based on COM
position (left vs. right) along the X-axis were observed
[F(1,14) = 21.95, p < 0.001]. First fixations were significantly
more to the left (M = 0.17 cm to the right of the object’s
horizontal midline, SE= 0.24) for COMLobjects when compared
to COMR objects (M = 0.81 cm to the right of the midline,
SE = 0.27). An object type by COM position interaction
[F(2,28)= 4.49, p= 0.02] showed that fixations were significantly
more to the left for object 3 compared to object 1 for COML
objects; for COMR objects, fixations to object 3 were significantly
more to the right when compared to object 2 (p’s < 0.05; see
Figure 5).

Center of mass distance also influenced fixation locations.
A COM distance by COM position interaction for the X-axis
fixation locations [F(2,28) = 12.28, p < 0.001] revealed that
fixation locations in the COML condition moved increasingly
leftward as the COM moved increasingly left (note: participants
started with a rightward bias; see Figure 6). Significant differences
were observed between COM distance.5 cm with COM distance
1 cm and 1.5 cm (p’s < 0.05). For COMR objects, fixation
locations moved increasingly rightward as the COM moved
increasingly right. Significant differences were observed between
COM distance.5 cm with COM distance 1 cm and 1.5 cm
(p’s < 0.05; see Figure 6). Along the Y axis, a main effect of COM
distance [F(2,28)= 3.90, p= 0.03] showed that as COM locations
were positioned further from the center (resulting in decreases in
object height at the center of the objects) fixation locations moved
closer to the object’s vertical center [M’s = 1.80 cm (SE = 0.36),
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FIGURE 4 | Displays the two symmetrical and one asymmetrical object used in Experiment 2. Each object shape was manipulated such that the COM of
each object was located at three distances from the object’s horizontal center: 0.5 cm, 1 cm, and 1.5 cm. The dashed line transects the object’s horizontal center.

FIGURE 5 | Shows the mean first fixation and grasp axis locations along the horizontal X-axis collapsed across COM distance for the three different
object types in Experiment 2. Negative values represent positions that are located to the left of the object’s horizontal midline. Error bars represent the standard
error of the mean.

1.65 cm (SE = 0.34), and 1.58 cm (SE = 0.33), respectively].
Significant differences were observed between the tallest object
size (COM distance of 0.5 cm) and the shortest object size (COM
distance of 1.5 cm; p < 0.05).

Grasp Location
Object shape had a significant effect on grasp location
[F(2,28) = 7.33, p = 0.003], participants’ grasp axis locations
were significantly farther away from the object’s center for object
2 (M = 0.80 cm to the right of the object’s midline, SE = 0.21)
compared to object 3 (M = 0.36 cm to the right of the object’s
midline, SE = 0.14; p < 0.05). A significant main effect of
COM position [F(1,14) = 30.88, p < 0.001] and an object by

COM position interaction [F(2,28) = 13.53, p < 0.001] were also
observed. Grasp axis locations were significantly more to the left
for COML objects (M = 0.05 cm to the right of the midline,
SE = 0.23) when compared to COMR objects (M = 1.16 cm
to the right of the midline, SE = 0.20). The object by COM
position interaction showed no differences between objects in
grasp axis locations when the objects were oriented to the right
of the center (see Figure 5). With COML objects, grasp axis
locations for object 3 were significantly more to the left than
grasp axis locations for objects 1 and 2 (p’s < 0.05; see Figure 5).
No significant main effects of COM distance or any object or
COM position by COM distance interactions were observed
(p’s > 0.05).

Frontiers in Psychology | www.frontiersin.org 8 October 2015 | Volume 6 | Article 1537

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Desanghere and Marotta Object influences on grasp and gaze

FIGURE 6 | Displays first fixation positions and grasp axis locations
across the three COM distances (collapsed across object) for both
leftward and rightward oriented COMs in Experiment 2. Negative values
represent positions that are located to the left of the object’s horizontal
midline. Error bars represent the standard error of the mean.

First Fixation Location (X-axis) vs. Grasp Axis
Location
Results revealed a significant COM location by object type by
COM position three-way interaction [F(2,28) = 6.50, p = 0.01].
Post hoc analysis showed that first fixations and grasp axis
locations (collapsed across COM distance) for all objects in both
COM positions (COML, COMR) were the same, except for object
3. When object 3’s COM was oriented to the left of the center,
fixation locations were found to be positioned significantly more
to the right of grasp axis locations (see Figure 5).

Discussion
The characteristics of reaching and grasping objects have been
well documented (e.g., Jeannerod, 1986; Gentilucci et al., 1991;
Jakobson and Goodale, 1991; Paulignan et al., 1991; Galletti
et al., 2003; Castiello, 2005). Traditionally, however, the primary
concern in the reaching and grasping literature has been with
how the opening of the hand is coordinated with the hand’s
approach towards the target objects, typically using regular
shaped objects or objects where the grasp points were controlled.
Few studies have examined the selection of grasp locations
when grasping irregularly shaped objects and to our knowledge,
no studies have examined the selection of grasp and gaze
behaviors during various manipulations of object COM. The
purpose of this research was to examine the variability in fixation
locations across several conditions on irregular asymmetrical
objects and explore the relationship of these fixations to grasp
locations on those same objects. In Experiment 1, we investigated
fixation and grasp locations to contoured objects that had an

asymmetrical design and compared this behavior to grasps made
to symmetrical objects that had identical maximum horizontal
and vertical dimensions. In Experiment 2, we explored the
effects of object shape and COM location on fixation and grasp
locations. The combined results from these studies demonstrate
several significant effects of object properties on grasp and
fixation locations, including: COM position (COML vs. COMR)
influences where we grasp and where we look when picking up
an object (Experiments 1 and 2); fixations are less linked to grasp
locations when we are grasping asymmetrical objects with the
COM oriented to the left of the object’s midline (Experiments
1 and 2); object irregularity results in more central fixations
(Experiment 1), and; increasing COM distance from the objects
horizontal midline affects grasp and fixation locations differently
(Experiment 2). These findings will be discussed in turn.

Results from Experiments 1 and 2 demonstrated that both
fixation and grasp locations were influenced by COM location
(COML vs. COMR). That is, grasp and fixation locations were
drawn towards COM location, resulting in positional differences
in visuomotor control between leftward and rightward oriented
COM positions. This manipulation, however, also systematically
changed other factors of the objects, which arguably could have
influenced grasp and fixation behavior as well. For example,
the side of the object where the COM was located also appears
larger than the other side. This difference in object size could
have biased the perception of the ease of grasp and influenced
results. Despite this caveat, COMposition, rather than differences
in object width, does seem to be the determining factor
mediating grasp and fixation locations, consistent with previous
reaching and grasping findings (e.g., Jeannerod, 1988; Goodale
et al., 1994; Lederman and Wing, 2003; Marotta et al., 2003;
Kleinholdermann et al., 2007). For example, in Experiment 1,
for asymmetrical objects 1 and 3, the center of the object is
approximately the same width as at the COM location. However,
we still see a bias in grasp location depending on the position
of the COM (Left vs. Right). If object width was influencing
grasp positions due to ease of grasp, then we would not expect
such a large influence of COM position with these objects
as the center would be just as likely to be grasped in both
COM orientations. Additionally, in Experiment 2 (for objects
1 and 2), if participants were biased to grasp the larger parts
of the objects we would expect to see grasp locations much
more influenced by these areas. Rather, we saw grasp locations
much closer to the object’s COM despite very large widths
present on one side (especially object 1). Together these finding
advance on the existing literature by including the link between
fixation and grasping behavior to irregular shaped asymmetrical
objects and highlight the importance of COM position for both
behaviors. This influence was apparent in both studies, despite
small deviations in COMposition (within 1.5 cm) from the blocks
midline.

The manipulation of COM location also revealed several
interesting differences in eye-hand behavior. For instance,
fixation and grasp locations for COMR objects, while more to the
right, were not found to be significantly different in position than
those to symmetrical shapes. Potentially, this lack of difference is
due to the slight rightward grasp and fixation biases when picking
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up symmetrical objects – results demonstrated in previous studies
(Desanghere and Marotta, 2011; Prime and Marotta, 2013).
Additionally, in both instances overall fixation locations were
linked to grasp location as demonstrated in previous studies (de
Grave et al., 2008; Brouwer et al., 2009; Desanghere and Marotta,
2011; Prime and Marotta, 2013; Bulloch et al., 2015). When
the COM of the asymmetrical objects were positioned to the
left of the horizontal midline (COML), despite grasp positions
that were to the left of the center of the objects, fixations were
again found to be in close proximity to fixations when grasping
symmetrical shapes (i.e., to the right of the object’s midline);
but still significantly more to the left than fixations to COMR
objects, thus demonstrating a COM position influence on where
we look. In this condition, these rightward fixation locations
did not support grasp locations as with symmetrical and COMR
objects. These results suggest a rightward fixation bias when
interacting with both symmetrical and asymmetrical shapes,
regardless of the position of the object’s COM. Rightward fixation
biases have been shown in other studies when participants are
instructed to look at the mid point of an object. For example,
previous research has shown that when participants “visually
bisect” complex stimuli, the subjective midpoint is placed to
the right of the object’s true center (Elias et al., 2005; Rhode
and Elias, 2007). In addition, Handy et al. (2003) showed
that visual spatial attention was drawn to graspable objects
(tools) in the right visual hemifield. These results suggest visual
field asymmetries in the processing of action-related attributes
and spatial attention, with attention to specific object features
aiding in recognition of the motor affordance (Handy et al.,
2003).

Interestingly, recent research has demonstrated an effect
of handedness on grasp point selection when picking up
symmetrical objects (Paulun et al., 2014). Consistent with
previous research (e.g., Desanghere and Marotta, 2011; Prime
and Marotta, 2013), Paulun et al. (2014) demonstrated a
slight rightward grasp bias relative to the object’s COM, when
participants were picking up symmetrical objects. Conversely, a
slight leftward grasp bias was demonstrated when participants
grasped the objects with their left hand. These authors suggest
that the variation in grasp point selection is the result of a
compromise between obtaining maximum stability (grasp points
near the COM) and a slight lateral deviation toward the side of the
grasping hand, potentially to increase the visibility of the object
as a whole while lifting it (Paulun et al., 2014). Whether fixations
would support this leftward grasp bias when grasping with the
left hand, or whether fixations would be drawn to the right
side of the object as demonstrated in the present experiments
is yet to be determined. Indeed, the results from the present
study do suggest a persistent rightward visuospatial bias, despite
grasp locations to the left of an objects midline when the COM
of the object is oriented in that direction. For example, and as
previously mentioned, fixations to COML objects in Experiment
1 did not coincide with where participants were grasping the
objects. Grasp locations were drawn to COMposition (positioned
to the left of the horizontal midline); however, a dissociation
between fixation locations and grasp positions were observed in
this condition, with fixation locations to the right of the objects

center. This effect was also demonstrated in Experiment 2, where
a rightward fixation bias (relative to the center of the object)
and a difference in this position relative to grasp locations for
COML objects (object 3) were also shown. Overall, these results
are similar to Prime and Marotta (2013) who demonstrated
a decoupling in fixation locations with grasp locations when
performing a memory guided grasping task to symmetrical
shapes. They conclude that the purpose of initial fixations for the
purpose of memory guided grasping is to provide the visuomotor
system with a general perceptual analysis of the blocks properties.
The present results suggest that visual attention and grasping
movements become loosely coupled in some conditions, with
grasp locations largely mediated by COM location and fixations
only supporting grasp locations when they are to the right of the
object’s horizontal midline. When grasp locations are to the left
of the object’s midline, fixations are drawn to the right of center;
similar to findings during perceptual tasks.

In addition to this slight rightward bias, our results also
demonstrated that more irregular structures are eliciting fixation
locations that are more central on the objects (lower on the
objects when compared to fixations to symmetrical shapes;
Experiment 1), regardless of COM position. Overall, object
irregularity is resulting in more centralized fixation locations
on the objects, perhaps to maintain maximum visibility of
the object’s shape, where placement of both index finger and
thumb is important for grasp stability on the irregular shaped
objects. Indeed, allocating attention to a specific location on
an object, in this case a more central location, has been
shown to result in faster and more accurate processing of
form information in regions of space surrounding that location
(Bashinski and Bacharach, 1980; Hoffman and Nelson, 1981;
Downing, 1988). This more central view would provide a more
holistic representation during grasping, taking the whole object
into consideration. Definitely, when we reach out to pick up an
object, we are able to do this with great precision, regardless of
the object contours. To do this, information about intrinsic (e.g.,
size, shape) and extrinsic (e.g., distance, orientation) features
need to be transformed in order to develop a motor plan for
movement execution (Jeannerod, 1988). Our results suggest that
the visual analysis of complex objects is different from that of
symmetrical shapes. While research supports that when grasping
simple objects, fixation locations are tightly linked to index finger
grasp location, the more complex structures in these experiments
are eliciting fixation locations that are more central on the
objects (lower on the objects when compared to fixations to
symmetrical shapes) and close to the horizontal midpoint of the
block regardless of COM position.

In Experiment 2 we also showed that increasing COMdistance
from the objects horizontal midline affects grasp and fixation
locations differently. In this experiment, the influence of COM
position on grasp and fixation locations were explored through
manipulations of COM distance from the horizontal midline of
the objects (up to 1.5 cm from the object’s horizontal center).
These manipulations did not have the expected systematic
influence on grasp point selection. Consistent with Experiment
1, changes in COM position affected both grasp and gaze
positions, however, increased distances from that point did not
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exert a further influence on grasp locations. Regardless of the
COM position, and collapsed across all object types, significant
increases in distance for grasp locations from the center of the
objects were not observed with increased distances of COM.
Unlike grasp locations, fixations were influenced by systematic
changes in COM location, with fixations to objects with COM
distances of 1 cm and 1.5 cm away from the center, significantly
further away from fixation locations to the objects with the COM
closest to the object’s center (0.5 cm) in both COM positions.
Interestingly, a rightward fixation bias was again present for all
objects. This research suggests that fixations are influenced by
COM position and distance, but tend to still maintain a “central”
position, with a slight rightward bias relative to the center of the
object. The maintenance of these centralized fixation locations
were also observed along the vertical axis as well, with fixation
locations moving progressively closer to the objects center with
systematic increases in COM position (resulting in a decrease
in object height at the block’s midpoint). Again, supporting
the notion that when grasping irregular shapes, a central view
provides a more holistic representation that may be needed
for monitoring both index and thumb placement on irregular
objects.

Taken together, our findings not only highlight the importance
of including irregular, non-symmetrical objects in visuomotor
paradigms but also reveal how object features differentially
influence gaze vs. grasping during object interaction. The
importance in allocating visual attention to an object’s COM
or the exact grasp location of the index finger on asymmetrical
objects may become more important when interacting with
heavier objects. When we reach out to pick up an object,
the anticipated mass of that object automatically influences
anticipatory grip forces (i.e., grip force is scaled proportional

to the expected weight of an object, which is based on its size
and type of material; Gordon et al., 1991). In other words,
when we reach out to grasp an object using our index finger
and thumb, the opposing digits exert a grip force (forces that
are equal and opposite) to hold the object level. If the COM
of the object is to one side of our grasp location, this offset
position results in a turning force or torque. If we are to
successfully grasp this object, we can either increase our grip
force in order to generate the torsional friction needed to offset
the rotation of the object around the grasp axis and keep the
object level during the lift, or move our grasp axis to intersect
the object’s COM (Wing and Lederman, 1998; Endo et al., 2011).
Since the objects in this study were relatively lightweight, easily
compensated for by increases in grip force, the placement of our
grasp axis with varying degrees of COM changes becomes less
important for grasp location selection. Despite this, however, it
is apparent that we attend to changes in COM location, despite
these locations not necessarily dictating our exact grasp location.
While visual attention to asymmetrical objects remains relatively
central (with a slight rightward bias), we are clearly sensitive
to slight changes in COM location. Unlike grasping, in which
changes in COM can be easily compensated for in grip force,
the eyes have to attend to changes in relevant properties of
the objects to help mediate this process. As you can imagine,
the placement of our grasp would become progressively linked
to an object’s COM if these changes also coincided with an
increase in object mass and, if this were to occur, it would be
important to be attending to these locations. Further research
is needed to explore these factors as well as the persistent
rightward visuospatial bias observed when grasping objects and
the influence of handedness on gaze and grasp point selection
during object manipulation.
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