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Parallelism represents an essential aspect of human mind/brain activities. One

can recognize some common features between psychological parallelism and the

characteristic parallel structures that arise in quantum theory and in quantum

computation. The article is devoted to a discussion of the following questions:

1. a comparison between classical probabilistic Turing machines and quantum Turing

machines.

2. possible applications of the quantum computational semantics to cognitive problems.

3. parallelism in music.
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1. INTRODUCTION

Parallelism represents an essential aspect of the activities of human brain and mind. One can
recognize some common features between psychological parallelism and the characteristic parallel
structures that arise in quantum theory and in quantum computation, being responsible for the
extraordinary efficiency and speed of quantum computers.

Quantum parallelism and classical parallelism are deeply different, although it is sometimes
claimed that quantum Turing machines are nothing but special examples of classical probabilistic
Turing machines1. But what exactly are quantum Turing machines? So far, the literature has not
provided a rigorous “institutional” concept of quantum Turing machine. Some definitions seem to
be based on a kind of “imitation” of the classical definition of Turing machine, by referring to a tape
(where the symbols are written) and to a moving head (which changes its position on the tape)2.
These concepts, however, seem to be hardly applicable to physical quantum computers. Both in the
classical and in the quantum case, it is expedient to consider a more abstract concept: the notion of
state machine, which neglects both tapes andmoving heads. Every finite computational task realized
in different computational models proposed in the literature can be simulated by a state machine3.
In order to compare classical and quantum parallelism, we will analyze the concepts of (classical)
deterministic state machine, (classical) probabilistic state machine, and quantum state machine. On
this basis we will discuss the question: to what extent can quantum state machines be simulated by
probabilistic state machines? (Sections 2, 3).

1See, for instance, Penrose (1994).
2See, for instance, Fouché et al. (2007).
3See, for instance, Savage (1998) and Gudder (1999).

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2015.01583
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2015.01583&domain=pdf&date_stamp=2015-10-21
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:dallachiara@unifi.it
http://dx.doi.org/10.3389/fpsyg.2015.01583
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.01583/abstract
http://loop.frontiersin.org/people/141606/overview
http://loop.frontiersin.org/people/261109/overview


Dalla Chiara et al. Quantum information, cognition, and music

In the investigation about possible links between quantum
structures and psychological structures a useful tool is represented
by a special form of quantum logical semantics (called quantum
computational semantics) that has been inspired by the theory of
quantum computation. We will see how this semantics can be
naturally applied to a formal analysis of musical compositions,
where parallel structures, ambiguity, holism, and contextuality
play an essential role (Sections 4, 5)4.

Our analysis seems to confirm a general conjecture that has
been defended and discussed in different research-fields: the
basic concepts of the quantum-theoretic formalism (which had
for a long time been regarded as mysterious and potentially
paradoxical) seem to have a universal interest that goes beyond
the domain of microphysical phenomena.

2. CLASSICAL DETERMINISTIC AND
PROBABILISTIC MACHINES

We will first introduce a formal definition for the notion
of deterministic state machine. On this basis, probabilistic
state machines will be represented as stochastic variants of
deterministic machines, which are able to calculate different
outputs with different probability-values.

Definition 1. Deterministic state machine.
A deterministic state machine is an abstract system M based on
the following elements:

1. A finite set S of internal states, which contains an initial state
sin and includes a set of halting states Shalt = {shaltj | j ∈ J}.

2. A finite alphabet, which can be identified with the set {0, 1}
of the two classical bits. Any register represented by a bit-
sequence w = (x1, . . . , xn) is a word (of length n). Any
pair (s,w) consisting of an internal state s and of a word w
represents a possible configuration of M, which is interpreted
as follows:M is in the internal state s andw is the word written
on an ideal tape.

3. A set of words that represent possible word-inputs forM.
4. A program, which is identified with a finite sequence of rules:

(R0, . . . ,Rt).

Each Ri is a partial function that transforms configurations
into configurations. We may have: Ri = Rj with i 6= j. The
number i, corresponding to the rule Ri, represents the i-th step
of the program. The following conditions are required:

4.1 The rule R0 is defined for any configuration (s0,w0),
where s0 is the initial state sin and w0 is a possible word-
input. We have:

R0 : (s0,w0) 7→ (s1,w1),

4Some basic intuitive ideas of the quantum computational semantics are close to

the “quantum cognition approach” that has been extensively developed in recent

times (see, for instance, Aerts and Gabora, 2005a,b; Aerts and Sozzo, 2014). In both

theories concepts and thoughts are represented as special abstract entities that can

be described in the framework of the quantum-theoretic formalism. The technical

developments of the two approaches are, however, different.

where s1 is different from the initial state and from all
halting states (if t 6= 0).

4.2 For any i (0 < i < t),

Ri : (si,wi) 7→ (si+ 1,wi+ 1),

where si+ 1 is different from all si, . . . , s0 and from all
halting states.

4.3 Rt : (st,wt) 7→ (st+ 1,wt+ 1),
where st+ 1 is a halting state.

Each configuration (si+ 1,wi+ 1) represents the output for the
step i and the input for the step i+ 1.

The concept of computation of a deterministic state machine can
be now defined as follows.

Definition 2. Computation of a deterministic state machine.
A computation of a deterministic state machine M is a finite
sequence of configurations

((s0,w0), . . . , (st+ 1,wt+ 1)),

where:

1. w0 is a possible word-input ofM.
2. s0, . . . , st+ 1 are different internal states of M such that: s0 =

sin and st+ 1 is a halting state.
3. For any i (0 ≤ i ≤ t),

(si+ 1,wi+ 1) = Ri((si,wi)),

where Ri is the i-th rule of the program.

The configurations (s0,w0) and (st+ 1,wt+ 1) represent,
respectively, the input and the output of the computation; while
the words w0 and wt+ 1 represent, respectively, the word-input
and the word-output of the computation.

Apparently, each deterministic state machine is devoted to a
single task that is determined by its program.

Let us now turn to the concept of probabilistic state machine.
The only difference between deterministic and probabilistic state
machines concerns the program, which may be stochastic in the
case of a probabilistic state machine (PM). In such a case, instead
of a sequence of rules, we will have a sequence (Seq0, . . . , Seqt) of
sequences of rules such that:

Seq0 = (R01 , . . . ,R0r )

. . . . . . . . .

Seqt = (Rt1 , . . . ,Rtl ).

Each rule Rij (occurring in the sequence Seqi) is associated to a
probability-value pij such that:

∑

j

pij = 1.

From an intuitive point of view, pij represents the probability
that the rule Rij be applied at the i-th step. A deterministic
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state machine is, of course, a special case of a probabilistic state
machine characterized by the following property: each sequence
Seqi consists of a single rule Ri.

Any probabilistic state machine naturally gives rise to a graph-
structure for any choice of an input-configuration conf0 =
(s0,w0). As an example, consider the following simple case: a
probabilistic state machine PM whose program consists of two
sequences, each consisting of two rules:

Seq0 = (R01 ,R02 )

Seq1 = (R11 ,R12 ).

The graph associated to PM for the configuration conf0 is
illustrated by Figure 1.

How do probabilistic machines compute? In order to define
the concept of computation of a probabilistic machine, let us first
introduce the notions of program-path and of computation-path
of a given probabilistic machine.

Definition 3. Program-path and computation-path.
Let PM be a probabilistic state machine with program
(Seq0, . . . , Seqt).

• A program-path of PM is a sequence

P = (R0h , . . . ,Rij , . . . ,Rtk ),

consisting of t rules, where each Rij is a rule from Seqi
(probabilistically independent of all other rules of P).

• For any choice of an input (s0,w0), any program-path P

determines a sequence of configurations

CP = ((s0,w0), . . . , (si,wi), . . . , (st+ 1,wt+ 1)),

where (si+ 1,wi+ 1) = Rij (si,wi) and Rij is the i-th element
of P . This sequence is called the computation-path of PM
determined by the program-path P and by the input (s0,w0).
The configuration (st+ 1,wt+ 1) represents the output
of CP .

Any program-path P = (R0h , . . . ,Rij , . . . ,Rtk ) has a well-
determined probability-value p(P), which is defined as follows
(in terms of the probability-values of its rules):

p(P): = p0h · . . . · pij · . . . · ptk .

FIGURE 1 | The graph of PM.

As expected, the probability-value of a program-path P

naturally determines the probability-values of all corresponding
computation-paths. It is sufficient to put:

p(CP): = p(P).

Consider now the set PPM of all program-paths and the set CPPM
of all computation-paths of a probabilistic machine PM. One can
easily show that:

∑

i

{

p(Pi)|Pi ∈ PPM
}

=
∑

i

{

p(CP i)|CP i ∈ CPPM
}

= 1.

On this basis the concept of computation of a probabilistic state
machine can be defined as follows.

Definition 4. Computation of a probabilistic state machine.
A computation of a probabilistic state machine PM with input
(s0,w0) is the system of all computation-paths of PM with input
(s0,w0).

Unlike the case of deterministic statemachines, a computation
of a probabilistic state machine does not yield a unique
output. For any choice of a configuration-input (s0,w0), the
computation-output is a system of possible configuration-
outputs (sit+ 1,w

i
t+ 1), where each (sit+ 1,w

i
t+ 1) corresponds to

a computation-path CP i. As expected, each (sit+ 1,w
i
t+ 1) has a

well-determined probability-value that is defined as follows:

p((sit+ 1,w
i
t+ 1)) : =

∑

i

{

p(CP i)|the configuration-output of

CP i is
(

sit+ 1,w
i
t+ 1

)}

.

One can easily show that the sum of the probability-values of all
configuration-outputs of any machine PM is 1.

3. QUANTUM STATE MACHINES

The strong parallelism that characterizes quantum computers
is based on two quantum-theoretic notions that have been
often described as mysterious and potentially paradoxical:
superposition and entanglement. For the readers who are not
expert of quantum theory it is expedient to recall some
concepts of the quantum formalism that are used in quantum
computation5. The basic idea is that any piece of quantum
information is mathematically represented as a possible state of
a quantum system that can store and transmit the information in
question. In the simplest situations one is dealing with a single
particle S (say, an electron or a photon), whose “mathematical
environment” is a special example of a vector space: the two-
dimensional Hilbert spaceC

2, based on the set of all ordered pairs
of complex numbers. The canonical (orthonormal) basis of C

2

consists of the two following unit-vectors:

|0〉 = (1, 0); |1〉 = (0, 1),

5A survey of quantum computation theory can be found, for instance, in Nielsen

and Chuang (2000).
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which represent, in this framework, the two classical bits (0
and 1), or (equivalently) the two classical truth-values (Falsity
and Truth). A pure state corresponds to a maximal piece of
information that cannot be consistently extended to a richer
knowledge. Such state is represented as a unit-vector |ψ〉 that
can be expressed as a superposition of the two elements of the
canonical basis of C

2:

|ψ〉 = c0|0〉 + c1|1〉,

where c0 and c1 (also called amplitudes) are complex numbers
such that |c0|2 + |c1|2 = 1.

The physical interpretation of |ψ〉 (also called qubit-state or,
briefly, qubit) is the following: the physical system S in state |ψ〉
might satisfy the physical properties that are certain for the bit |0〉
with probability |c0|2 and might satisfy the physical properties
that are certain for the bit |1〉 with probability |c1|2. Due to
the characteristic indeterminism of quantum theory, the pure
state |ψ〉 is at the same time a maximal and logically incomplete
piece of information that cannot decide some important physical
properties of the system S. Accordingly, from an intuitive point
of view, one can say that |ψ〉 describes a kind of cloud of potential
properties that might become actual when a measurement is
performed. Measuring a physical quantity (by means of an
apparatus associated to the canonical basis) determines a sudden
transformation of the qubit |ψ〉 either into the bit |0〉 or into
the bit |1〉. Such transformation is usually called collapse of the
wave-function.

Not all states associated to a physical system S are pure.
Non-maximal pieces of information can be represented as
mixtures of pure states (special examples of operators called
density operators). In the space C

2 a density operator ρ can be
represented as a convenient finite sum of projection-operators:

ρ =
∑

i

wiP|ψi〉,

where wi are real numbers such that
∑

i wi = 1, while each
P|ψi〉 is a projection-operator that projects along the direction
of |ψ〉. Notice that such representation is not generally unique.
A density operator that cannot be represented as a projection
P|ψ〉 is called a proper mixture. While pure states codify an
essential indetermination of some relevant properties of the
quantum system under investigation, mixtures may correspond
to an epistemic uncertainty of the observer. Unlike pure states
(which always satisfy some well-determined properties), there
are mixtures that cannot decide any (non-trivial) property of the
associated system. An example of this kind is the state ρ = 1

2I,
where I is the identity operator of the space C

2.
As happens in classical information theory, quantum

computation also needs complex pieces of information, which are
supposed to be stored by composite quantum systems (generally
consisting of n subsystems). Accordingly, one can naturally
adopt the quantum-theoretic formalism for the mathematical
representation of composite physical systems, based on the use
of tensor products (special examples of products)6. While a single

6The basic property of the tensor product H1 ⊗ H2 of two (finite-dimensional)

Hilbert spacesH1 andH2 is the following:H1⊗H2 is a Hilbert space that properly

qubit is a unit-vector of the space C
2, a pure state representing a

complex piece of information can be identified with a unit-vector
of the n-fold tensor product of C

2:

⊗n
C
2 = C

2 ⊗ . . .⊗ C
2

︸ ︷︷ ︸

n−times

(with n ≥ 1).

Such vectors are called quregisters. The canonical basis of the
space⊗n

C
2 consists af all registers, products of bits that have the

following form:

|x1〉 ⊗ . . .⊗ |xn〉 (where any xi is either 0 or 1).

Instead of |x1〉 ⊗ . . .⊗ |xn〉, it is customary to write |x1, . . . , xn〉.
Any quregister can be represented as a superposition of registers:

|ψ〉 =
∑

i

ci|xi1 , . . . , xin〉,

where ci are complex numbers such that
∑

i |ci|2 = 1.
A tensor product |ψ1〉 ⊗ . . . ⊗ |ψn〉 (of n quregisters) is often
briefly indicated by: |ψ1〉 . . . |ψn〉.

Quantum computation makes essential use of some
characteristic quantum states that are called entangled. In
order to illustrate the concept of entanglement from an intuitive
point of view, let us refer to a simple paradigmatic case. We
are concerned with a composite physical system S consisting
of two subsystems S1 and S2 (say, a two-electron system). By
the quantum-theoretic rules that concern the mathematical
description of composite systems, all states of S shall live in the
tensor productH = H1 ⊗H2, whereH1 andH2 are the Hilbert
spaces associated to the systems S1 and S2, respectively. The
observer has a maximal information about S: a pure state |ψ〉
of H. What can be said about the states of the two subsystems?
Due to the form of |ψ〉, such states cannot be pure: they are
represented by two identical mixtures, which codify a “maximal
degree of uncertainty.” A typical possible form of |ψ〉 is the
following Bell-state:

|ψ〉 =
1
√
2
(|0, 0〉 + |1, 1〉),

which lives in the space C
2 ⊗ C

2, whose canonical basis consists
of the four vectors |0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉 .

This gives rise to the following physical interpretation: the
global system Smight satisfy the properties that are certain either
for the state |0, 0〉 or for the state |1, 1〉 with probability-value
1
2 . At the same time, |ψ〉 determines that the reduced state of

both subsystems (S1 and S2) is the mixture 1
2I. Although it

is not determined whether the state of the global system S is
|0, 0〉 or |1, 1〉, the two subsystems S1 and S2 can be described

includes an isomorphic image of the Cartesian product H1 × H2 (consisting of

all ordered pairs of vectors that belong to the spaces H1 and H2, respectively).

Furthermore,H1⊗H2 contains all possible superpositions of its elements. A vector

|ψ〉 of H1 ⊗ H2 is called factorized iff |ψ〉 corresponds to a pair (|ψ1〉, |ψ2〉) ∈
H1 × H2. In such a case, it is customary to write: |ψ〉 = |ψ1〉 ⊗ |ψ2〉. Of course,
not all vectors ofH1 ⊗H2 are factorized.
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as “entangled,” because in both possible cases they would satisfy
the same properties, turning out to be indistinguishable. As a
consequence, any measurement performed by an observer either
on system S1 or on system S2 would instantaneously transform
the potential properties of both subsystems into actual properties
(by collapse of the wave-function).

The celebrated “Einstein–Podolsky–Rosen paradox”(EPR) is
based on a similar physical situation. As is well-known, what
mainly worried Einstein was the possibility of “non-local effects:”
the subjective decision of an observer (who may choose among
different incompatible observables to be measured on the system
S1) seems to determine the instantaneous emergence of an actual
property for the system S2, which might be very “far” from S1
(possibly inaccessible by means of a light-signal). Interestingly
enough, in the framework of quantum computation, entangled
states have been often used as a powerful resource, even from a
technological point of view (for instance, in the applications to
teleportation-phenomena and to quantum cryptography).

As expected, quantum computation cannot be identified
with a “static” representation of pieces of information. What
is important is the dynamic process of information that gives
rise to quantum computations. Such process is mathematically
performed by quantum logical gates (briefly, gates): special
examples of unitary operators that transform quregisters into
quregisters in a reversible way. Since in quantum theory the time-
evolution of all physical systems is mathematically described by
unitary operators, one can say that quantum computations can be
regarded as the time-evolution of some special quantum objects.

We will now introduce the definition of quantum state
machine, which represents a quantum counterpart of the classical
notion of deterministic state machine. From an intuitive point
of view, any quantum state machine can be regarded as a
kind of quantum superposition of many classical deterministic
state machines. Some definitions of quantum Turing machine
discussed in the literature are based on a strong idealization:
no limit is assumed for the length of the registers occurring
in a computation. This corresponds to the classical assumption
according to which a Turing machine is equipped with an infinite
tape. We will consider a more realistic concept, closer to physical
quantum computers, which are of course always bound to a
limited memory.

Definition 5. Quantum state machine.
A quantum state machine is an abstract system QM associated
to a (finite-dimensional) Hilbert space HQM whose unit-vectors
|ψ〉 represent possible pure states of a quantum system that could
physically implement the computations of the state machine. The
spaceHQM has the following form:

H
QM = H

H ⊗H
S ⊗H

W .

The following conditions are required:

1. HH (which represents the halting-space) is the space C
2,

where the two elements of the canonical basis ({|0〉H, |1〉H})
correspond to the states “the machine does not halt” and “the
machine halts,” respectively.

2. HS (which represents the internal-state space) is associated to
a finite set S of classical internal states. We require thatHS =

⊗m
C
2, where 2m is the cardinal number of S . Accordingly, the

set S can be one-to-one associated to a basis ofHS .
3. HW (which represents the word-space) is identified with a

Hilbert space ⊗n
C
2 (for a given n ≥ 1). The number n

determines the length of the registers |x1, . . . , xn〉 that may
occur in a computation. Shorter registers |x1, . . . , xh〉 (with
h < n) can be represented in the space ⊗n

C
2 by means of

convenient ancillary bits.
Let BQM be a basis of HQM, whose elements are unit-

vectors having the following form:

|ϕi〉 = |hi〉|si〉|xi1 , . . . , xin〉,

where |hi〉 belongs to the basis ofHH , while |si〉 belongs to the
basis ofHS.

Any unit-vector |ψ〉 of HQM that is a superposition of
basis-elements |ϕi〉 represents a possible computational state
ofQM. The expected interpretation of a computational state

|ψ〉 =
∑

i

ci|hi〉|si〉|xi1 , . . . , xin〉

is the following:

• the machine in state |ψ〉might halt with probability |ci|2 (if
|hi〉 = |1H〉) or with probability 1− |ci|2 (if |hi〉 = |0H〉).

• the machine in state |ψ〉 might correspond to the classical
configuration (si, (xi1 , . . . , xin )) with probability |ci|2.
Hence, the state |ψ〉 describes a kind of quantum co-
existence of different classical deterministic configurations.

4. The set of possible inputs ofQM is identified with the set of all
computational states that have the following form:

|ψ〉 =
∑

i

|0H〉|sin〉|xi1 , . . . , xin〉.

5. Like a deterministic state machine, a quantum state machine
QM is characterized by a program. In the quantum case, a
program is identified with a sequence of unitary operators of
HQM:

(U0, . . . ,Ut),

where we may have: Ui = Uj with i 6= j.
The following conditions are required:

(a) for any possible input |ψ0〉, U0(|ψ0〉) = |ψ1〉 is a
superposition of basis-elements having the following
form:

|h1i 〉|s
1
i 〉|x

1
i1
, . . . , x1in〉,

where all s1i are different from sin and |h1i 〉 = |0H〉, if t 6= 0.
(b) For any j (0 < j < t), Uj(|ψj〉) = |ψj+ 1〉 is

a superposition of basis-elements having the following
form:

|0H〉|s
j+ 1
i 〉|xj+ 1

i1
, . . . , x

j+ 1
in

〉.
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(c) Ut(|ψt〉) = |ψt+ 1〉 is a finite superposition of basis-
elements having the following form:

|1H〉|shaltj〉|x
t+ 1
i1

, . . . , xt+ 1
in

〉.

The concept of computation of a quantum state machine can be
now defined in a natural way.

Definition 6. Computation of a quantum state machine.
Let QM be a quantum state machine, whose program is the
operator-sequence (U0, . . . ,Ut) and let |ψ0〉 be a possible input
of QM. A computation of QM with input |ψ0〉 is a sequence of
computational states of QM

QC = (|ψ0〉, . . . , |ψt+ 1〉),

such that: |ψi+ 1〉 = Ui(|ψi〉), for any i (0 ≤ i ≤ t).
The vector |ψt+ 1〉 represents the output of the computation,
while the density operator Red3(|ψt+ 1〉) (the reduced state of
|ψt+ 1〉 with respect to the third subsystem) represents the word-
output of the computation.

Like all abstract notions of quantum computer, the concept
of quantum state machine gives rise to some critical questions
that have been often discussed in the literature. Two important
problems (which cannot have any counterpart in the case of
classical computation) are the following:

• How shall we interpret the operation of “reading the output”
of a computation of a given machine? What is the role of the
collapse of the wave-function during a reading-action?

• Is it possible to measure the halting state without disturbing
the configuration-state?

Consider now a quantum state machine whose program is

(U0, . . . ,Ut).

Each Ui naturally determines a corresponding word-operator
UW
i , defined on the word-space HW . Generally, it is not

guaranteed that all word-operators are unitary. But it is
convenient to refer to quantum state machines that satisfy this
condition. In this way, any quantum state machine (whose word-
space is ⊗n

C
2) determines a quantum circuit, consisting of a

sequence of unitary operators (gates):

(UW
0 , . . . ,U

W
t ),

where n represents the width, while t + 1 represents the depth of
the circuit.

To what extent can quantum state machines be simulated
by classical probabilistic state machines? In order to discuss
this important question, let us refer to a celebrated quantum
experiment, based on the Mach–Zehnder interferometer
(represented by Figure 2).

The physical situation can be sketched as follows. Consider
a photon-beam (possibly consisting of a single photon) and
assume that |0〉 describes the state of photons moving along
the x direction, while |1〉 describes the state of photons moving
along the y direction. All photons go through a first beam splitter

FIGURE 2 | The Mach–Zehnder interferometer.

that “splits” them giving rise to the following effect: within
the box each photon follows a path corresponding either to
the x-direction or to the y-direction with probability 1

2 . Soon
after, on both paths, all photons are reflected by a mirror that
inverts their direction. Finally, the photons pass through a second
beam splitter that determines the output-state. Suppose that all
photons entering into the interferometer-box are moving in the
x-direction. According to a “classical way of thinking” we would
expect that the photons detected at the end of the process will
move either along the x-direction or along the y-direction with
probability 1

2 . The result of the experiment is, instead, completely
different: the Mach–Zehnder interferometer always transforms
the input-state |0〉 into the output-state |0〉; while the input-state
|1〉 is transformed into |1〉.

From a mathematical point of view, such a “surprising”
result can be explained by using, in an essential way, the
concept of superposition. The apparatuses (used in the Mach–
Zehnder experiment) can be mathematically represented by two
important gates. A beam splitter can be regarded as a physical
implementation of the Hadamard-gate

√
I (also called square

root of identity), which is defined as follows (on the canonical
basis of C

2):

√
I|0〉 =

1
√
2
(|0〉 + |1〉);

√
I|1〉 =

1
√
2
(|0〉 − |1〉).

Apparently, the Hadamard-gate transforms the two classical bits
|0〉 and |1〉 into two (different) genuine superpositions. As a
consequence, within the Mach–Zehnder box a photon in state
1√
2
(|0〉 + |1〉) turns out to satisfy at the same time two alternative

properties: the property of moving along the x-direction and
the property of moving along the y-direction. We have here a
characteristic quantum parallelism: a single photon “goes along”
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FIGURE 3 | The quantum skier.

two different paths at the same time! Metaphorically, situations
of this kind have been sometimes compared to the puzzling
behavior of a “quantum skier” who runs at the same time on the
left and on the right side of a given tree (see Figure 3).

The second apparatus of the Mach–Zehnder interferometer
(the mirror), can be regarded as a physical implementation
of another important gate, the negation NOT (a quantum
generalization of the classical negation), which is defined as
follows:

NOT|0〉 = |1〉; NOT|1〉 = |0〉.

Accordingly, theMach–Zehnder circuit can be identified with the
following sequence of three gates (all defined on the space C

2):

(
√
I,NOT,

√
I).

Let us now apply the Mach–Zehnder circuit to the input |0〉.
We obtain:√

I : |0〉 7→ 1√
2
(|0〉 + |1〉); NOT :

1√
2
(|0〉 + |1〉) 7→

1√
2
(|0〉 + |1〉);

√
I :

1√
2
(|0〉 + |1〉) 7→ |0〉.

We can see, in this way, how the Mach–Zehnder circuit
transforms the input-state |0〉 into the output-state |0〉. In a
similar way, the input-state |1〉 is transformed into the output-
state |1〉.

Is there any natural “classical counterpart” for the Hadamard-
gate? A natural candidate might be a particular example of a
probabilistic state machine that we can conventionally call the
classical probabilistic NOT-state machine (PMNOT). Such machine
can be defined as follows:

• The set of possible word-inputs of PMNOT is the set of words
{

(0), (1)
}

.
• The program of PMNOT consists of the following sequence of

rules:

Seq0 = (R01 ,R02 ),

FIGURE 4 | A word-graph for a “classical probabilistic Mach–Zehnder

state machine.”

where:
R01 : (sin, (x)) 7→ (shaltj , (x)) and p(R01 ) = 1

2 ;

R02 : (sin, (x)) 7→ (shaltj , (1− x)) and p(R02 ) = 1
2 .

Consider, for instance, the input (sin, (0)). The output will be the
following set:

{

(shaltj , (0)), (shaltj , (1))
}

.

On this basis, a “classical probabilistic Mach–Zehnder state
machine” would determine (for the word-input (0)) the word-
graph illustrated by Figure 4.

Such a machine turns out to compute both the words (0)
and (1) with probability 1

2 . Interestingly enough, this is the same
probabilistic result that is obtained in the quantum case, when
one performs a measurement inside the interferometer-box. In
such a case, photons behave like “normal skiers,” who pass either
at the right or at the left side of a tree (where or represents here,
of course, the exclusive disjunction).

The arguments we have developed seem to confirm the
following conjecture: the characteristic superposition-patterns,
that may occur during a quantum computation (when no
measurement is performed during the computation-process),
cannot be generally represented by probabilistic state machines.
Quantum parallelism (based on superpositions) and classical
parallelism are deeply different.

4. QUANTUM PARALLELISM,
PSYCHOLOGICAL PARALLELISM, AND
QUANTUM COMPUTATIONAL SEMANTICS

What kind of similarity can be recognized between quantum
parallel structures and different forms of psychological
parallelism? Trying to represent the human mind as a kind
of system of quantum state machines would be, of course,
naive and misleading. In spite of many important results in the
framework of neurosciences, the complex network that connects
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human conscious and unconscious thoughts is still quite
mysterious7. Quantum-like superpositions can be reasonably
applied to represent some aspects of such complex networks.
Even quantum interference phenomena (with the characteristic
constructive and destructive effects) can find some natural
psychological interpretations.

According to an interesting hypothesis (discussed by the
neuroscientist Boncinelli, 2012), the mysterious emergence of an
act of consciousness can be represented as a sudden transition
from a parallel structure to a linear one. Is it reasonable to
conjecture that such transition could be described as a kind of
“psychological collapse of the wave-function?”

In the investigations about possible links between quantum
structures and psychological structures a useful tool is represented
by a special form of quantum logical semantics (called quantum
computational semantics) that has been naturally inspired by the
theory of quantum computation8.

Let us briefly recall the basic ideas of this semantics. We
can refer a first-order language L, whose non-logical alphabet
contains individual terms (variables and names), predicates
and sentential constants. Interpreting the language L means
associating to any formula α a meaning, identified with a piece
of quantum information that can be stored by a quantum system.
Accordingly, any possible meaning of α is represented by a
possible (pure or mixed) state of a quantum system: generally,
a density operator ρα that lives in a Hilbert space Hα , whose
dimension depends on the linguistic complexity of α.

The logical operators of L are associated to special examples
of Hilbert-space operations that have a characteristic dynamic
behavior, representing possible computation-actions. The logical
connectives are interpreted as particular (reversible) gates, like
the negation NOT, the Hadamard-gate

√
I, the Toffoli-gate T

(which allows us to define a reversible conjunction AND). At
the same time, the logical quantifiers (∀, ∃) are interpreted as
possibly irreversible quantum operations. Since the universe of
discourse (which the language refers to) may be indeterminate,
the use of quantum quantifiers may give rise to a reversibility-
breaking, which is quite similar to what happens in the case of
measurement-phenomena.

Due to the characteristic features of quantum holism,
meanings turn out to behave in a holistic and contextual way:
the density operator ρα (which represents the global meaning of
a formula α) determines the contextual meanings of all parts of
α (which can be obtained by applying the reduced-state function
to ρα). As a consequence, it may happen that the meaning of
a formula is an entangled pure state, while the meanings of its
parts are proper mixtures. In such cases, the meaning of a global
expression turns out to be more precise than the meanings of its
parts. It is also admitted that one and the same formula receives
different contextual meanings in different contexts.

As an example, consider the atomic sentence “Alice is pretty”
(formalized as Pa). In order to store the information expressed
by this sentence, we need three quantum objects whose states

7As is well-known, the literature devoted to the study of parallel structures in the

mind/brain-behavior is very rich. As an example, one can refer to some important

contributions of Damasio (see, for instance, Damasio, 1999).
8See (Dalla Chiara et al., 2005, 2010, in press).

represent the pieces of information corresponding, respectively,
to the predicate P, to the name a and to the truth-degree
according to which the individual denoted by the name a

satisfies the property denoted by the predicate P. Accordingly,
the meaning of the sentence Pa can be identified with a (pure or
mixed) state ρPa living in the tensor-product spaceH

Pa = ⊗3
C
2.

In order to obtain the contextual meanings of the linguistic parts
of Pa it is sufficient to consider the two reduced states Red1(ρPa)
and Red2(ρPa), which describe (respectively) the states of the
first and of the second subsystem of the quantum object that
stores the information expressed by the sentence Pa. From a
logical point of view, Red1(ρPa) and Red

2(ρPa) can be regarded as
two intensional meanings: a property-concept and an individual
concept, respectively; while ρPa represents a propositional concept
(or event).

Like formulas, sequences of formulas also can be interpreted
according to the quantum computational rules. As expected, a
possible meaning of the sequence (α1, . . . , αn) will be a density
operator ρ(α1,...,αn) living in a Hilbert space H(α1,...,αn), whose
dimension depends on the linguistic complexity of the formulas
α1, . . . , αn.

In this framework one can develop an abstract theory of vague
possible worlds. Consider a pair

W = ((α1, . . . , αn), ρ(α1,...,αn)),

consisting of a sequence of formulas and of a density operator
that represents a possible meaning for our sequence. It seems
reasonable to assume that W describes a vague possible world, a
kind of abstract scene where most events are characterized by a
“cloud of ambiguities,” due to quantum uncertainties. In some
cases W might be exemplified as a “real” scene of a theatrical
play or as a vague situation that is described either in a novel or
in a poem. And it is needless to recall how ambiguities play an
essential role in literary works.

As an example, consider the following vague possible world:

W = ((Pab), ρ(Pab)),

where Pab is supposed to formalize the sentence “Alice is kissing
Bob,” while ρPab corresponds to the pure state

|9〉Pab = |ϕ〉 ⊗
1
√
2
(|0, 1)〉 + |1, 0〉)⊗ |1〉,

where |ϕ〉 lives in the space C
2, while |9〉Pab lives in the space

⊗4
C
2. Here the reduced state of |9〉Pab that describes the

pair (Alice, Bob) has the typical form of an entangled state;
consequently, the states describing the two individuals Alice and
Bob are two identical mixed states. In the context |9〉Pab Alice
and Bob turn out to be indistinguishable: it is not determined
“who is who” and “who is kissing whom.” It is not difficult to
imagine some “real” theatrical scenes representing ambiguous
situations of this kind.

5. A QUANTUM SEMANTICS FOR MUSIC

An abstract version of the quantum computational semantics can
be applied to a formal analysis of musical compositions, where
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both musical ideas and extra-musical meanings are generally
characterized by some essentially vague and ambiguous features9.

Any musical composition (say, a sonata, a symphony, an
opera,...) is, generally, determined by three elements:

• a score;
• a set of performances;
• a set of musical thoughts (or ideas), which represent possible

meanings for themusical phrases written in the score.

While scores represent the syntactical component of musical
compositions, performances are physical events that occur in
space and time. From a logical point of view, we could say that
performances are, in a sense, similar to extensional meanings,
i.e., well-determined systems of objects which the linguistic
expressions refer to.

Musical thoughts (or ideas) represent, instead, a more
mysterious element. Is it reasonable to assume the existence of
such ideal objects that are, in a sense, similar to the intensional
meanings investigated by logic? Is there any danger to adhere,
in this way, to a form of Platonism? When discussing semantic
questions, one should not be “afraid” of Platonism. In the
particular case of music, a composition cannot be simply reduced
to a score and to a system of sound-events. Between a score
(which is a system of signs) and the sound-events created by a
performance there is something intermediate, represented by the
musical ideas that underlie the different performances. This is the
abstract environment where normally live both composers and
conductors, who are accustomed to study scores without any help
of a material instrument.

Following the rules of the quantum semantics, musical ideas
can be naturally represented as superpositions that ambiguously
describe a variety of co-existent thoughts. Accordingly, we can
write:

|µ〉 =
∑

i

ci|µi〉,

where:

• |µ〉 is an abstract object representing a musical idea that
alludes to other ideas |µi〉 (possible variants of |µ〉 that are,
in a sense, all co-existent);

• the number ci measures the “weigth” of the component |µi〉 in
the context |µ〉.

As happens in the case of composite quantum systems, musical
ideas (which represent possible meanings of musical phrases
written in a score) have an essential holistic behavior: themeaning
of a global musical phrase determines the contextual meanings of
all its parts (and not the other way around).

An important feature of music is the capacity of evoking extra-
musical meanings: subjective feelings, situations that are vaguely
imagined by the composer or by the interpreter or by the listener,
real or virtual theatrical scenes (which play an essential role in the
case of lyric operas and of Lieder). The interplay between musical
ideas and extra-musical meanings can be naturally represented in
the framework of our quantum semantics, where extra-musical

9See (Dalla Chiara et al., 2012).

meanings can be dealt with as special examples of vague possible
worlds.

We can refer to the abstract tensor product of two spaces

MSpace⊗WSpace,

where:

• MSpace represents the space of musical ideas |µ〉.
• WSpace represents the space of vague possible worlds, dealt

with as special examples of abstract objects |w〉 that can be
evoked by musical ideas.

Following the quantum-theoretic formalism, we can distinguish
between factorized and non-factorized global musical ideas. A
factorized global musical idea will have the form:

|M〉 = |µ〉 ⊗ |w〉.

But we might also meet entangled global musical ideas, having
the form:

|M〉 = c1(|µ1〉 ⊗ |w1〉)+ c2(|µ2〉 ⊗ |w2〉).

As is well-known, music gives rise to a special kind of
psychological experience, where some complex parallel
structures are consciously grasped, in a way that may appear
miraculous. Paradigmatic examples arise, for instance, in the
case of trios or quartets of lyric operas. In such cases, the
listener perceives a global polyphonic structure; at the same time,
he/she is able to follow (at least to a certain extent) the different
melodic lines and even the different thoughts and feelings of the
characters who are singing. As an example, it may be interesting
to consider three great masterpieces of the history of lyric operas:
the quartet of Act 1 in Beethoven’s Fidelio, the quartet of Act 3
in Verdi’s Rigoletto and the trio of Act 3 of Der Rosenkavalier
by Richard Strauss. The parallel structures that arise in these
three examples have some significant differences both from the
musical and from the semantic point of view.

In Fidelio’s quartet the psychological contraposition between
the four characters (Marzelline, Leonore, Rocco, Jaquino) is
realized by means of a single musical theme that is successively
sung by the four singers (Figure 5).

It is amazing how Beethoven succeeds in expressing, by
one and the same theme, different attitudes and emotions:
the joyful hope of Marzelline, the doubts and the anguish of
Leonore, the paternal satisfaction of Rocco, the jealous rage of
Jaquino. The whole context is dominated by strong ambiguities
and antagonistic elements: the contrast between an improbable
family-portrait and the cruel jail-environment, the contradictions
of Rocco (who is at the same time a fond father and an accomplice
of the prison-system), the sexual ambiguity of Leonore, the loving
heroin who has disguised herself as a man (Fidelio), in the
attempt to save her husband, the prisoner Florestan. The musical
result is an extraordinary and highly emotional polyphonic
construction based on very simple musical components.

The structure of Rigoletto’s quartet is completely different.
All characters are associated to specific musical themes that
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FIGURE 5 | The quartet-theme.

FIGURE 6 | The Duke.

are repeated with some variations. The leading musical idea
is represented by the wonderful theme sung by the Duke of
Mantova at the very beginning (Figure 6)10.

Like Mozart’s Don Giovanni, Verdi’s Duke is a cynic seducer,
who may appear sweet and sincere with his victims. And
music often exalts a paradoxical co-existence of contradictory

10Fairest daughter of love, I am a slave of your charms; with but a single word you

could relieve my every pain. Come touch my breast and feel how my heart is racing.

With but a single word you could relieve my every pain.

psychological attitudes. All contrasts are emphasized in the
quartet by the sordid environment, where a crime is going to
be committed. Maddalena’s answer to the Duke is based on
a fully different theme, a staccato-sequence of sixteenth-notes
(Figure 7)11.

Both the music and the text reflect Maddalena’s ambiguity:
she is a prostitute who is playing a traditional seductive role;

11 Ah! Ah! That really makes me laugh, talk like that is cheap enough.
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FIGURE 7 | Maddalena.

FIGURE 8 | Gilda.

at the same time she is also instrumental to a murder-project.
Gilda’s entrance (soon after Maddalena’s first phrase) determines
a sudden dramatic change. What Gilda sings is a cry of sorrow,
interrupted by some short pauses and appoggiaturas that seem to
describe desperate sobs (Figure 8)12.

One has often discussed the reasons that may have led Gilda
to her unreasonable sacrifice for an unworthy man who had
deceived her. Representing Gilda as a naive and modest girl is,
however, misleading and in contrast with the greatness expressed
by the music. Gilda’s death-choice can be perhaps better
understood as a suicide, caused by an unendurable disillusion.
Rigoletto’s role in the quartet is musically less “visible.” His mind

12Ah, these are the loving words the scoundrel spoke once to me! O wretched heart

betrayed, do not break of sorrow.

is completely absorbed in the vengeance-project (“la vendetta”)
that shall be shortly accomplished. From a musical point of
view, the quartet is constructed as a polyphonic structure, where
the four voices are interlaced, each preserving its own musical,
semantic and psychological autonomy.

Der Rosenkavalier by Strauss belongs to a musical and literary
world that is somewhat far both from Fidelio and from Rigoletto.
Different forms of ambiguity are exalted in this opera, which is
characterized by an extraordinary unity of music and text, written
by the great poet Hugo von Hofmannsthal. The theme of sexual
ambiguity is here developed by the character of Octavian, the
Rosenkavalier whose role is sung by a mezzo-soprano. Although
Octavian may recall Mozart’s Cherubino, ambiguities are in
Strauss’ opera more sophisticated: in two different situations
Octavian disguises himself as a woman in order to make fun
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of the rude fiancé of the fascinating girl Sophie. Interestingly
enough, some interpreters of the role of Octavian have told how
often they have been puzzled by their “oscillating identity” during
the opera’s performance.

A different and deeper “identity-question” is evoked in a
splendid aria sung by theMarschallin in Act 1. After a passionate
night spent with her lover Octavian, the lady is troubled by some
sad thoughts about the flowing of time and the mysterious co-
existence of different identities of one and the same person in
different stages of life. She sings:

Aber wie kann das wirklich sein,
dass ich die kleine Resi war,

und dass ich einmal die alte Frau sein werd’
.....................................

Wie kann denn das geschehen?
Wie macht denn das der liebe Gott?
Wo ich doch immer die gleiche bin.

Und wenn er’s schon so machen muss,
warum lasst er mich denn zuschaun dabei

mit gar so klarem Sinn?
Warum versteckt er’s nicht vor mir?
Das alles ist geheim, so viel geheim 13.

One is dealing with an extraordinary poetic and musical
representation of a “hard” scientific and philosophical problem,
that modern philosophers of science usually call “the genidentity-
question”14.

13But how can it be that I was the little Resi and that I shall be the old lady. .... How

can it come to pass? How can God decree it so? While, in fact, I am always the same.

And if indeed it must be so, why does he let me look at it so clearly? Why does he not

hide it to me? All this is a mystery, a great mystery.
14The term “genidentity,” which refers to the problematic identity of individuals

through time has been introduced by Lewin (in his doctoral thesis in 1922) and

The trio performed at the end of the opera by three
female voices (the Marschallin, Sophie, Octavian) is a wonderful
polyphonic construction, where the three characters express
different thoughts and feelings, which are not generally associated
to some specific musical themes (unlike the case of Rigoletto’s
quartet). The main theme is sung at the very beginning by the
Marschallin (Figure 9)15.

By this deeply moving musical phrase the Marschallin
expresses her extreme act of love, which is to renounce love.
Her choice might recall what Violetta Valery sings in Verdi’s La
Traviata:

Dite alla giovine sì bella e pura16

although Violetta and the Marschallin are, of course, completely
different characters.

Sophie’s entrance in the trio is, in a sense, surprising. She
joins in, in the final part of the Marschallin’s first phrase, just
upon the critical word “andern” (“other”). Her intervention
creates a sudden brief dissonance (a minor-second chord),
which immediately disappears when the two womem (who are
both in love with Octavian) harmonically conclude the phrase
at a distance of a minor-third. What Sophie perceives is a
strange religious atmosphere that she cannot really understand,
since she is not aware of the liason between Octavian and the
Marschallin. The incipit of the main theme (the characteristic
imprinting of the whole trio) is then immediately transposed
to a different key (from D flat major to A major) by Octavian,
whose initial attitude seems to be mainly dominated by
embarassing doubts and questions. But finally the reasons of
love prevail over all doubts. At the end of the trio, while

has been further investigated by Reichenbach and many other scholars. See, for

instance, Reichenbach (1928).
15I promised to love him in the right way, even to love his love for another woman.
16Tell the beautiful and pure girl.

FIGURE 9 | The Marschallin.
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the two young lovers sing an expected “dich habe ich lieb”
(“I love you”), the Marschallin concludes with an enigmatic
phrase:

als wie halt Männer das glücklich sein verstehen17.

singing the last note alone over a perfect tonic chord.
The three examples of polyphonic constructions, created by

Beethoven, Verdi, and Strauss, are all characterized by strong
unitary conceptions, based on complex parallel networks of
harmonic, melodic, timbric, and semantic relationships (which
have been extensively analyzed in musicological literature18).
At the same time, one can easily recognize some significant
differences that distinguish the three cases, both from the musical
and from the semantic point of view. The structure of Fidelio’s
quartet is very close to a canon-form, where the entrance of each
voice is associated to a specific semantic connotation. Rigoletto’s
quartet is, instead, dominated by strong musical contrasts that
reflect the conflicting feelings of four human beings, living in a
highly dramatic situation. Finally, Strauss’ trio seems to propose
a kind of musical and semantic “peaceful resolution.” The trio
is perceived by the listener as a strongly unitary musical idea that
evolves in time. The three female voices are in a sense “entangled,”
sometimes creating the illusion that a single voice is singing

17as far as men can understand happiness.
18See, for instance, Budden (1983), Solomon (1998), Principe (2004).

(as happens in the case of some entangled quantum objects,
whose parts are indistinguishable). Suchmusical situations can be
naturally represented in the framework of the quantum musical
semantics, where musical thoughts are dealt with as holistic ideal
objects that vaguely allude to a (possibly infinite) variety of
co-existing ideas.

The analysis proposed in this article has concerned questions
that belong to worlds apparently “far apart”: the theory of
quantum computers, psychology, logical semantics, and music.
A common pattern that arises in all these fields is a frequent and
sometimes essential emergence of some characteristic parallel
structures. We have seen how the quantum-theoretic concepts of
superposition and entanglement have inspired the development
of a “bridge-theory” (based on the quantum computational
semantics) that can be usefully applied to a formal representation
of different kinds of phenomena where parallelism plays a
relevant role.
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